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terferences between initial- and final-state soft-gluon radiation. The formulae are given

in terms of Mellin moments, and can be used for phenomenological applications using
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1. Introduction

Prompt-photon production plays a very important role in our understanding of the

physics of hadron collisions. At the leading order (LO) in QCD perturbation theory,

prompt photons are produced via light-quark annihilation, with emission of a hard

gluon recoiling against the photon, or via quark-gluon Compton scattering, with the

emission of a quark. When the Compton process dominates the cross section, tests or

even measurements of the gluon density inside the proton can be performed. This is

the case of photon production at small xT = 2ET/
√
S (xT <∼ 0.1) in pp̄ collisions, and it

is true for all values of xT that are accessible in fixed-target proton-nucleon collisions,

due to smaller content of antiquarks relative to gluons in the nucleon sea. In particular,

prompt-photon production at large xT can therefore be used to constrain or measure

the gluon density at large x. This region of the gluon density is of great importance

for the study of high-transverse-momentum phenomena at hadron colliders, and it is

not accessible using only Deep-Inelastic-Scattering (DIS) data.

1



J
H
E
P
0
7
(
1
9
9
8
)
0
2
4

The cross section for inclusive photon production has been computed at the next-to-

leading order (NLO) in perturbation theory [1, 2, 3]. The NLO computation of isolated-

photon production [4, 5, 6, 7], which is the relevant quantity for the measurements

carried out in high-energy pp̄ collisions, is also available in the limit of small size of the

isolation cone [8, 9]. These calculations include all light-parton fragmentation processes

up to NLO [10].

These theoretical results have been used [11, 12, 13, 14] to probe the overall consis-

tency of the prompt-photon production data from both fixed-target [15, 16] and collider

experiments [17, 18, 19].

The interpretation of the data has not provided so far a fully satisfactory picture.

The study by Huston et al. [13] exposed a tendency of the xT distributions to be steeper

than theory, regardless of the value of
√
S. This result could not be accomodated by a

simple modification of the parton densities, since different experiments probe different

values of xT . These authors therefore proposed that additional mechanisms should

be introduced to explain the pattern of the data. In the fixed-target regime, such a

mechanism would be provided by the presence of a non-perturbative kT kick, which

would smear the ET spectra. This phenomenon was also advocated to help explain the

spectra of fixed-target heavy-quark production [20]. In the high-energy regime, probed

by the Tevatron experiments, the ET smearing necessary to reconcile theory and data

could be provided by the inclusion of multi-gluon emission effects from the evolution

of the initial state, as advocated by Baer and Reno [21].

The analysis by Vogelsang and Vogt [14] indicated that allowing for different choices

of factorization and renormalization scales, a satisfactory fit to the data could be ac-

comodated by modifying the gluon density within the range allowed by the DIS data

available in 1995. This interpretation is apparently not viable anymore [22], because of

the most recent constraints on the gluon density extracted at small x from the HERA

data, and, in particular, because of the latest fixed-target prompt-photon data from

E706 [23].

The comparison of the E706 data with NLO QCD, carried out in [23], seems to

confirm the need for an intrinsic-kT smearing corresponding to 〈kT 〉 ∼ 1 GeV. These

conclusions are shared in a recent global fit of the parton densities performed by the

MRST group [24]. In this same study (see also [25]), however, a strong dependence

of 〈kT 〉 on
√
S is claimed to be necessary to properly describe the lower-energy data

published by WA70.

In conclusion, the comparison of the large-xT fixed-target data with NLO QCD

still presents some puzzling features, which will need to be properly clarified before

use of these data can be made to place robust constraints on the large-x gluon dis-

tribution inside the proton. This is unfortunate, since these data provide today the

only independent probe on high-x gluons. Their accurate interpretation is therefore a

fundamental ingredient for an accurate prediction of the production rate of high-ET
jets at the Tevatron, a measurement which has challenged perturbative QCD in the

recent past [26].

2



J
H
E
P
0
7
(
1
9
9
8
)
0
2
4

To improve the reliability of the perturbative predictions for the production of

prompt photons at large xT , and detect the presence of potentially large corrections

beyond NLO that could change the interpretation of the current data, in the present

work we consider an extension of the NLO formalism that includes large logarithmically-

enhanced effects as the production threshold is approached. This is the kinematical

region of interest for the fixed-target data. As the xT of the photon is increased, the

parton luminosity becomes steeper, being driven down by the strong suppression of

the gluon density at large x. We thus enter a regime of inhibited radiation: further

radiation of soft gluons is strongly suppressed, and logarithmically-enhanced effects

(Sudakov effects) arise at any order in the perturbative expansion. These logarithms

spoil the reliability of the fixed-order expansion in the strong coupling αs and, hence,

their summation to all pertubative orders is necessary. For simplicity, this regime can

be described in terms of the distance from the kinematic threshold, which is reached

when xT ∼ 1. In this limit, the coefficients of the perturbative series for the cross

section are enhanced by powers of ln(1− xT ) that have to be resummed at all orders.

This simplified description applies to the case of hypothetical structure functions that

are not strongly suppressed at high x. It is, however, an appropriate framework for the

classification of the perturbative corrections we are interested in.

In this work we will present all the formalism that is needed to compute the re-

summed cross section for direct photons, integrated over the photon rapidity and at

fixed transverse energy. In particular, we give explicit resummation formulae that

are valid up to next-to-leading logarithmic (NLL) accuracy. No phenomenological ap-

plications will be discussed here, but they will be explored in a forthcoming work.

Furthermore, the formulae for the resummed correction factors will be presented and

illustrated, but not derived here. The general formalism [27] used to obtain the resum-

mation factors, which has already been used for the NLL resummation of the heavy-

quark total production cross-section in ref. [28], will be presented in a forthcoming

publication [29].

The rest of this work is organised as follows. The general theoretical framework

is discussed in sect. 2. In sect. 3 we fix our notation and present the formulae for

the Born cross section, together with their Mellin transforms. Soft-gluon resummation

at large xT is considered in sect. 4. The NLL resummation factors are presented in

subsects. 4.1, 4.2. In subsect. 4.3, the fixed-order expansion of the resummed formulae

is compared with the NLO results of refs. [1, 3]. This comparison is also exploited to

fix certain constant factors in the resummed formulae. In sect. 5 we discuss similarities

and differences between the resummed factors for the prompt-photon cross section and

those for other hard-scattering processes, and we prove the consistency of the results

obtained in the case of prompt photons with the coherence properties of large-angle

soft-gluon emission. Section 6 contains our conclusions.

More technical details are left to the Appendices. In Appendix A, we give the NLL

formulae for the radiative factors in the Mellin transform representation. Previous

experience in the case of heavy-flavour production has shown that this is what is needed
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to perform a reliable phenomenological analysis [28]. In Appendix B, the threshold limit

of the partonic cross sections is discussed. In particular, a prediction for the logarithmic

terms at the next-to-next-to-leading order (NNLO) is given. Finally, in Appendix C

the simpler case of photoproduction of direct photons is discussed.

While completing this paper, a study of the NLL resummation for single-inclusive

distributions, covering the case of prompt-photon production, has been released by

Laenen, Oderda and Sterman [30].

2. General framework

The presence of large logarithmically-enhanced contributions is a common feature in the

study of the production cross sections of systems of high mass or high transverse energy

near threshold. In this kinematic regime, known as the Sudakov regime, only additional

soft gluons can be produced. The radiative tail of the real emission is thus strongly

suppressed and cannot balance the virtual corrections. The imperfect compensation

between real and virtual terms leads to the large logarithmic contributions.

General techniques for resumming soft-gluon corrections to hadroproduction pro-

cesses have been developed over the past several years, starting from the case of Drell-

Yan (DY) pair production [31, 32]. The resummation program of the soft-gluon contri-

butions is best carried out in the Mellin-transform space, or N -space, where N denotes

the parameter that is conjugate to the kinematic variable that measures the distance

from threshold. In N -moment space the threshold-production region corresponds to

the limit N →∞ and the typical structure of the logarithmic contributions is as follows

σ̂
(0)
N

{
1 +

∞∑
n=1

αns

2n∑
m=1

cn,m lnmN

}
, (2.1)

where σ̂
(0)
N is the corresponding partonic cross-section at LO. In the DY process the log-

arithmic terms in the curly bracket of eq. (2.1) can be explicitly summed and organized

in a radiative factor ∆DY,N that has an exponential form [31, 32, 33]:

∆DY,N(αs) = exp

{
∞∑
n=1

αns

n+1∑
m=1

Gnm lnmN

}
(2.2)

= exp
{
lnN g

(1)
DY (αs lnN) + g

(2)
DY (αs lnN) + αsg

(3)
DY (αs lnN) + . . .

}
. (2.3)

Note that the exponentiation in eq. (2.2) is not trivial. The sum over m in eq. (2.1)

extends up to m = 2n while in eq. (2.2) the maximum value for m is smaller, m ≤ n+1.

In particular, this means that all the double logarithmic (DL) terms αns cn,2n ln2nN in

eq. (2.1) are taken into account by simply exponentiating the lowest-order contribution

αsc1,2 ln2N . Then, the exponentiation in eq. (2.2) allows one to define the improved

perturbative expansion in eq. (2.3). The function lnN g
(1)
DY resums all the leading

logarithmic (LL) contributions αns lnn+1 N , g
(2)
DY contains the next-to-leading logarithmic

(NLL) terms αns lnnN , αsg
(3)
DY contains the next-to-next-to-leading logarithmic (NNLL)
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terms αn+1
s lnnN , and so forth. Once the functions g

(k)
DY have been computed, one has

a systematic perturbative treatment of the region of N in which αs lnN ∼< 1, which is

much larger than the domain αs ln2N � 1 in which the fixed-order calculation in αs
is reliable.

The QCD exponentiation formula for the DY process formally resembles analogous

results for QED. This is because the underlying hard-scattering subprocess involves

only two QCD partons, i.e. the annihilating qq̄ pair, and, hence, both its kinematics

and its colour structure are simple. In the case of prompt-photon production, instead,

all the LO hard-scattering subprocesses

q + q̄ → g + γ , q + g → q + γ , q̄ + g → q̄ + γ , (2.4)

involve three coloured partons and, then, Sudakov resummation is by far less trivial.

A key ingredient for the exponentiation in the DY process is the factorization of the

corresponding multigluon matrix elements in the soft limit. Since the colour structure

of a two-parton hard-scattering is trivial1, primary soft radiation from the two hard

partons factorizes as in QED. Then the subsequent parton radiation can be factorized

in non-interfering angular-ordered cascades because of the coherence properties [35] of

QCD emission.

In the case of prompt-photon production, and, in general, in scattering processes

produced by hard interactions of more than two QCD partons, the colour and momen-

tum flows in the partonic subprocess are more involved. In particular, the interplay

between colour exchange in the hard scattering and colour transitions induced by par-

ton radiation spoils QED-like factorization of soft-gluon emission. Therefore, both

colour correlations and soft-gluon interferences have to be properly taken into account.

It turns out that, in general, the threshold logarithmic corrections cannot be resummed

in a single exponential factor [36]: one has to deal with exponential matrices that couple

the various colour channels of the hard-scattering subprocess.

However, the three-parton subprocesses in eq. (2.4) are a special case among the

multiparton configurations. There is only one colour-singlet state2 that can be con-

structed by combining qq̄g and then, because of colour conservation, soft-gluon radia-

tion cannot induce colour transitions in the hard-scattering subprocess. Owing to the

absence of colour correlations, we conclude that the logarithmically-enhanced threshold

corrections in prompt-photon hadroproduction are embodied by three radiative factors

(one factor for each of the LO partonic channels in eq. (2.4))

∆qq̄→gγ
N (αs) , ∆qg→qγ

N (αs) , ∆q̄g→q̄γ
N (αs) , (2.5)

that, after all-order resummation, have an exponential form analogous to the DY ra-

diative factor in eq. (2.3). Nonetheless, the similarity with the DY process regards only

1This is the reason why similar exponentiation formulae apply to many other two-jet-dominated

processes [34].
2In other words, the qq̄g colour-amplitude Mαᾱa

qq̄g (α, ᾱ and a are the colour indices of the quark,

antiquark and gluon, respectively) is necessarily proportional to the matrix taαᾱ of the fundamental

representation of the gauge group SU(Nc).
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the colour structure. The hard-scattering kinematics is different in prompt-photon

production and the factors in eq. (2.5) still contain soft-gluon interference effects that

are non-trivial. The pattern of these soft-gluon interferences is typical of multiparton

hard-scatterings.

General theoretical methods to perform Sudakov resummation in processes initiated

by hard scattering of more than two QCD partons have recently been developed by

two groups. The KOS formalism [36, 37, 38] uses the Wilson line approach to treat

colour correlations and soft-gluon interferences. It has been explicitly applied to the

calculation with NLL accuracy of the the invariant-mass distributions of heavy-quark

pairs and dijets (see also ref. [30]). The more recent BCMN formalism [28] is based

on generalized soft-gluon factorization and has been used for the NLL calculation of

the total cross section for heavy-quark hadroproduction. The consistency of the NLL

results for the total cross section [28] with those for the invariant mass distribution [36]

of heavy-quark pairs shows that, although different, the two formalisms are equivalent

to a large extent.

In the rest of this paper, we first introduce our notation and then we present the

resummed expressions of the prompt-photon radiative factors (2.5) to NLL accuracy.

The results include the complete soft-gluon interferences to this accuracy, as evaluated

by using the BCMN formalism. Details of our general formalism will be presented

elsewhere [29].

3. Notation and fixed-order calculations

We consider the inclusive production of a single prompt photon in hadron collisions:

H1(P1) +H2(P2)→ γ(p) +X . (3.1)

The colliding hadrons H1 and H2 respectively carry momenta P ν
1 and P ν

2 . In their

centre-of-mass frame, using massless kinematics, they have the following light-cone

coordinates

P ν
1 =

√
S

2
(1, 0, 0) , P ν

2 =

√
S

2
(0, 0, 1) , (3.2)

where S = (P1 + P2)
2 is the centre-of-mass energy squared. The photon momentum p

is thus parametrized as

pν =

(
ET√

2
eη,ET ,

ET√
2
e−η

)
, (3.3)

where ET and η are the transverse energy and the pseudorapidity, respectively. We

also introduce the customary scaling variable xT (0 ≤ xT ≤ 1):

xT = 2
ET√
S
. (3.4)

We are interested in the prompt-photon production cross section integrated over η

at fixed ET . According to perturbative QCD, the cross section is given by the following

6
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factorization formula

dσγ(xT , ET )

dET
=

1

E3
T

∑
a,b

∫ 1

0
dx1 fa/H1

(x1, µ
2
F )
∫ 1

0
dx2 fb/H2

(x2, µ
2
F )×

×
∫ 1

0
dx

{
δ

(
x−

xT
√
x1x2

)
σ̂ab→γ(x, αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f)+

+
∑
c

∫ 1

0
dz z2 dc/γ(z, µ

2
f) δ

(
x−

xT

z
√
x1x2

)
σ̂ab→c(x, αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f)

}
, (3.5)

where a, b, c denote the parton indices (a = q, q̄, g), and fa/H1
(x1, µ

2
F ) and fb/H2

(x1, µ
2
F )

are the parton densities of the colliding hadrons evaluated at the factorization scale µF .

The first and the second term in the curly bracket on the right-hand side of eq. (3.5)

respectively represent the direct and the fragmentation component of the cross section.

The fragmentation component involves the parton fragmentation function dc/γ(z, µ
2
f )

of the observed photon at the factorization scale µf , which, in general, differs from the

scale µF of the parton densities.

The rescaled3 partonic cross sections σ̂ab→γ and σ̂ab→c in eq. (3.5) are computable in

QCD perturbation theory as power series expansions in the running coupling αs(µ
2),

µ being the renormalization scale in the MS renormalization scheme:

σ̂ab→γ(x, αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f) =

ααs(µ
2)

[
σ̂

(0)
ab→dγ(x) +

∞∑
n=1

αns (µ
2) σ̂

(n)
ab→γ(x;E

2
T , µ

2, µ2
F , µ

2
f)

]
, (3.6)

σ̂ab→c(x, αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f) =

α2
s(µ

2)

[
σ̂

(0)
ab→c(x) +

∞∑
n=1

αns (µ
2) σ̂

(n)
ab→c(x;E

2
T , µ

2, µ2
F , µ

2
f)

]
. (3.7)

Note that the ratio between the direct and the fragmentation terms in eqs. (3.6) and

(3.7) is of the order of α/αs, where α is the fine structure constant. This ratio is

compensated by the photon-fragmentation function dc/γ, which (at least formally) is of

the order of α/αs, so that direct and fragmentation components equally contribute to

eq. (3.5).

Throughout the paper we always use parton densities and parton fragmentation

functions as defined in the MS factorization scheme. In general, we consider different

values for the renormalization and factorization scales µ, µF , µf , although we always

assume that all of them are of the order of the photon transverse energy ET .

The LO terms σ̂
(0)
ab→dγ in eq. (3.6) are due to the tree-level parton scatterings

a + b→ d+ γ , (3.8)

3These functions are related to the partonic differential cross sections by σ̂ab→i = E3
T dσ̂ab→i/dET

(i = γ, c).
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where the flavour indices a, b, d are those explicitly denoted in the subprocesses of

eq. (2.4). Using our normalization, the two independent (non-vanishing) partonic cross

sections for the direct component are:

σ̂
(0)
qq̄→gγ(x) = π e2

q

CF

Nc

x2

√
1− x2

(
2− x2

)
(3.9)

σ̂(0)
qg→qγ(x) = σ̂

(0)
q̄g→q̄γ(x) = π e2

q

1

2Nc

x2

√
1− x2

(
1 +

x2

4

)
, (3.10)

where eq is the quark electric charge. Note that, having integrated over the photon

pseudorapidity, the expressions (3.9, 3.10) are even functions of the photon transverse

energy ET , i.e. they depend on x2 rather than on x. The NLO terms σ̂
(1)
ab→γ in eq. (3.6)

were first computed in ref. [1].

The partonic contributions σ̂ab→c to the fragmentation component of the cross sec-

tion are exactly equal to those of the single-hadron inclusive distribution. Their explicit

calculation up to NLO was performed in ref. [10].

We are mainly interested in the behaviour of QCD corrections near the partonic-

threshold region x → 1, i.e. when the transverse energy ET of the photon approaches

the partonic centre-of-mass energy
√
x1x2S. In this region, the LO cross sections (3.9),

(3.10) behave as

σ̂
(0)
ab→dγ(x) ∼

1
√

1− x2
. (3.11)

This integrable singularity is a typical phase-space effect. At higher perturbative orders,

the singularity in eq. (3.11) is enhanced by double-logarithmic corrections due to soft-

gluon radiation and the cross section contributions in eqs. (3.6), (3.7) behave as

σ̂(n)(x) ∼ σ̂(0)(x) ln2n(1− x) . (3.12)

Resummation of these soft-gluon effects to all orders in perturbation theory can be

important to improve the reliability of the QCD predictions.

3.1. N-moment space

The resummation program of soft-gluon contributions has to be carried out [31, 32] in

the Mellin-transform space, or N -space. Working in N -space, one can disentangle the

soft-gluon effects in the parton densities from those in the partonic cross section and

one can straightforwardly implement and factorize the kinematic constraints of energy

and longitudinal-momentum conservation.

It is convenient to consider the Mellin transform σγ,N(ET ) of the dimensionless

hadronic distribution E3
Tdσγ(xT , ET )/dET . The N -moments with respect to x2

T and at

fixed ET are thus defined as follows:

σγ,N (ET ) ≡
∫ 1

0
dx2

T (x2
T )N−1E3

T

dσγ(xT , ET )

dET
. (3.13)

8
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In N -moment space, eq. (3.5) takes a simple factorized form

σγ,N (ET ) =
∑
a,b

fa/H1, N+1(µ
2
F ) fb/H2, N+1(µ

2
F )×

×

{
σ̂ab→γ, N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) +

+
∑
c

σ̂ab→c, N(αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f) dc/γ,2N+3(µ

2
f)

}
, (3.14)

where we have introduced the customary N -moments fa/H, N and da/γ,N of the parton

densities and parton fragmentation functions:

fa/H,N(µ2) ≡
∫ 1

0
dx xN−1 fa/H(x, µ2) , (3.15)

da/γ,N(µ2) ≡
∫ 1

0
dz zN−1 da/γ(z, µ

2) . (3.16)

Note that the N -moments of the partonic cross sections in eq. (3.14) are again

defined with respect to x2
T :

σ̂ab→γ, N(αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f)

≡
∫ 1

0
dx2 (x2)N−1 σ̂ab→γ(x, αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) . (3.17)

In particular, the N -moments of the LO contributions in eqs. (3.9), (3.10) are given by

the following explicit expressions:

σ̂
(0)
qq̄→gγ,N = π e2

q

CF

Nc

Γ(1/2) Γ(N + 1)

Γ(N + 5/2)
(2 +N) , (3.18)

σ̂
(0)
qg→qγ,N = σ̂

(0)
q̄g→q̄γ, N = π e2

q

1

8Nc

Γ(1/2) Γ(N + 1)

Γ(N + 5/2)
(7 + 5N) . (3.19)

Note also the pattern of moment indices in the various factors of eq. (3.14), i.e.

fa/H,N+1 for the parton densities and dc/γ, 2N+3 for the parton fragmentation functions.

This non-trivial pattern follows from the conservation of the longitudinal and transverse

momenta.

The threshold region xT → 1 corresponds to the limit N →∞ in N -moment space.

In this limit, the soft-gluon corrections (3.12) to the higher-order contributions of the

partonic cross sections become

σ̂
(n)
N ∼ σ̂

(0)
N ln2nN . (3.20)

The resummation of the soft-gluon logarithmic corrections to all orders in perturbation

theory is considered in the following Section.

9



J
H
E
P
0
7
(
1
9
9
8
)
0
2
4

4. Soft-gluon resummation at high ET

4.1. Resummed cross section to NLL accuracy

In the threshold or large-N limit, the various partonic channels contribute in different

ways to the prompt-photon cross section σγ,N(ET ) in eq. (3.14).

Firstly, we can compare the direct and fragmentation contributions to eq. (3.14).

The partonic cross sections σ̂ab→γ, N and σ̂ab→c, N have the same large-N behaviour, but,

owing to the hard (although collinear) emission always involved in any splitting process

c→ γ+X, the photon-fragmentation function dc/γ,N is of the order of 1/N . Therefore,

in eq. (3.14) the fragmentation component is formally suppressed by a factor of 1/N

with respect to the direct component and in our resummed calculation we can neglect

the fragmentation contributions.

Then, we can discuss the differences in the large-N behaviour of the partonic cross

sections σ̂ab→γ,N (αs) for the direct processes. The cross sections for the partonic chan-

nels ab = qq̄′, q̄q′, qq, qq′, q̄q̄, q̄q̄′ (q and q′ denote quarks of different flavours) vanish at

LO and are hence suppressed by a factor of αs with respect to σ̂qq̄→γ,N(αs), σ̂qg→γ,N(αs),

σ̂q̄g→γ,N (αs). Moreover, in the large-N limit this relative suppression is furtherly en-

hanced by a factor of O(1/N) because the photon has to be accompanied by (at least)

two final-state fermions that are not produced by the decay of an off-shell gluon. There-

fore, we make no attempt to resum soft-gluon corrections to these partonic channels.

The partonic cross section σ̂gg→γ,N (αs) has a different large-N behaviour. It begins to

contribute at NLO via the partonic process g + g → γ + q + q̄, which again leads to a

suppression effect of O(1/N) with respect to the LO subprocesses. However, owing to

the photon-gluon coupling through a fermion box, the partonic subprocess g+g → γ+g

is also permitted. This subprocess is logarithmically-enhanced by multiple soft-gluon

radiation in the final state, but it starts to contribute only at NNLO in perturbation

theory. It follows that the partonic channel ab = gg is suppressed by a factor of α2
s

with respect to the LO partonic channels ab = qq̄, qg, q̄g and it enters the resummed

cross section only at NNLL accuracy.

In conclusion, since we are interested in explicitly perform soft-gluon resummation

up to NLL order, we can limit ourselves to considering the partonic cross sections σ̂qq̄→γ,

σ̂qg→γ, σ̂q̄g→γ.

As discussed in sect. 2, the soft-gluon corrections to the partonic channels ab =

qq̄, qg, q̄g are not affected by colour correlations. Thus, in the resummed expressions

σ̂
(res)
ab→γ,N for the partonic cross sections, the logarithmically-enhanced threshold contri-

butions can be factorized with respect to the corresponding LO cross sections σ̂
(0)
ab→dγ, N

in eqs. (3.18), (3.19). The all-order resummation formulae are

σ̂
(res)
qq̄→γ,N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = ααs(µ

2) σ̂
(0)
qq̄→gγ,N Cqq̄→γ(αs(µ

2), Q2/µ2;Q2/µ2
F )×

×∆qq̄→gγ
N+1 (αs(µ

2), Q2/µ2;Q2/µ2
F ) , (4.1)
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σ̂
(res)
qg→γ,N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = ααs(µ

2) σ̂
(0)
qg→qγ,N Cqg→γ(αs(µ

2), Q2/µ2;Q2/µ2
F )×

×∆qg→qγ
N+1 (αs(µ

2), Q2/µ2;Q2/µ2
F ) , (4.2)

σ̂
(res)
q̄g→γ,N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = σ̂

(res)
qg→γ,N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) , (4.3)

where

Q2 = 2E2
T . (4.4)

Note that the right-hand side of eqs. (4.1), (4.2) does not depend on the factorization

scale µf of the photon fragmentation functions. Thus, the resummed partonic cross

sections σ̂
(res)
ab→γ,N turn out to be independent of µf . This is in agreement with the

subdominance of the fragmentation contributions near threshold, as discussed above.

The functions Cab→γ(αs) in eqs. (4.1), (4.2) do not depend on N and, thus, con-

tain all the contributions that are constant in the large-N limit. These functions are

computable as power series expansions in αs

Cab→γ(αs(µ
2), Q2/µ2;Q2/µ2

F ) = 1 +
+∞∑
n=1

(
αs(µ

2)

π

)n
C

(n)
ab→γ(Q

2/µ2;Q2/µ2
F ) . (4.5)

The physical origin and the structure of the constant factors Cab→γ(αs) is discussed in

sect. 4.3.

The lnN -dependence of the resummed cross sections is entirely embodied by the

radiative factors ∆ab→dγ
N on the right-hand side of eqs. (4.1), (4.2). Note, the mismatch

between the moment index of the radiative factor and that of σ̂
(0)
ab→dγ, N : the former

depends on N + 1, like the parton densities in eq. (3.14). The explicit expressions of

the radiative factors are given in the following subsection.

4.2. The radiative factors

The soft-gluon factors ∆ab→dγ
N depend on the flavour of the QCD partons a, b, d involved

in the LO hard-scattering subprocess a + b → d + γ. According to the discussion of

sect. 2, the resummed expressions for ∆ab→dγ
N have an exponential form. To explain the

exponentiation structure and to facilitate the comparison with other hadroproduction

processes, we use a notation similar to that in ref. [32] and we write the prompt-photon

radiative factors as follows

∆ab→dγ
N (αs(µ

2), Q2/µ2;Q2/µ2
F ) = JdN(αs(µ

2), Q2/µ2) ∆
(int) ab→dγ
N (αs(µ

2), Q2/µ2)×

×∆a
N (αs(µ

2), Q2/µ2;Q2/µ2
F ) ∆b

N(αs(µ
2), Q2/µ2;Q2/µ2

F ) . (4.6)

The resummed formulae to NLL accuracy for the various contributions on the right-

hand side of this equation are presented below.

Each term ∆a
N (αs(µ

2), Q2/µ2;Q2/µ2
F ) depends on the flavour a of a single parton,

on the factorization scheme of the parton density fa/H,N(µ2
F ) and on the factorization
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scale µF . In the MS scheme, we have

∆a
N(αs(µ

2), Q2/µ2;Q2/µ2
F ) =

= exp

{∫ 1

0
dz

zN−1 − 1

1− z

∫ (1−z)2Q2

µ2
F

dq2

q2
Aa(αs(q

2)) +O(αs(αs lnN)k)

}
, (4.7)

where Aa(αs) are perturbative functions

Aa(αs) =
αs

π
A(1)
a +

(
αs

π

)2

A(2)
a +O(α3

s) . (4.8)

The lower-order terms A(1)
a and A(2)

a are

A(1)
a = Ca , A(2)

a =
1

2
CaK , (4.9)

where Ca = CF if a = q, q̄ and Ca = CA if a = g, while the coefficient K is the same

both for quarks [39] and for gluons [40] and it is given by4

K = CA

(
67

18
−
π2

6

)
−

10

9
TRNf . (4.10)

The term JdN(αs(µ
2), Q2/µ2) depends on the parton flavour d and is independent

both of the factorization scale and of the factorization scheme:

JdN(αs(µ
2), Q2/µ2) = exp

{ ∫ 1

0
dz

zN−1 − 1

1− z

[ ∫ (1−z)Q2

(1−z)2Q2

dq2

q2
Ad(αs(q

2)) +

+
1

2
Bd(αs((1− z)Q

2))
]
+ O(αs(αs lnN)k)

}
. (4.11)

The functions Ad(αs) are given in eq. (4.8) and the functions Bd(αs) have analogous

perturbative expansions:

Bd(αs) =
αs

π
B

(1)
d +O(α2

s) (4.12)

with [39, 40]

B
(1)
d=q,q̄ = −

3

2
CF , B

(1)
d=g = −

1

6
(11CA − 4TRNf ) . (4.13)

Likewise JdN , the remaining contribution ∆
(int)
N in eq. (4.6) is independent of the

factorization scale and scheme. Nonetheless, it depends on the flavours of all the QCD

partons entering the LO scattering subprocess:

∆
(int) ab→dγ
N (αs(µ

2), Q2/µ2) = exp

{ ∫ 1

0
dz

zN−1 − 1

1− z
Dab→dγ(αs((1− z)

2Q2)) +

+O(αs(αs lnN)k)

}
. (4.14)

4In SU(Nc) QCD, the colour factors are CF = (N2
c − 1)/(2Nc), CA = Nc and TR = 1/2.
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The function Dab→dγ(αs) has the following perturbative expansion

Dab→dγ(αs) =
αs

π
D

(1)
ab→dγ +O(α2

s) , (4.15)

with

D
(1)
ab→dγ = (Ca + Cb − Cd) ln 2 . (4.16)

The factorized structure in eq. (4.6) has a direct physical interpretation. The factors

∆a
N and ∆b

N take into account soft-gluon radiation emitted collinearly to the initial-

state partons. Consistently, these are the sole factors that depend on the factorization

scale µF of the parton densities of the colliding hadrons. The factor JdN is due to

collinear (either soft or hard) radiation in the final-state jet that is produced by the

fragmentation of the parton d recoiling against the triggered photon. The factor ∆
(int)
N

contains the contribution of soft-gluon emission at large angle with respect to the

direction of the hard partons entering the LO scattering subprocess. This factor thus

embodies the soft-gluon interference effects anticipated in sect. 2.

According to this interpretation, the perturbative functions in eqs. (4.8), (4.12),

(4.15) measure the intensity of the coupling of i) soft-collinear gluons (function Aa(αs)),

ii) hard-collinear partons (function Ba(αs)) and iii) large-angle soft gluons (function

Dab→dγ(αs)). Note that, due to their collinear nature, the functions Aa(αs) and Ba(αs)

depend on the colour and flavour of the sole parton a. On the contrary, Dab→dγ(αs)

depends on the colour charges of all the QCD partons.

The physical origin of the several contributions on the right-hand side of eq. (4.6)

is furtherly discussed in sect. 5, where we compare the promp-photon radiative factors

with the analogous resummed factors that control the threshold behaviour of other

hadroproduction processes. In the rest of this section we limit ourselves to comment

on few additional features of the resummed contributions to the prompt-photon cross

section.

The various factors in eq. (4.6) contribute to the resummed prompt-photon cross

section at different level of logarithmic accuracy. If we simply consider the double-

logarithmic (DL) approximation, which consists in resumming only the terms αns ln2nN ,

we can neglect the interference factor ∆
(int)
N and the B(αs) function in eq. (4.11) and

we can expand the exponent in ∆a
N and JdN to its first order in αs:

∆a
N (αs(µ

2), Q2/µ2;Q2/µ2
F ) ' exp

{
+ 2Ca

αs
2π

ln2N

}
, (4.17)

JdN(αs(µ
2), Q2/µ2) ' exp

{
−Cd

αs

2π
ln2N

}
. (4.18)

The complete set of LL terms is obtained by neglecting the functions B(αs), D(αs) in

eqs. (4.11), (4.14), by truncating Aa(αs) to their first order and using the LO running

of the coupling αs(q
2). At the NLL order, also the contribution of the coefficients

A(2)
a , B(1)

a and D
(1)
ab→dγ has to be included.

Note that different scales, e.g. q2, (1− z)2Q2, (1− z)Q2, appear on the right-hand

sides of eqs. (4.7), (4.11), (4.14). In particular, the scales in the q2-integration limits of
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eq. (4.7) are different from those of eq. (4.11), and the B function in eq. (4.11) depends

on αs((1− z)Q2) while the D function in the interference contribution (4.14) depends

on αs((1 − z)2Q2). These scales follows from the hard-scattering kinematics, which

affect in a different way initial- or final-state emission and collinear or soft radiation.

Note, also, that the renormalization scale µ does not explicitly enter the right-hand

side of eqs. (4.7), (4.11), (4.14). This is because radiative factors are renormalization-

group-invariant quantities when evaluated to all order in perturbation theory. Only

when the all-order expressions are truncated to a certain degree of logarithmic accuracy,

the renormalization-scale dependence explicitly appears as a higher-order effect.

Since we know the radiative factors only to NLL order, we use the eqs. (4.7), (4.11),

(4.14) by replacing αs(k
2) (with k2 = q2, (1−z)2Q2, (1−z)Q2) with its NLO expansion

in terms of αs(µ
2) and k2 (cf. Appendix A), and we explicitly carry out the z and q2

integrals by neglecting terms beyond NLL accuracy. We thus write the prompt-photons

radiative factors as follows:

∆ab→dγ
N

(
αs(µ

2),
Q2

µ2
;
Q2

µ2
F

)
= exp

{
lnN g

(1)
ab (b0αs(µ

2) lnN)

+ g
(2)
ab (b0αs(µ

2) lnN,Q2/µ2;Q2/µ2
F ) +O(αs(αs lnN)k)

}
. (4.19)

The functions g(1) and g(2) resum the LL and NLL terms, respectively. These functions

are different for the qq̄ and qg partonic channels of eqs. (4.1) and (4.2), and are explicitly

computed in Appendix A. We find

g
(1)
qq̄ (λ) = (2CF − CA) h(1)(λ) + CA h

(1)(λ/2) ,

g(1)
qg (λ) = CA h

(1)(λ) + CF h
(1)(λ/2) , (4.20)

and

g
(2)
qq̄

(
λ,
Q2

µ2
;
Q2

µ2
F

)
= (2CF − CA) h(2)(λ) + 2CA h

(2)(λ/2) +

+
2CF − CA

2πb0
ln 2 ln(1− 2λ) +

CAγE − πb0

πb0
ln(1− λ)−

2CF
πb0

λ ln
Q2

µ2
F

+

+
{
CF

πb0

[
2λ+ ln(1− 2λ)

]
+

CA

2πb0

[
2 ln(1− λ)− ln(1− 2λ)

]}
ln
Q2

µ2
, (4.21)

g(2)
qg

(
λ,
Q2

µ2
;
Q2

µ2
F

)
= CA h

(2)(λ) + 2CF h
(2)(λ/2) +

+
CA
2πb0

ln 2 ln(1− 2λ) +
4CF γE − 3CF

4πb0
ln(1− λ)−

CF + CA
πb0

λ ln
Q2

µ2
F

+

+
{
CF + CA

2πb0

[
2λ+ ln(1− 2λ)

]
+

CF

2πb0

[
2 ln(1− λ)− ln(1− 2λ)

]}
ln
Q2

µ2
, (4.22)

where γE = 0.5772 . . . is the Euler number and b0, b1 are the first two coefficients of the

QCD β-function

b0 =
11CA − 4TRNf

12π
, b1 =

17C2
A − 10CATRNf − 6CFTRNf

24π2
. (4.23)
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The auxiliary functions h(1) and h(2) in eqs. (4.20) and (4.21), (4.22) are

h(1)(λ) =
1

2πb0λ

[
2λ+ (1− 2λ) ln(1− 2λ)

]
, (4.24)

h(2)(λ) =
b1

2πb3
0

[
2λ+ ln(1− 2λ) +

1

2
ln2(1− 2λ)

]
−

−
γE

πb0
ln(1− 2λ)−

K

4π2b2
0

[
2λ+ ln(1− 2λ)

]
, (4.25)

where K is the coefficient in eq. (4.10).

The results in eqs. (4.19)–(4.22) provide us with a theoretical description of soft-

gluon resummation in prompt-photon hadroproduction at the same level of accuracy as

for other hadroproduction processes, such as the production of Drell-Yan pairs [31, 32]

or heavy quarks [36, 28]. These results can be used for detailed quantitative studies

along the lines of Refs. [41, 28]. In this paper we do not present numerical analyses and

we limit ourselves to discuss the expected sign and size of the resummation effects.

In the near-threshold region, radiation in the final state is kinematically inhibited.

On physical basis, one thus expects that resummation of the ensuing logarithmically-

enhanced corrections produces suppression of the cross section. This argument applies

to hadronic cross sections, but it is not necessarely valid for partonic cross sections. The

partonic cross section is what is left after factorization of long-distance physics into the

parton distributions. Since all-order resummation is in part automatically implemented

in the definition of the parton densities, the remaining resummation effects can either

enhance or deplete the partonic cross section.

Among the various terms on the right-hand side of eq. (4.6), some factors are smaller

and some others are larger than unity. The exponent of the initial-state contribution

∆a
N in eq.(4.7) is positive definite and, hence, ∆a

N � 1 when N →∞. The presence of

this ‘anti-Sudakov’ form factor is typical of partonic cross sections that are evaluated by

factorizing parton densities defined in the MS factorization scheme. In the case of the

final-state contribution JdN , no additional factorization has been performed. Therefore,

when N → ∞ the exponent in eq. (4.11) is negative and JdN � 1 is a ‘true’ Sudakov

form factor, as naively expected. The sign of the exponent in eq. (4.14) is not definite

(D
(1)
qq̄→gγ < 0, D(1)

qg→qγ = D
(1)
q̄g→q̄γ > 0) as expected for an interference term. However,

the contribution of ∆
(int) ab→dγ
N is subleading with respect to those of ∆a

N and JdN .

From the overall inspection of the effect of the radiative-factor contributions to

eq. (4.6), we infer that, in the case of prompt-photon production, the resummed par-

tonic cross sections σ̂
(res)
qq̄→γ,N and σ̂

(res)
qg→γ,N in eqs. (4.1) and (4.2) are both enhanced with

respect to their LO approximations σ̂
(0)
qq̄→gγ,N , σ̂

(0)
qg→qγ,N . Moreover, the enhancement in

the qg partonic channel is larger than that in the qq̄ channel.

This conclusion can also be argued by a simplified treatment within the DL approx-

imation. Inserting eqs. (4.17), (4.18) into eq. (4.6), we obtain
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σ̂
(res)
qg→γ,N ' σ̂

(0)
qg→qγ,N exp

{[
2CF + 2CA − CF

]αs
2π

ln2N

}
(4.26)

= σ̂
(0)
qg→qγ,N exp

{
(CF + 2CA)

αs
2π

ln2N

}
> σ̂

(0)
qg→qγ,N , (4.27)

σ̂
(res)
qq̄→γ,N ' σ̂

(0)
qq̄→qγ,N exp

{
[2CF + 2CF − CA]

αs

2π
ln2N

}
(4.28)

= σ̂
(0)
qq̄→qγ,N exp

{
(4CF − CA)

αs
2π

ln2 N

}
> σ̂

(0)
qq̄→qγ,N , (4.29)

σ̂
(res)
qg→γ,N

σ̂
(res)
qq̄→γ,N

'
σ̂

(0)
qg→qγ,N

σ̂
(0)
qq̄→qγ,N

exp
{
3(CA − CF )

αs

2π
ln2N

}
>
σ̂

(0)
qg→qγ,N

σ̂
(0)
qq̄→qγ,N

. (4.30)

The first, second and third terms in the square bracket on the right-hand side of

eqs. (4.26), (4.28) are respectively due to the initial-state factors ∆a
N , ∆b

N and to the

final-state factor JdN . Note that, for a definite parton a, the initial-state enhancement

∆a
N is larger than the final-state suppression JaN (see the difference by a factor of two in

the exponent of eqs. (4.17), (4.18)). In the qg channel the final-state contribution lnJqN
is thus overcompensated by ln ∆q

N and this leads to the enhancement in eq. (4.27). In

the qq̄ channel, instead, it is the total initial-state contribution (ln ∆q
N + ln∆q̄

N ) that,

owing to the colour-charge relation CF ∼ CA/2, overcompensates ln JgN . Finally, the

enhancement in eq. (4.30) is simply due the fact that the gluon colour charge CA is

larger that the quark charge CF and, thus, ∆g
N > ∆q

N and JqN > JgN .

Note that this conclusion directly applies only to the asymptotic limit N → ∞

or ET →
√
S/2. In the case of kinematic configurations of experimental interest,

subleading effects and their dependence on the x-shape of the parton distributions and

on the renormalization and factorization scale have to be carefully estimated.

4.3. The constant factors

Expanding the resummed expressions in eqs.(4.19)–(4.22) to the first order in αs and

using eqs. (4.1), (4.2), we obtain

σ̂
(res)
qq̄→γ,N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = α σ̂

(0)
qq̄→gγ,N αs(µ

2)

{
1 +

αs(µ
2)

π

[(
2CF −

1

2
CA

)
ln2N

+
(
γE(4CF − CA)− (2CF − CA) ln 2 + πb0 − 2CF ln

2E2
T

µ2
F

)
lnN

+C
(1)
qq̄→γ(2E

2
T/µ

2; 2E2
T/µ

2
F )
]

+O(α2
s)
}
, (4.31)

σ̂
(res)
qg→γ,N (αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = α σ̂

(0)
qg→qγ, N αs(µ

2)

{
1 +

αs(µ
2)

π

[(
1

2
CF + CA

)
ln2N+

+
(
γE(CF + 2CA)− CA ln 2 +

3

4
CF − (CF + CA) ln

2E2
T

µ2
F

)
lnN+

+ C(1)
qg→γ(2E

2
T/µ

2; 2E2
T/µ

2
F )
]

+O(α2
s)
}
. (4.32)
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One can easily check that the logarithmic terms in these perturbative expansions agree

with those that can be derived from the complete NLO analytic results of Refs. [1, 42, 3].

From this comparison we can also extract the first-order constant coefficients C
(1)
qq̄→γ and

C(1)
qg→γ. We find

C
(1)
qq̄→γ(Q

2/µ2;Q2/µ2
F ) = γ2

E

(
2CF −

1

2
CA
)

+ γE
[
πb0 − (2CF − CA) ln 2

]
−

−
1

2
(2CF − CA) ln 2 +

1

2
K −Kq +

π2

3

(
2CF −

1

2
CA
)

+
5

4
(2CF − CA) ln2 2−

−
(
2γECF −

3

2
CF
)

ln
Q2

µ2
F

− πb0 ln
Q2

µ2
, (4.33)

C(1)
qg→γ(Q

2/µ2;Q2/µ2
F ) = γ2

E

(1

2
CF + CA

)
+ γE

[3
4
CF − CA ln 2

]
−

−
1

10
(CF − 2CA) ln 2−

1

2
Kq +

π2

60

(
2CF + 19CA

)
+

1

2
CF ln2 2−

−
(
γE(CF + CA)−

3

4
CF − πb0

)
ln
Q2

µ2
F

− πb0 ln
Q2

µ2
, (4.34)

where

Kq =

(
7

2
−
π2

6

)
CF , (4.35)

and the coefficient K is given in eq. (4.10).

The first-order coefficient C
(1)
ab→γ and, indeed, all the perturbative coefficients of the

constant (N -independent) function Cab→γ(αs) in eq. (4.5) are produced by hard virtual

contributions and by subdominant (non-logarithmic) soft corrections to the LO hard-

scattering subprocesses. In both cases the structure of the external hard partons is the

same as at LO. This justifies the all-order factorization of Cab→γ(αs) with respect to

σ̂
(0)
ab→dγ, N and to the radiative factor in the resummed partonic cross sections (4.1, 4.2).

The inclusion of the N -independent function Cab→γ(αs) in the resummed formulae

does not affect the shape of the cross section near threshold, but improves the soft-

gluon resummation by fixing the overall (perturbative) normalization of the logarithmic

radiative factor.

We can explicitly show [43, 28] the theoretical improvement that is obtained by

combining the NLL radiative factor with the first-order coefficient C(1). Expanding the

resummation formulae (4.1), (4.2) in towers of logarithmic contributions as in eq. (2.1),

we have

σ̂
(res)
N (αs;E

2
T , µ

2, µ2
F ) = ααs σ̂

(0)
N

{
1 +

∞∑
n=1

αns

[
cn,2n ln2nN + cn,2n−1(E

2
T/µ

2
F ) ln2n−1 N +

+cn,2n−2(E
2
T/µ

2
F , E

2
T/µ

2) ln2n−2 N +O(ln2n−3 N)
]}
, (4.36)

where αs = αs(µ
2). The dominant and next-to-dominant coefficients cn,2n and cn,2n−1

are controlled by evaluating the radiative factor to NLL accuracy. When the NLL

radiative factor is supplemented with the coefficient C(1), we can correctly control also
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the coefficients cn,2n−2. In particular, we can predict (see Appendix B) the large-N

behaviour of the NNLO cross sections σ̂
(2)
ab→γ in eq. (3.6) up to O(lnN).

Note also that coefficients cn,2n are scale independent and the coefficients cn,2n−1

depend on the sole factorization scale µF . In the tower expansion (4.36), the first

terms that explicitly depend on the renormalization scale µ (and on µF , as well) are

those controlled by cn,2n−2. Their dependence on µ is obtained by combining that of

C(1)(E2
T/µ

2
F , E

2
T/µ

2) with that of the radiative factor at NLL order. The inclusion

of the first-order constant coefficient C(1) thus (theoretically) stabilizes the resummed

partonic cross section with respect to variations of the renormalization scale.

5. Comparison with other processes: soft-gluon interferences

and QCD coherence

Further insight on the underlying physics mechanism that leads to the resummed ex-

pressions (4.1), (4.2) can be obtained by comparing prompt-photon production with

other hard-scattering processes.

In the hadroproduction of a DY lepton pair (Fig. 1a) of high mass Q2, the vicinity to

the threshold region is measured by the inelasticity variable τ = Q2/S, where
√
S is the

centre-of-mass energy. The Born-level partonic process that controls the cross section is

qq̄ annihilation. In N -moment space, where the N -moments are defined with respect to

τ , the Sudakov corrections to the qq̄-annihilation cross section are taken into account

by a resummation formula analogous to eqs. (4.1), (4.2). Up to NLL accuracy, the

corresponding radiative factor ∆DY,N(Q2) has the following explicit expression [31, 32]

∆DY,N(Q2) = ∆q
N (Q2) ∆q̄

N (Q2) , (5.1)

where ∆q
N(Q2) and ∆q̄

N (Q2) are the single-parton contributions5 given in eq. (4.7).

Each term ∆a
N embodies multiple initial-state radiation of soft gluons, i.e. gluons that

carry a small fraction 1− z ∼ 1/N ∼ (1 − τ) of the energy of the initial-state parton

a. The factorized structure on the right-hand side of eq. (5.1) implies that soft-gluon

interferences between the two hard partons cancel to this logarithmic accuracy [44].

Note that this cancellation does not depend on the type of annihilating partons. In

fact, when the DY pair is replaced by a colourless system, say, a Higgs boson, produced

by gluon-gluon fusion, the resummed partonic cross section is controlled by a NLL

radiative factor [40, 45]

∆Higgs,N(Q2) = ∆g
N(Q2) ∆g

N(Q2) , (5.2)

which is again factorized in single-parton contributions.

5To simplify the notation, we drop the explicit dependence on αs and on the renormalization

and factorization scale. Therefore, we use ∆a
N (Q2) ≡ ∆q

N (αs(µ
2), Q2/µ2;Q2/µ2

F ) and JaN (Q2) ≡
JaN (αs(µ

2), Q2/µ2) throughout this Section.
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Figure 1: Schematic representation of the structure of the soft-radiation factors in: (a)

DY production, (b) DIS, (c) e+e− annihilation, (d) prompt-photon photoproduciton and (e)

prompt-photon hadroproduction.

The presence of non-interfering Sudakov factors is typical of other processes domi-

nated by hard scattering of two QCD partons, such as lepton-hadron DIS, e+e− anni-

hilation in two jets and prompt-photon photoproduction.

In the case of inclusive DIS (Fig. 1b), the hard-scattering scale Q2 = −q2 is given

by the square of the space-like transferred momentum q and the relevant inelasticity

variable is the Bjorken variable xBj = Q2/2P1 · q. The Born-level partonic process

is lepton-quark scattering and, when the threshold region xBj → 1 is approched, the

corresponding radiative factor ∆DIS,N(Q2) in N -moment space is [44, 46]

∆DIS,N(Q2) = ∆q
N (Q2) JqN(Q2). (5.3)

The Sudakov factor ∆q
N(Q2) is exactly the same as in the DY process. It embodies soft-

gluon radiation from the initial-state quark. Unlike in the DY process, however, in DIS

the scattered initial-state quark fragments in the final state. Then the factor JqN(Q2)

takes into account the fragmentation of the final-state quark into a jet of collinear

and/or soft partons with a small invariant mass k2 ∼ Q2/N ∼ (1− xBj)Q2. The NLL

expression of the jet mass distribution JaN(Q2) is given in eq. (4.11).

Hadronic final states with two back-to-back jets produced in e+e− annihilation at
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the centre-of-mass energy Q (Fig. 1c) are also controlled by the jet mass distribution

JaN(Q2) [43]. For instance, in the case of the distribution (1/σ) dσ/dT of the thrust T

[47], the Sudakov region is T → 1. In this limit we have 1−T ' k2
1/Q

2 +k2
2/Q

2, where

k2
1 and k2

2 are the hadronic invariant masses in the two emispheres singled out by the

plane orthogonal to the thrust axis. Considering the N -moments ∆T (e+e−), N(Q2) of the

thrust distribution with respect to T , and taking the large-N limit, one obtains [47]

∆T (e+e−), N (Q2) = JqN (Q2) J q̄N(Q2) . (5.4)

The factors Jq and J q̄ are the invariant-mass distributions of the two jets that originate

from the fragmentation of the qq̄-pair produced by the e+e−-annihilation process at the

Born level.

The structure of the radiative factors in eqs. (5.1)–(5.4) easily explains the high-ET
behaviour of the prompt-photon cross section in photoproduction collisions (Fig. 1d).

This process, which can be regarded as a simplified case of the hadroproduction pro-

cess considered throughout the paper, is discussed in Appendix C. In hadron-photon

collisions the production of high-ET prompt photons is dominated at the Born level

by the Compton-scattering subprocess q(x1P1) + γ(p2) → q(p3) + γ(p). The all-order

resummation of Sudakov effects leads to the radiative factor ∆qγ→qγ
N in eq. (C.8), whose

NLL expression is given in eq. (C.12):

∆qγ→qγ
N (Q2) = ∆q

N(Q2) JqN(Q2) . (5.5)

The factor ∆q
N (Q2) takes into account sof-gluon radiation from the initial-state quark,

while JqN (Q2) is the mass distribution of the jet produced by the collinear and/or soft

fragmentation of the final-state quark.

Note that high-ET prompt-photon photoproduction can be regarded as a photon-

hadron deep-inelastic scattering, where the space-like momentum transferred by the

scattered photon is qµ = pµ2 − pµ. Since the high-ET cross section is dominated by

the kinematics configurations in which the prompt photon is produced in the central

rapidity region, we have 2p2 · p ' 2E2
T and 2P1 · p ' P1 · p2 = S/2. Thus, the hard scale

is Q2 = −q2 = 2p2 · p ' 2E2
T and the inelasticity variable analogous to the Bjorken

variable is Q2/2P1 ·q = Q2/(2P1 ·p2−2P1 ·p) ' 4E2
T/S = x2

T . Recalling that in eq. (5.5)

we have Q2 = 2E2
T (see eq. (C.10)) and that N is the moment index with respect to x2

T

(see eq. (C.7)), we can thus straigtforwardly understand the complete analogy between

eq. (5.5) and the expression (5.3) for the DIS radiative factor.

The Sudakov corrections to prompt-photon hadroproduction (Fig. 1e) are embod-

ied in eqs. (4.1), (4.2) through the radiative factor ∆ab→dγ
N (Q2). On the basis of the

factorization of the right-hand side of eqs. (5.1)–(5.5) in terms of initial- and final-state

single-parton contributions, one might expect that ∆ab→dγ
N can be obtained from the

photoproduction result in eq. (5.5) by simply including an additional initial-state factor

∆b
N . The NLL expression (4.6) for ∆ab→dγ

N (Q2) shows that this naive expectation is not

correct. In fact, we have

∆ab→dγ
N (Q2) = ∆a

N(Q2) ∆b
N(Q2) JdN(Q2) ∆

(int) ab→dγ
N (Q2) . (5.6)
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The presence of the NLL contribution ∆
(int) ab→dγ
N on the right-hand side of eq. (5.6)

implies that the physical picture of the Sudakov radiative factors in terms of independent

single-parton contributions is not valid, in general. As discussed in sect. 2 and explicitly

shown in eqs. (5.1)–(5.5), this picture applies to processes dominated by hard-scattering

of two sole partons, but it breaks down at NLL accuracy in the case of multiparton hard-

scattering. The breakdown is due to interferences and colour correlations produced

by soft gluons that are radiated at large angle with respect to the directions of the

hard-parton momenta [29]. Soft-gluon interferences are present in the hard-scattering

of three QCD partons as shown by eq. (5.6), while colour correlations affect hard-

scattering of more than three QCD partons [36].

Owing to their large-angle origin, soft-gluon interferences are process dependent. In

the case of prompt-photon hadroproduction they are taken into account by the factor

∆
(int) ab→dγ
N , whose explicit NLL expression is given in eqs. (4.14)–(4.16).

Note that the coefficient D
(1)
ab→dγ in eq. (4.16) depends linearly on the colour charges

of the hard partons, and the colour-charge dependence of ∆
(int) ab→dγ
N is thus factorized

at NLL accuracy. This suggests that the effect of the interference factor can be absorbed

by a proper rescaling of the independent-emission factors ∆a,∆b and Jd. As a matter

of fact, neglecting corrections beyond NLL order, one can check that the right-hand

side of eq. (5.6) can be rewritten as follows

∆ab→dγ
N (Q2) = ∆a

N/2(Q
2/2) ∆b

N/2(Q
2/2) JdN/2(Q

2/2) . (5.7)

This equation has to be regarded as a manifestation of the colour-coherence properties

of QCD emission [35]. Soft gluons radiated at large angle destructively interfere. Their

effect can thus be taken into account by Sudakov factors of independent emission in a

restricted (angular) region of the phase space.

6. Conclusion

In this paper we presented the explicit expressions for the resummation of threshold-

enhanced logarithms in hadronic prompt-photon production, to next-to-leading ac-

curacy. The simple colour structure of the diagrams contributing to prompt-photon

production reflects itself in the simplicity of the resummed formulae. Fragmentation

processes, furthermore, do not contribute to the Sudakov resummation at NLL level.

In Mellin space, the resummed radiative factor factorizes in the product of three inde-

pendent contributions for the initial and final coloured partons appearing in the Born

process, times a simple factor describing the soft-gluon interferences between initial and

final states. General coherence properties of large-angle soft-gluon radiation allow to

further simplify the result: the interference contributions can be described, to the same

degree of accuracy, by constraining the phase-space for independent emission from the

coloured partons. The resulting radiation factor can thus be written as the product of

the three independent single-parton contributions, with a properly rescaled dependence

on the Mellin-moment variable N .
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The formulae are given in terms of Mellin moments, and can be used for phe-

nomenological applications by inverse-Mellin transforming to xT space. The problems

related to this inversion are the same as those encountered in the resummation of the

Drell-Yan or heavy-quark production cross-sections, and can therefore be solved with

the same techniques [41]. All ingredients are therefore available for a phenomenological

study of prompt-photon production including the evaluation of Sudakov effects with

NLL accuracy. Such a study is in progress, and will be reported soon. The calculations

presented in this work, together with previous work on Drell-Yan and DIS, make it

now possible to carry out global fits of parton densities with a uniform NLL accuracy

in the large-x region. All of the processes that are used for these global fits, among

which prompt-photon production plays a critical role, are now known theoretically at

this level of accuracy.
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A. NLL formulae for the radiative factors

The logarithmic expansion of the radiative factors in eqs. (4.7), (4.11), (4.14) can be

computed as described in refs. [32, 43]. The running coupling αs(k
2) with k2 = q2,

(1 − z)2Q2, (1 − z)Q2 has to be expressed in terms of αs(µ
2) according to the NLO

solution of the renormalization group equation:

αs(k
2) =

αs(µ
2)

1 + b0αs(µ2) ln(k2/µ2)

[
1−

b1

b0

αs(µ
2) ln(1 + b0αs(µ

2) ln(k2/µ2))

1 + b0αs(µ2) ln(k2/µ2)
+

+O(α2
s(µ

2)(αs(µ
2) ln(k2/µ2))n)

]
, (A.1)

where b0, b1 are the first two coefficients of the QCD β-function, which are explicitly

reported in eq. (4.23). Then the z integration can be performed with NLL accuracy by

setting

zN−1 − 1 ' −Θ(1− z − e−γE/N) . (A.2)

Defining

λ = b0αs(µ
2) lnN , (A.3)

we find

ln∆a
N (αs(µ

2), Q2/µ2;Q2/µ2
F ) = lnN h(1)

a (λ) +

+h(2)
a (λ,Q2/µ2;Q2/µ2

F ) +O
(
αs(αs lnN)k

)
, (A.4)

ln JaN(αs(µ
2), Q2/µ2) = lnN f (1)

a (λ) +

+f (2)
a (λ,Q2/µ2) +O

(
αs(αs lnN)k

)
, (A.5)
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ln ∆
(int) ab→dγ
N (αs(µ

2), Q2/µ2) =
D

(1)
ab→dγ

2πb0
ln(1− 2λ) +O

(
αs(αs lnN)k

)
, (A.6)

where the LL and NLL functions h(1)
a , f (1)

a and h(2)
a , f (2)

a are given in terms of the per-

turbative coefficients A(1)
a , A(2)

a , B(1)
a in eqs. (4.8), (4.12):

h(1)
a (λ) = +

A(1)
a

2πb0λ

[
2λ+ (1− 2λ) ln(1− 2λ)

]
, (A.7)

h(2)
a (λ,Q2/µ2;Q2/µ2

F ) = +
A(1)
a b1

2πb3
0

[
2λ+ ln(1− 2λ) +

1

2
ln2(1− 2λ)

]
−

−
A(1)
a γE

πb0
ln(1− 2λ)−

−
A(2)
a

2π2b2
0

[
2λ+ ln(1− 2λ)

]
+

+
A(1)
a

2πb0

[
2λ+ ln(1− 2λ)

]
ln
Q2

µ2
−
A(1)
a

πb0

λ ln
Q2

µ2
F

, (A.8)

f (1)
a (λ) = −

A(1)
a

2πb0λ

[
(1− 2λ) ln(1− 2λ)− 2(1− λ) ln(1− λ)

]
, (A.9)

f (2)
a (λ,Q2/µ2) = −

A(1)
a b1

2πb3
0

[
ln(1− 2λ)− 2 ln(1− λ) +

1

2
ln2(1− 2λ)− ln2(1− λ)

]
+

+
B(1)
a

2πb0
ln(1− λ)−

A(1)
a γE
πb0

[
ln(1− λ)− ln(1− 2λ)

]
−

−
A(2)
a

2π2b2
0

[
2 ln(1− λ)− ln(1− 2λ)

]
+

+
A(1)
a

2πb0

[
2 ln(1− λ)− ln(1− 2λ)

]
ln
Q2

µ2
. (A.10)

Note that the functions f (1)
a (λ) and f (2)

a (λ,Q2/µ2) can also be written in terms of

h(1)
a and h(2)

a as follows

f (1)
a (λ) = h(1)

a (λ/2)− h(1)
a (λ) , (A.11)

f (2)
a (λ,Q2/µ2) = 2 h(2)

a (λ/2, Q2/µ2; 1)− h(2)
a (λ,Q2/µ2; 1) +

+
B(1)
a + 2A(1)

a γE

2πb0
ln(1− λ) . (A.12)

Inserting the expressions (A.4), (A.5), (A.6) into eq. (4.6), and using the explicit

form of the perturbative coefficients A(1)
a , A(2)

a , B(1)
a , D

(1)
ab→dγ in eqs. (4.9), (4.13), (4.16),

we obtain the results in eqs. (4.19)–(4.22).
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B. NNLO partonic cross sections at large N

According to the notation in eq. (4.36), the large-N behaviour of the NLO cross section

σ̂
(1)
ab→γ in eq. (3.6) is written as

σ̂
(1)
ab→γ,N (E2

T , µ
2, µ2

F , µ
2
f) = σ̂

(0)
ab→dγ,N

[
c

(ab)
1,2 ln2N + c

(ab)
1,1 (E2

T/µ
2
F ) lnN +

+ c
(ab)
1,0 (E2

T/µ
2
F , E

2
T/µ

2) +O(1/N)
]
, (B.1)

where the various coefficients can be read from eqs. (4.31), (4.32)

c
(qq̄)
1,2 =

1

π

(
2CF −

1

2
CA

)
, c

(qg)
1,2 =

1

π

(
1

2
CF + CA

)
, (B.2)

c
(qq̄)
1,1 (E2

T/µ
2
F ) =

1

π

[
γE(4CF − CA)− (2CF − CA) ln 2 + πb0 − 2CF ln

2E2
T

µ2
F

]
,

c
(qg)
1,1 (E2

T/µ
2
F ) =

1

π

[
γE(CF + 2CA)− CA ln 2 +

3

4
CF − (CF + CA) ln

2E2
T

µ2
F

]
, (B.3)

c
(qq̄)
1,0 (E2

T/µ
2
F , E

2
T/µ

2) =
1

π
C

(1)
qq̄→γ(2E

2
T/µ

2; 2E2
T/µ

2
F ) ,

c
(qg)
1,0 (E2

T/µ
2
F , E

2
T/µ

2) =
1

π
C(1)
qg→γ(2E

2
T/µ

2; 2E2
T/µ

2
F ) , (B.4)

and C
(1)
qq̄→γ, C

(1)
qg→γ are given in eqs. (4.33), (4.34).

Analogously, we can write the NNLO cross section σ̂
(2)
ab→γ as follows:

σ̂
(2)
ab→γ,N(E2

T , µ
2, µ2

F , µ
2
f) = σ̂

(0)
ab→dγ, N

[
c

(ab)
2,4 ln4N + c

(ab)
2,3 (E2

T/µ
2
F ) ln3N+

+ c
(ab)
2,2 (E2

T/µ
2
F , E

2
T/µ

2) ln2N +O(lnN)
]
. (B.5)

The coefficients c2,4, c2,3, c2,2 can be calculated by expanding the resummation formulae

(4.1), (4.2) to the second order in αs. We find

c
(ab)
2,4 =

1

2

[
c

(ab)
1,2

]2
, (B.6)

c
(qq̄)
2,3 (E2

T/µ
2
F ) = c

(qq̄)
1,2 c

(qq̄)
1,1 (E2

T/µ
2
F ) +

2

3π
b0

(
2CF −

3

4
CA

)
,

c
(qg)
2,3 (E2

T/µ
2
F ) = c

(qg)
1,2 c

(qg)
1,1 (E2

T/µ
2
F ) +

2

3π
b0

(
1

4
CF + CA

)
, (B.7)

c
(qq̄)
2,2 (E2

T /µ
2
F , E

2
T/µ

2) =
1

2

[
c

(qq̄)
1,1 (E2

T/µ
2
F )
]2

+ c
(qq̄)
1,2 c

(qq̄)
1,0 (E2

T/µ
2
F , E

2
T/µ

2) +

+
1

π
b0

[
γE
(
4CF −

3

2
CA
)
− (2CF − CA) ln 2 +

1

2
πb0 +
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+
(
2CF −

1

2
CA
)( K

2πb0
− ln

2E2
T

µ2

)]
,

c
(qg)
2,2 (E2

T /µ
2
F , E

2
T/µ

2) =
1

2

[
c

(qg)
1,1 (E2

T/µ
2
F )
]2

+ c
(qg)
1,2 c

(qg)
1,0 (E2

T/µ
2
F , E

2
T/µ

2) +

+
1

π
b0

[
γE
(1

2
CF + 2CA

)
− CA ln 2 +

3

8
CF +

+
(1

2
CF + CA

)( K

2πb0
− ln

2E2
T

µ2

) ]
, (B.8)

where the coefficients c1,2, c1,1, c1,0 and K are given in eqs. (B.2), (B.3), (B.4) and

(4.10).

Our prediction for the coefficients in eq. (B.5) can be used to check future NNLO

calculations of the prompt-photon production cross section. Alternatively, when these

calculations become available, they can provide a highly non-trivial check of our NNL

resummation.

C. Photoproduction of prompt photons

In hadron-photon collisions the inclusive production of a single prompt photon is due

to the process

H1(P1) + γ(P2)→ γ(p) +X . (C.1)

We use the same kinematics notation as in the hadroproduction case (cf. sect. 3) and

we write the prompt-photon photoproduction cross section integrated over η at fixed

ET as follows:

dσ(ph)
γ (xT , ET )

dET
=

(
dσ(ph)

γ (xT , ET )

dET

)
hadronic

+

(
dσ(ph)

γ (xT , ET )

dET

)
pointlike

. (C.2)

The hadronic contribution to the cross section is completely analogous to the right-

hand side of eq. (3.5) apart from replacing fb/H2(x2, µ
2
F ) with the parton distribution

fb/γ(x2, µ
2
F ) of incoming photon.

The second contribution on the right-hand side of eq. (C.2) is due to point-like

interactions of the incoming photon with high-momentum partons. The point-like

cross section can in turn be decomposed in direct and fragmentation components

(
dσ(ph)

γ (xT , ET )

dET

)
pointlike

=
1

E3
T

∑
a

∫ 1

0
dx1 fa/H1

(x1, µ
2
F )×

×
∫ 1

0
dx

{
δ

(
x−

xT
√
x1

)
σ̂aγ→γ(x, αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f)+

+
∑
c

∫ 1

0
dz z2 dc/γ(z, µ

2
f ) δ

(
x−

xT

z
√
x1

)
σ̂aγ→c(x, αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f)

}
. (C.3)
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The rescaled partonic cross sections σ̂aγ→γ and σ̂aγ→c have perturbative QCD expan-

sions similar to eqs. (3.6) and (3.7). In particular, for the point-like direct component

we have

σ̂aγ→γ(x, αs(µ
2);E2

T , µ
2, µ2

F , µ
2
f) =

= α2

[
σ̂

(0)
aγ→dγ(x) +

∞∑
n=1

αns (µ
2) σ̂(n)

aγ→γ(x;E
2
T , µ

2, µ2
F , µ

2
f)

]
, (C.4)

where the only non-vanishing terms at LO are those due to the Compton scattering

subprocesses

q + γ → q + γ , q̄ + γ → q̄ + γ , (C.5)

whose contribution to the cross section is

σ̂(0)
qγ→qγ(x) = σ̂

(0)
q̄γ→q̄γ(x) = π e4

q

x2

√
1− x2

(
1 +

x2

4

)
. (C.6)

To perform soft-gluon resummation at high ET , we work as usual in N -moment

space by defining

σ
(ph)
γ,N (ET ) ≡

∫ 1

0
dx2

T (x2
T )N−1E3

T

dσ(ph)
γ (xT , ET )

dET
. (C.7)

The resummation of the large-N corrections to the N -moments of the hadronic

contribution in eq. (C.2) is exactly the same as for the hadroproduction case discussed

in sect. 4. Moreover, in the large-N limit, the point-like contribution turns out to

be dominant: the hadronic contribution involves the additional convolution with the

photon parton density fb/γ and this implies its suppression by a relative factor of

O(1/N). We can thus limit ourselves to considering the point-like cross section.

In the case of the point-like contribution, one can repeat the argument in sect. 4.1 on

the relative size of the fragmentation component and of the various direct subprocesses.

Up to NLL accuracy, we then conclude that soft-gluon resummation in the photopro-

duction cross section (C.7) is controlled by the point-like direct channels qγ → γ and

q̄γ → γ. The all-order resummation formulae for the corresponding partonic cross

sections are

σ̂
(res)
qγ→γ,N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = α2 σ̂

(0)
qγ→qγ, N Cqγ→γ(αs(µ

2), Q2/µ2;Q2/µ2
F )×

×∆qγ→qγ
N+1 (αs(µ

2), Q2/µ2;Q2/µ2
F ) , (C.8)

σ̂
(res)
q̄γ→γ,N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) = σ̂

(res)
qγ→γ,N(αs(µ

2);E2
T , µ

2, µ2
F , µ

2
f) , (C.9)

where

Q2 = 2E2
T , (C.10)

and σ̂
(0)
qγ→qγ,N are the N -moments with respect to x2 of eq. (C.6)

σ̂
(0)
qγ→qγ, N = π e2

q

1

4

Γ(1/2) Γ(N + 1)

Γ(N + 5/2)
(7 + 5N) . (C.11)
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The radiative factor ∆qγ→qγ
N and the N -independent function Cqγ→γ in eq. (4.2) can

directly be related to the analogous contributions ∆qg→qγ
N and Cqg→γ to the qg channel

in the hadroproduction process.

The radiative factor ∆qγ→qγ
N is obtained from the factorized expression (4.6) for

∆qg→qγ
N , namely from ∆qg→qγ

N = ∆q
N∆g

NJ
q
N∆

(int) qg→qγ
N , by switching off soft-gluon radi-

ation from the incoming gluon. This amounts to set CA = 0 in ∆g
N and ∆

(int) qg→qγ
N .

Using the explicit formulae in eqs. (4.7), (4.9) and (4.14), (4.16), this implies that up to

NLL accuracy we can neglect both ∆g
N and ∆

(int) qg→qγ
N and we have the simple result:

∆qγ→qγ
N (αs(µ

2), Q2/µ2;Q2/µ2
F ) =

= ∆q
N(αs(µ

2), Q2/µ2;Q2/µ2
F ) JqN(αs(µ

2), Q2/µ2) . (C.12)

Note that no soft-gluon interference factor ∆
(int)
N appears in eq. (C.12). Prompt-

photon photoproduction at threshold is dominated by an underlying hard-scattering

that involves only two hard partons and then, in agreement with the general discussion

in sect. 2, soft-gluon interferences have to cancel.

The explicit NLL expansion of eq. (C.12) gives

∆qγ→qγ
N

(
αs(µ

2),
Q2

µ2
;
Q2

µ2
F

)
= exp

{
lnN g(1)

qγ (b0αs(µ
2) lnN) +

+g(2)
qγ (b0αs(µ

2) lnN,Q2/µ2;Q2/µ2
F ) +O(αs(αs lnN)k)

}
, (C.13)

where the LL and NLL terms g(1) and g(2) are expressed in terms of the auxiliary

functions h(1) and h(2) of eqs. (4.24) and (4.25):

g(1)
qγ (λ) = CF h

(1)(λ/2) , (C.14)

g(2)
qγ

(
λ,
Q2

µ2
;
Q2

µ2
F

)
= 2CF h

(2)(λ/2) +
4CF γE − 3CF

4πb0
ln(1− λ)−

−
CF

πb0
λ ln

Q2

µ2
F

+
CF

πb0

[
λ+ ln(1− λ)

]
ln
Q2

µ2
. (C.15)

The N -independent function Cqγ→γ(αs) has the following perturbative expansion:

Cqγ→γ(αs(µ
2), Q2/µ2;Q2/µ2

F ) = 1 +
αs(µ

2)

π
C(1)
qγ→γ(Q

2/µ2
F ) +

+
+∞∑
n=2

(
αs(µ

2)

π

)n
C(n)
qγ→γ(Q

2/µ2;Q2/µ2
F ) . (C.16)

Note that the first-order coefficient C(1)
qγ→γ does not depend on the renormalization scale.

Its explicit expression is obtained from that of C(1)
qg→γ by setting CA = 0 and b0 = 0 in

eq. (4.34):

C(1)
qγ→γ(Q

2/µ2
F ) = CF

{
1

2
γ2
E +

3

4
γE −

1

10
ln 2−

1

2

Kq

CF
+

+
π2

30
+

1

2
ln2 2−

(
γE −

3

4

)
ln
Q2

µ2
F

}
. (C.17)
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Expanding the resummation formula (C.8) in powers of αs we can derive the large-N

behaviour of the NLO and NNLO cross sections σ̂(1)
qγ→γ and σ̂(2)

qγ→γ of eq. (C.4).

At NLO we find

σ̂
(1)
qγ→γ,N(E2

T , µ
2, µ2

F , µ
2
f) = σ̂

(0)
qγ→qγ,N

[
c

(qγ)
1,2 ln2N + c

(qγ)
1,1 (E2

T/µ
2
F ) lnN +

+ c
(qγ)
1,0 (E2

T/µ
2
F ) +O(1/N)

]
, (C.18)

where

c
(qγ)
1,2 =

1

2π
CF ,

c
(qγ)
1,1 (E2

T /µ
2
F ) =

1

π
CF

(
γE +

3

4
− ln

2E2
T

µ2
F

)
,

c
(qγ)
1,0 (E2

T /µ
2
F ) =

1

π
C(1)
qγ→γ(2E

2
T/µ

2
F ) . (C.19)

This result agrees with the large-N limit of the NLO analytic expressions computed in

ref. [48].

At NNLO we predict

σ̂
(2)
qγ→γ,N(E2

T , µ
2, µ2

F , µ
2
f) = σ̂

(0)
qγ→qγ, N

[
c

(qγ)
2,4 ln4N + c

(qγ)
2,3 (E2

T/µ
2
F ) ln3N+

+ c
(qγ)
2,2 (E2

T/µ
2
F , E

2
T/µ

2) ln2N +O(lnN)
]
, (C.20)

where

c
(qγ)
2,4 =

1

2

[
c

(qγ)
1,2

]2
=

1

8π2
CF , (C.21)

c
(qγ)
2,3 (E2

T /µ
2
F ) = c

(qγ)
1,2 c

(qγ)
1,1 (E2

T/µ
2
F ) +

1

6π
CF b0

=
1

2π2
CF

[
CF

(
γE +

3

4
− ln

2E2
T

µ2
F

)
+
π

3
b0

]
, (C.22)

c
(qγ)
2,2

(
E2
T

µ2
F

,
E2
T

µ2

)
=

1

2

[
c

(qγ)
1,1 (E2

T/µ
2
F )
]2

+ c
(qγ)
1,2 c

(qγ)
1,0 (E2

T/µ
2
F ) +

+
CF b0

2π

(
γE +

3

4
+

K

2πb0

− ln
2E2

T

µ2

)
= (C.23)

=
CF

2π2

[
C(1)
qγ→γ(2E

2
T/µ

2
F ) +

(
CF + πb0

)(
γE +

3

4
− ln

2E2
T

µ2

)
+

1

2
K

]
,

and the coefficient K is given in eqs. (4.10).
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