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Abstract. Let T be the extinction moment of a critical branching process Z = (Zn, n ≧ 0)
in a random environment specified by independent identically distributed probability generating
functions. We study the asymptotic behavior of the probability of extinction of the process Z at
moment n → ∞, and show that if the logarithm of the (random) expectation of the offspring number
of a particle belongs to the domain of attraction of a non-Gaussian stable law, then the extinction
occurs at time moment T owing to a very unfavorable environment forcing the process, having at time
moment T −1 an exponentially large population, to die out instantly. We also give an interpretation
of the obtained results in terms of random walks in a random environment.
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1. Introduction and main results. We consider a branching process in a
random environment specified by a sequence of independent identically distributed
random offspring generating functions

(1) fn(s) :=

∞∑

k=0

fnks
k, n ≧ 0.

Denoting by Zn the number of particles in the process at time n, we define its evolution
by the relations

Z0 := 1,

E [sZn+1 |f0, f1, . . . , fn;Z0, Z1, . . . , Zn] := (fn(s))
Zn , n ≧ 0.

Put Xk := log f ′
k−1(1), k ≧ 1, and denote S0 := 0, Sn := X1 + X2 + · · · + Xn.

Following [1] we call the process Z := {Zn, n ≧ 0} critical if and only if the random
walk S := {Sn, n ≧ 0} is oscillating, that is,

lim sup
n→∞

Sn = ∞ and lim inf
n→∞

Sn = −∞

with probability 1. This means that the stopping time

T− := min{k ≧ 1: Sk < 0}

is finite with probability 1 and, as a result (see [1]), the extinction moment

T := min{k ≧ 1: Zk = 0}
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SUDDEN EXTINCTION OF CRITICAL BPRE 467

of the process Z is finite with probability 1. For this reason it is natural to study the
asymptotic behavior of the survival probability P(T > n) as n → ∞. This has been
done in [1] as follows: If

(2) lim
n→∞

P(Sn > 0) =: ρ ∈ (0, 1),

then (under some mild additional assumptions)

(3) P(T > n) ∼ θP(T− > n) = θ
l(n)

n1−ρ
,

where l(n) is a slowly varying function and θ is a known positive constant whose
explicit expression is given by formula (4.10) in [1].1

A local version of (3) was obtained in [7], where it was established that if the off-
spring generating functions fn(s), n = 0, 1, . . . , are linear fractional with probability 1
and (along with some other conditions) EXn = 0 and DXn ∈ (0,∞), then

(4) P(T = n) ∼ θP(T− = n) ∼ C

n3/2
.

The aim of the present paper is to complement (4) by the investigation of the
asymptotic behavior of the probability P(T = n) as n → ∞ in the case DXn = ∞. In
addition, we consider the asymptotic behavior of the joint distribution of the random
variables T and ZT−1 as T → ∞.

Let

A := {0 < α < 1, |β| < 1} ∪ {1 < α < 2, |β| ≦ 1}
∪ {α = 1, β = 0} ∪ {α = 2, β = 0}

be a subset in R2. For (α, β) ∈ A and a random variable X we write X ∈ D(α, β)
if the distribution of X belongs to the domain of attraction of a stable law with the
characteristic function

(5) Gα,β(t) := exp

{
− c|t|α

(
1− iβ

t

|t| tg
πα

2

)}
, c > 0,

and, in addition, EX = 0 if this moment exists. Hence, there exists a sequence
{cn, n ≧ 1} such that c−1

n Sn converges in distribution to the stable law whose char-

acteristic function is specified by (5). Observe that if Xn
d
= X ∈ D(α, β), then (see,

for instance, [11]) the quantity ρ in (2) is calculated by the formula

(6) ρ =

⎧
⎪⎪⎨
⎪⎪⎩

1

2
if α = 1,

1

2
+

1

πα
arctg

(
β tg

πα

2

)
otherwise.

Introduce the following basic assumption.
Condition A. The random variables Xn = log f ′

n−1(1), n ≧ 1, are independent
copies of X ∈ D(α, β) with 0 < α < 2 and |β| < 1.

Now we formulate our first result.

1We write an ∼ bn if limn→∞(an/bn) = 1.
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468 V. A. VATUTIN AND V. WACHTEL

Theorem 1. Assume that the offspring generating functions are geometric, i.e.,

(7) fn−1(s) :=
e−Xn

1 + e−Xn − s
, n = 1, 2, . . . ,

with Xn, n ≧ 1 satisfying Condition A. Then

(8) P(T = n) ∼ θP(T− = n) ∼ θ(1− ρ)
l(n)

n2−ρ
as n → ∞.

Remark 1. In the case of geometric offspring distributions one has an explicit
formula for the conditional probability of the event {T = n} given the environment
f0, f1, . . . , fn−1 in terms of an exponential functional of the associated random walk
{Sk, k ≧ 0} (see (49) in what follows). Thus, the analysis of the properties of the
extinction probability P(T = n) in this case is reduced to the study of the expectation
of a certain functional of the associated random walk.

We now turn to the joint distribution of T and the population size ZT−1. Here
we do not restrict ourselves to the case of geometric offspring reproduction laws. To
formulate the respective result we set

ζ(b) := e−2X1

∞∑

k=b

k2f0k, b = 0, 1, . . . ,

and let Λ := {Λt, 0 ≦ t ≦ 1} denote the meander of a strictly stable process with
parameters α, β, i.e., a strictly stable Lévy process conditioned to stay positive on
the time interval (0, 1] (see [3] and [4] for details). Along with Λ consider a stochastic

process Λ̃ := {Λ̃t, 0 ≦ t ≦ 1} defined by

E [φ(Λ̃)] =
E [Λ−α

1 φ(Λ)]

EΛ−α
1

for any function φ ∈ D[0, 1],

where D[0, 1] denotes the space of càdlàg functions on the unit interval.
Theorem 2. Assume that Condition A is valid and there exists δ > 0 such that

E (log+ ζ(b))α+δ < ∞

for some b ≧ 0. Then, for every x > 0,

(9) lim
n→∞

P(Zn−1 > excn; T = n)

P(T− = n)
= θP(Λ̃1 > x).

Remark 2. It is easy to see that ζ(2) ≦ 4 for the geometric offspring distributions.
Therefore, the statement of Theorem 2 holds in this case. Moreover, in view of (8),

(10) lim
x↓0

lim
n→∞

P(Zn−1 ≦ excn ; T = n)

P(T = n)
= 0

provided that the conditions of Theorem 1 hold.
We now complement Theorem 2 by the following statement being valid for the

geometric offspring distributions.
Theorem 3. Under the conditions of Theorem 1, as n → ∞,

L
(
logZ[(n−1)t]

cn
, 0 ≦ t ≦ 1

∣∣∣T = n

)
=⇒ L(Λ̃t, 0 ≦ t ≦ 1).
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SUDDEN EXTINCTION OF CRITICAL BPRE 469

Here =⇒ denotes the weak convergence with respect to the Skorokhod topology
in the space D[0, 1].

In fact, even a stronger result is valid. To formulate it we consider for integers
0 ≦ r ≦ n− 1 the rescaled generation size process W r,n = (W r,n

t , 0 ≦ t ≦ 1) given by

(11) W r,n
t := e−Sr+[(n−r−1)t]Zr+[(n−r−1)t], 0 ≦ t ≦ 1.

Theorem 4. Let r1, r2, . . . be a sequence of positive integers such that rn ≦ n− 1
and rn → ∞. Then, under the conditions of Theorem 1,

L(W rn,n |T = n
)
=⇒ L(Wt, 0 ≦ t ≦ 1) as n → ∞;

here the limiting process is a stochastic process with a.s. constant paths, i.e., P(Wt =
W for all t ∈ [0, 1]) = 1 for some random variable W . Furthermore,

P(0 < W < ∞) = 1.

Combining Theorems 1, 2, and 3 shows, in particular, that

(12) lim
n→∞

P(Zn−1 > excn |T = n) = P(Λ̃1 > x)

in the case when the offspring distributions are geometric. The last equality, along
with Theorem 3, allows us to make the following nonrigorous description of the evo-
lution of a critical branching process Z, being subject to the conditions of Theorem 1.
If the process survives for a long time (T = n → ∞), then logZ[(n−1)t] grows, roughly

speaking, as cnΛ̃t up to moment n − 1, and then the process instantly dies out. In
particular, log Zn−1 is of order cn (compare with Corollary 1.6 in [1]). This may be
interpreted as the development of the process in a favorable environment up to the mo-
ment n− 1 and the sudden extinction of the population at time moment T = n → ∞
because of a very unfavorable, even “catastrophic,” environment at moment n−1. At
the end of the paper we show that this phenomenon is in sharp contrast to the case
EXn = 0, σ2 := DXn ∈ (0,∞). Namely, if, additionally,

(13) E (1− f00)
−1 < ∞, E f−1

00 < ∞,

then

(14) lim
N→∞

lim sup
n→∞

P(Zn−1 > N |T = n) = 0,

while (see Corollary 1.6 in [1])

L
(
logZ[(n−1)t]

σ
√
n

, 0 ≦ t ≦ 1
∣∣∣Zn−1 > 0

)
=⇒ L(B+

t , 0 ≦ t ≦ 1),

where B+ := {B+
t , 0 ≦ t ≦ 1} is the Brownian meander.

These facts demonstrate that the phenomenon of “sudden extinction” in a fa-
vorable environment is absent for the case σ2 < ∞. Moreover, one can say that in
this case we observe a “natural” extinction of the population. Indeed, the extinction
occurs at moment T = n because of the small size of the population in the previous
generation rather than under the pressure of the unfavorable environment.

In the present paper we deal with the annealed approach. As is shown in [9], one
cannot see the phenomenon of “sudden extinction” under the quenched approach even

D
o

w
n
lo

ad
ed

 1
1
/1

8
/1

9
 t

o
 1

3
7
.2

5
0
.1

0
0
.4

4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

470 V. A. VATUTIN AND V. WACHTEL

if the conditions of Theorem 1 are valid. A “typical” trajectory of a critical branching
process in a random environment under the quenched approach oscillates before the
extinction. The process passes through a number of bottlenecks corresponding to the
strictly descending moments of the associated random walk and dies in a “natural”
way because of the small number of individuals in generation T − 1, just as under the
annealed approach for the case σ2 < ∞ (see [9] for a more detailed discussion).

Another consequence of Theorem 2 is the following lower bound for P(T = n).
Corollary 1. Under the conditions of Theorem 2,

(15) lim inf
n→∞

P(T = n)

P(T− = n)
= θ.

We conjecture that the relation P(T = n) ∼ θP(T− = n) is valid for any critical
branching processes in a random environment meeting the conditions of Theorem 2,
i.e., without the assumption that the offspring distributions are geometric. With
Theorem 2 in hand, one can easily infer that our conjecture is equivalent to the
equality

lim
ε→0

lim
n→∞

P(Zn−1 ≦ eεcn ;T = n)

P(T− = n)
= 0.

But this is exactly the phenomenon of “sudden extinction” described above.
It is known that there is a natural correspondence between the critical (subcrit-

ical) branching processes in a random environment and the simple random walks in
a random environment with zero (negative) drift. In particular, (8) admits an in-
terpretation in terms of the following simple random walk {Rk, k ≧ 0} in a random
environment. The walk starts at point R0 = 0 and has transition probabilities

qn := P(Rk+1 = n− 1 |Rk = n) =
e−Xn+1

1 + e−Xn+1
,(16)

pn := P(Rk+1 = n+ 1 |Rk = n) =
1

1 + e−Xn+1
,(17)

n ∈ Z, where {Xn, n ∈ Z} are independent identically distributed random variables.
Let

χ := min{k > 0: Rk = −1}

and let

ℓ(n) :=
∑

0≦k≦χ

1{Rk = n}, n ≧ −1,

be the local time of the random walk in a random environment calculated for the first
nonnegative excursion of this walk. Clearly, if

Zn :=

n∑

i=0

(−1)iℓ(n− i− 1), n ≧ 0,

then

ℓ(n) = Zn+1 + Zn, n ≧ 0.
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One can show that if the sequence Sn := log(p1/q1) + · · · + log(pn/qn) is either
oscillating or tends to −∞ with probability 1, then {Zn, n ≧ 0} is, respectively, a
critical or subcritical branching process in a random environment specified by the
offspring generating functions

fn(s) :=
qn

1− pns

(see [8] for more details). In particular, T := min{j > 0: ℓ(j) = 0} is the extinction
moment of the branching process. Clearly, if R := max0≦k<χ Rk, then

{R = n− 1} = {T = n}.

In these terms Theorem 1 and relation (12) are equivalent to the following statement.
Theorem 5. If qn and pn, specified by (16) and (17), are such that

Xn := log
pn
qn

, n ∈ Z,

satisfy Condition A, then, as n → ∞,

P(R = n) ∼ θP(T− = n).

In addition,

P(ℓ(n) > excn | ℓ(n) > 0, ℓ(n+ 1) = 0) ∼ P(Λ̃1 > x), x > 0,

and, moreover,

L
(
log ℓ([nt])

cn
, 0 ≦ t ≦ 1

∣∣∣ ℓ(n) > 0, ℓ(n+ 1) = 0

)
=⇒ L(Λ̃t, 0 ≦ t ≦ 1).

Hence, the random walk in a random environment visits the maximal possible
level for the first excursion many times provided the length χ of the excursion is
big. This is essentially different from the case E log(pn/qn) = 0,E log2(pn/qn) < ∞,
where (compare with (14))

lim
N→∞

lim sup
n→∞

P(ℓ(n) > N | ℓ(n) > 0, ℓ(n+ 1) = 0) = 0.

2. Some auxiliary results for random walks. Let us agree to denote by
C,C1, C2, . . . positive constants which may be different from formula to formula.

It is known (see, for instance, [5, Chap. XVII, section 5]) that if X ∈ D(α, β),
then the scaling sequence

(18) cn := min{x > 0: P(X > x) ≦ n−1}, n ≧ 1,

for Sn is regularly varying with index α−1, i.e., there exists a function l1(n), slowly
varying at infinity, such that

(19) cn = n1/αl1(n).

Moreover, if X ∈ D(α, β) with α ∈ (0, 2), then

(20) P(|X | > x) ∼ 1

xαl0(x)
as x → ∞,
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where l0(x) is a function slowly varying at infinity and

(21)
P(X < −x)

P(|X | > x)
→ q,

P(X > x)

P(|X | > x)
→ p as x → ∞

with p+ q = 1 and β = p− q in (5). Besides,

(22) P(X < −cn) ∼
(2− α)q

αn
as n → ∞

by (18) and (19).

2.1. Asymptotic behavior of overshoots and undershoots. In this subsec-
tion we prove some results concerning the asymptotic behavior of the distributions of
overshoots and undershoots. We believe that these results are of independent interest.

Let τ− := min{k ≧ 1: Sk ≦ 0}.
Durrett [4] has shown that if X ∈ D(α, β), then

(23) lim
n→∞

P(Sn ≦ xcn | τ− > n) = P(Λ1 ≦ x) for all x ≧ 0.

By minor changes of the proof of (23) given in [4], one can demonstrate that

(24) lim
n→∞

P(Sn ≦ xcn |T− > n) = P(Λ1 ≦ x) for all x ≧ 0.

We now establish analogues of (23) and (24) either under the condition {τ− = n}
or under the condition {T− = n}.

Lemma 1. If Condition A is valid, then, for any u > 0,

lim
n→∞

P(Sn ≦ −ucn | τ− = n) = lim
n→∞

P(Sn ≦ −ucn |T− = n) =
E (u+ Λ1)

−α

EΛ−α
1

.

Proof. For a fixed u > 0 we have

(25) P(Sn ≦ −ucn; τ− = n) = E [P(X ≦ −Sn−1 − ucn); τ− > n− 1].

Since, under the conditions of our lemma,

(26)
P(X ≦ −x− ucn)

P(X ≦ −cn)
=

(
x

cn
+ u

)−α

(1 + o(1))

uniformly in x ∈ [0,∞), we may approximate for large n the right-hand side of (25)
by the quantity

P(X ≦ −cn)E [(Sn−1/cn + u)−α; τ− > n− 1].

Using (22) and (23), we obtain

(27) P(Sn ≦ −ucn; τ− = n) ∼ q(2− α)

αn
P(τ− > n− 1)E (Λ1 + u)−α.

Recall that, by Theorem 7 in [10],

(28) P(τ− = n) ∼ (1− ρ)
P(τ− > n− 1)

n
.
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Therefore,

(29) P(Sn ≦ −ucn | τ− = n) ∼ q(2− α)E (u+ Λ1)
−α

(1− ρ)α
.

This finishes the proof of the first part of the lemma since

(30) EΛ−α
1 =

(1− ρ)α

q(2− α)

according to formula (109) in [10].
To demonstrate the second part it is sufficient to replace τ− by T− everywhere

in the arguments above. The lemma is proved.
Lemma 2. If Condition A is valid, then, for any v > 0,

lim
n→∞

P(Sn−1 ≧ vcn | τ− = n) = lim
n→∞

P(Sn−1 ≧ vcn |T− = n) = P(Λ̃1 ≧ v).

Proof. To establish the desired statement one should use the equality

P(Sn−1 ≧ vcn | τ− = n) =
P(τ− > n− 1)

P(τ− = n)

×E [P(X ≦ −Sn−1) 1{Sn−1 ≧ vcn} | τ− > n− 1],

a similar representation with τ− replaced by T−, asymptotic equality (26) with u = 0
and x ≧ vcn, and the arguments similar to those applied to demonstrate Lemma 1.

Remark 3. It follows from Lemmas 1 and 2 that the passage from positive to
negative (nonnegative) values just at moment n is possible only owing to a big negative
jump of order cn at this moment. More precisely, in this case the undershoot Sn−1

and the overshoot −Sn are of order cn.

2.2. Expectations on the event {T− = n}. Let

T0 := 0, Tj+1 := min(n > Tj : Sn < STj
), j ≧ 0,

be strictly descending ladder epochs of the random walk S. Clearly, T− = T1. Put
Ln := min0≦k≦n Sk and introduce the function

V (x) :=

∞∑

j=0

P(STj
≧ −x), x > 0; V (0) = 1; V (x) = 0, x < 0.

The fundamental property of the function V (x) is the identity

(31) E [V (x+X); X + x ≧ 0] = V (x), x ≧ 0.

Denote by F the filtration consisting of the σ-algebras Fn generated by the ran-
dom variables S0, . . . , Sn and Z0, . . . , Zn. By means of V (x) we may specify a proba-
bility measure P+ as

E+[ψ(S0, . . . , Sn;Z0, . . . , Zn)] := E [ψ(S0, . . . , Sn;Z0, . . . , Zn)V (Sn); Ln ≧ 0],

where ψ is an arbitrary measurable function on the respective space of arguments.
One can check that, in view of (31), this measure is well defined (see [1] for more
details).
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We now formulate a statement related to the measure P+ which is a particular
case of Lemma 2.5 in [1].

Lemma 3 (see [1]). Let condition (2) hold and let ξk be a bounded Fk-measurable

random variable. Then

lim
n→∞

E [ξk |T− > n] = E+ξk.

More generally, let ξ1, ξ2, . . . be a sequence of uniformly bounded random variables

adopted to the filtration F such that

(32) lim
n→∞

ξn =: ξ∞

exists P+-a.s. Then

lim
n→∞

E [ξn |T− > n] = E+ξ∞.

We prove a “local” version of this lemma under the additional assumption X ∈
D(α, β). To this aim let S̃ := {S̃n, n ≧ 0} be a probabilistic copy of S = {Sn, n ≧ 0}.
Later on all variables and expectations related to S̃ are supplied with the symbol ∼.
For instance, we set L̃n := min0≦k≦n S̃k.

Lemma 4. Let X ∈ D(α, β) with α < 2 and β < 1, and let ξk be a bounded

Fk-measurable random variable. Then

lim
n→∞

E [ξk |T− = n] = E+ξk.

More generally, let ξ1, ξ2, . . . be a sequence of uniformly bounded random variables

adopted to the filtration F such that the limit

(33) lim
n→∞

ξn =: ξ∞

exists P+-a.s. Then

(34) lim
n→∞

E [ξn−1 |T− = n] = E+ξ∞.

Moreover,

(35) lim
n→∞

L(ξn−1 |T− = n) = L(ξ∞).

Proof. According to Lemma 2, for any fixed ε ∈ (0, 1),

lim sup
n→∞

∣∣∣∣E
[
ξk 1

{
Sn−1

cn
/∈ [ε, ε−1]

} ∣∣∣T− = n

]∣∣∣∣

≦ C lim sup
n→∞

P

(
Sn−1

cn
/∈ [ε, ε−1]

∣∣∣T− = n

)
≦ C P(Λ1 /∈ [ε, ε−1]),(36)

and the last probability tends to zero as ε ↓ 0. Further,

E

[
ξk 1

{
Sn−1

cn
∈ (ε, ε−1)

}
; T− = n

]

= E

[
ξk P(X < −Sn−1) 1

{
Sn−1

cn
∈ [ε, ε−1]

}
; T− > n− 1

]
.
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Set ψε(x) := x−α 1(ε ≦ x ≦ ε−1). Since

P(X < −ucn) ∼ u−α P(X < −cn) ∼ u−α q(2− α)

αn

uniformly in u ∈ [ε, ε−1], we have

E

[
ξk P(X < −Sn−1) 1

{
Sn−1

cn
∈ [ε, ε−1]

}
; T− > n− 1

]

∼ P(X < −cn)E

[
ξk

(
Sn−1

cn

)−α

1

{
Sn−1

cn
∈ [ε, ε−1]

}
; T− > n− 1

]

=
q(2− α)

αn
E

[
ξkψε

(
Sn−1

cn

)
; T− > n− 1

]
.(37)

Conditioning on S0, S1, . . . , Sk for k < n− 1 gives

E

[
ξkψε

(
Sn−1

cn

)
; T− > n− 1

]

= E

[
ξkẼ

[
ψε

(
S̃n−k−1

cn

)
; L̃n−k−1 ≧ −Sk

]
; T− > k

]
.

Using Lemmas 2.1 and 2.3 of [1], one can easily verify that

E

[
ξk Ẽ

[
ψε

(
S̃n−k−1

cn

)
; L̃n−k ≧ −Sk−1

]
; T− > k

]

∼ E [ξkP(L̃n−k ≧ −Sk−1); T− > k]E [ψε(Λ1)]

∼ E [ξkV (Sk−1); T− > k − 1]P(T− > n− k)E [ψε(Λ1)]

∼ E+[ξk]P(T− > n− 1)E [ψε(Λ1)].

Thus,

E

[
ξkψε

(
Sn−1

cn

)
1

{
Sn−1

cn
∈ [ε, ε−1]

} ∣∣∣T− = n

]

∼ P(T− > n− 1)

P(T− = n)

q(2− α)

αn
E+[ξk]E [ψε(Λ1)].(38)

Clearly, E [ψε(Λ1)] → EΛ−α
1 as ε → 0. Combining these estimates with (30), (3), and

the asymptotic relation

(39) P(T− = n) ∼ 1− ρ

n
P(T− > n− 1) = (1− ρ)

l(n)

n2−ρ
,

established in Theorem 8 of [10], and recalling (36), we complete the proof of the first
part of the lemma.

To show the second part we fix an ε ∈ (0, 1) and write

|E [ξk − ξn−1 |T− = n]| ≦ E

[
|ξk − ξn−1| 1

{
Sn−1

cn
/∈ [ε, ε−1]

} ∣∣∣T− = n

]

+E

[
|ξk − ξn−1| 1

{
Sn−1

cn
∈ [ε, ε−1]

} ∣∣∣T− = n

]
.
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Similarly to (36),

lim
ε↓0

lim sup
n→∞

E

[
|ξk − ξn−1| 1

{
Sn−1

cn
/∈ [ε, ε−1]

} ∣∣∣T− = n

]

≦ C lim
ε↓0

lim sup
n→∞

P

(
Sn−1

cn
/∈ [ε, ε−1]

∣∣∣T− = n

)
= 0,(40)

while, by analogy with (37) and (38),

E

[
|ξk − ξn−1| 1

{
Sn−1

cn
∈ [ε, ε−1]

} ∣∣∣T− = n

]

≦ C E

[
|ξk − ξn−1|ψε

(
Sn−1

cn

) ∣∣∣T− > n− 1

]

≦ Cε−α E [|ξk − ξn−1| |T− > n− 1].(41)

We know by Lemma 3 that, given (33),

(42) lim
k→∞

lim
n→∞

E [|ξk − ξn−1| |T− > n− 1] = lim
k→∞

E+|ξk − ξ∞| = 0.

Combining (40)–(42) completes the proof of (34).
To prove (35) it is sufficient to observe that, by (34) and the dominated conver-

gence theorem,

lim
n→∞

E [eitξn−1 |T− = n] = E+eitξ∞ , t ∈ (−∞,∞).

Set µn := min{k ≧ 0 : Sk = Ln}.
Lemma 5. If X ∈ D(α, β), then

lim sup
n→∞

ncn E e2Ln−Sn < ∞

and

(43) lim sup
n→∞

ncn E [eSn ; µn = n] < ∞.

Proof. By the factorization identity (see, for instance, Theorem 8.9.3 in [2])
applied with λ = −1 and µ = 1 to Ln instead of Mn := max0≦k≦n Sk, we have

∞∑

n=0

rn E [e2Ln−Sn ] = exp

{ ∞∑

n=1

rn

n
(E [e−Sn ; Sn ≧ 0] +E [eSn ; Sn < 0])

}
.

Since X ∈ D(α, β), the local limit theorem for asymptotically stable random walks
implies

(44) E [e−Sn; Sn ≧ 0] +E [eSn ; Sn < 0] ≦
C

cn
.

Combining this with Theorem 6 in [6] gives

lim sup
n→∞

ncnE [e2Ln−Sn ] < ∞,
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proving the first statement of the lemma.

To prove the second it is sufficient to note that (see, for instance, Theorem 8.9.1
in [2])

∞∑

n=0

rn E [eSn; µn = n] = exp

{ ∞∑

n=1

rn

n
E [eSn ; Sn < 0]

}
,

and to use estimate (44) once again. The lemma is proved.

The previous lemma allows us to establish the following statement.

Lemma 6. If X ∈ D(α, β) with α < 2 and β < 1, then for every ε > 0 there

exists a positive integer l such that

n−1∑

k=l

E [eSk ; µk = k]P(T− = n− k) ≦ εP(T− = n)

for all n ≧ l.

Proof. By Lemma 5 and (39) we have, for any δ ∈ (0, 1),

n∑

k=l

E [eSk ; µk = k]P(T− = n− k)

≦ max
nδ≦j≦n

P(T− = j)
∑

l≦k≦n(1−δ)

E [eSk ; µk = k]

+
C

n(1− δ)cn(1−δ)

∑

k≦nδ

P(T− = k).(45)

On account of (39),

(46) max
nδ≦j≦n

P(T− = j) ≦ Cδρ−2 l(n)

n2−ρ
≦ C1δ

ρ−2 P(T− = n).

Using (6) it is not difficult to check that 1− ρ < α−1 if Condition A holds. With this
in view we have, by (19) and (39),

(47)
1

ncn(1−δ)
≦

C

(1− δ)1/αn1+1/αl1(n)
≦

C1

(1 − δ)1/αn1/α+ρ−1
P(T− = n).

Substituting (46) and (47) in (45) gives

n∑

k=l

E [eSk ; µk = k]P(T− = n− k)

≦ C3 P(T− = n)

(
δρ−2

∞∑

k=l

E [eSk ; µk = k] +
1

(1− δ)1+1/αn1/α+ρ−1

)

for sufficiently large C3. Recalling now (43), we complete the proof of the lemma by
an appropriate choice of δ and l.
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3. Proof of Theorem 1. Set

Fm,n(s) := fm(fm+1(. . . (fn−1(s)) . . .)), m < n, Fn,n(s) := s.

Rewriting (7) as

1

1− fn−1(s)
= 1 + e−Xn

1

1− s
for all n ≧ 1,

one can easily get the representation

(48)
1

1− F0,n(s)
= 1 + e−S1 + e−S2 + · · ·+ e−Sn−1 + e−Sn

1

1− s

for all n ≧ 1. From this equality, setting

Hn :=

( n∑

k=0

e−Sk

)−1

, H∞ := lim
n→∞

Hn,

we get

Pf (Zn > 0) := P(Zn > 0 | f0, f1, . . . , fn−1) = 1− F0,n(0) = Hn

and

(49) Pf (T = n) := Pf (Zn−1 > 0)−Pf (Zn > 0) = Hn−1Hne
−Sn .

We split the expectation E [Pf (T = n)] = P(T = n) into two parts

(50) P(T = n) = E [Pf (T = n); µn < n] +E [Pf (T = n); µn = n].

One can easily verify that Hn−1Hne
−Sn ≦ e2Ln−Sn on the event {µn < n}. From

this bound and Lemma 5 we infer

(51) E [Pf (T = n); µn < n] ≦ E e2Ln−Sn ≦
C

ncn
for all n ≧ 1.

Using estimate (47) with δ = 0, we conclude

(52) E [Pf (T = n); µn < n] = o(P(T− = n)).

Consider now the expectation E [Pf (T = n); µn = n]. Applying Lemma 5 once again,
we see that

E [Pf (Zn > 0); µn = n] ≦ E [eSn ; µn = n] ≦
C

ncn
= o(P(T− = n)).

Thus,

(53) E [Pf (T = n); µn = n] = E [Pf(Zn−1 > 0); µn = n] + o(P(T− = n)).

Since Pf (Zn−1 > 0) ≦ emin0≦j≦n−1 Sj , we have by Lemma 6 that for any ε > 0 there
exists l such that

E [Pf (Zn−1 > 0); µn−1 ≧ l, µn = n]

=
n−1∑

k=l

E [Pf (Zn−1 > 0); µn−1 = k, µn = n]

≦

n−1∑

k=l

E [eSk ; µn−1 = k, µn = n] ≦ εP(T− = n)(54)
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for all n ≧ l. Denoting by {f̃n, n ≧ 0} a probabilistic and independent copy of
{fn, n ≧ 0} we have, for any fixed k < l,

E [Pf (Zn−1 > 0); µn−1 = k, µn = n]

= E [1− F0,n−2(0); µn−1 = k, µn = n]

= E [1− F0,k(Fk,n−2(0)); µn−1 = k, µn = n]

= E [1− F0,k(F̃0,n−k−2(0)); µk = k, T̃− = n− k]

= E [1− F0,k(F̃0,n−k−2(0)) 1{µk = k} | T̃− = n− k]P(T− = n− k).

By monotonicity of the extinction probability and Lemma 2.7 in [1],

lim
n→∞

F̃0,n(0) =: Q+ < 1 P+-a.s.

Hence, in view of (35) we get for any fixed k < l,

E
[
(1 − F0,k(F̃0,n−k−2(0))) 1{µk = k} | T̃− = n− k

]

∼ E [E+(1− F0,k(Q
+)); µk = k] > 0.

Using this relation, (39), and (54) it is not difficult to show that

(55) E [Pf (Zn−1 > 0); µn = n] ∼ θP(T− = n),

where

(56) θ =

∞∑

k=0

E [E+(1 − F0,k(Q
+)); µk = k] > 0.

It follows from (50), (52), (53), and (55) that

P(T = n) ∼ θP(T− = n).

It is easy to check that the expression for θ given by (56) is in complete agreement
with formula (4.10) in [1]. This finishes the proof of Theorem 1.

4. Proofs for the general case.

Proof of Theorem 2. First, we obtain lower and upper bounds for the probability
P(Z1 = 0 |Z0 = k). It is easy to see that (recall (1))

f00 = P(Z1 = 0 |Z0 = 1; f0) ≧ max

{
0, 1−

∞∑

k=1

kf0k

}
.

Therefore, for any fixed ε ∈ (0, 1
2 ),

P(Z1 = 0 |Z0 = k) ≧ E [(1− eX1)k; X1 < 0]

≧ (1− k−1−ε)k P(X1 ≦ −(1 + ε) log k).(57)

To get an upper estimate we use the inequality P(Y > 0) ≧ (EY )2/EY 2, being valid
for any nonnegative random variables with EY > 0, to conclude that

f00 ≦ 1−
( ∑∞

k=1 k
2f0k

(
∑∞

k=1 kf0k)
2

)−1

.
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Observing that

∑∞
k=1 k

2f0k
(
∑∞

k=1 kf0k)
2
≦

b∑∞
k=1 kf0k

+ ζ(b),

we get

f00 ≦ 1− (be−X1 + ζ(b))−1 ≦ exp

{
− 1

be−X1 + ζ(b)

}
.

This implies

P(Z1 = 0 |Z0 = k) ≦ E

[
exp

{
− 1

be−X1 + ζ(b)

}]

≦ P(X1 ≦ −(1− ε) log k) +P(ζ(b) > k1−ε) + exp

{
− kε

b+ 1

}
.(58)

In view of the hypothesis E (log+ ζ(b))α+δ < ∞ and the Markov inequality we have

(59) P(ζ(b) > k1−ε) ≦ C log−α−δ k.

Since the function P(X1 < −x) is regularly varying at infinity with index −α, esti-
mates (57)–(59) imply

1

(1 + ε)α
≦ lim inf

k→∞

P(Z1 = 0 |Z0 = k)

P(X1 < − log k)

≦ lim sup
k→∞

P(Z1 = 0 |Z0 = k)

P(X1 < − log k)
≦

1

(1− ε)α
.

Letting ε → 0 gives

lim
k→∞

P(Z1 = 0 |Z0 = k)

P(X1 < − log k)
= 1.

Therefore,

P(Zn−1 > excn ; T = n) =
∑

k>excn

P(Zn−1 = k)P(Z1 = 0 |Z0 = k)

∼
∑

k>excn

P(Zn−1 = k)P(X ≦ − log k)

∼ E [P(X ≦ − logZn−1); logZn > xcn].(60)

Since P(X ≦ −ycn)/P(X ≦ −cn) → y−α as n → ∞ uniformly in y ∈ [x,∞), we have

E [P(X ≦ − logZn−1); logZn−1 > xcn]

∼ P(X ≦ −cn)E

[(
logZn−1

cn

)−α

; logZn−1 > xcn

]

∼ P(X ≦ −cn)P(Zn−1 > 0)

×E

[(
logZn−1

cn

)−α

1{logZn−1 > xcn}
∣∣∣Zn−1 > 0

]
.(61)
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By Corollary 1.6 in [1],

lim
n→∞

P

(
logZn−1

cn
< x

∣∣∣Zn−1 > 0

)
= P(Λ1 < x), x > 0.

This and the dominated convergence theorem yield

(62) lim
n→∞

E

[(
logZn−1

cn

)−α

1{logZn−1 > xcn}
∣∣∣Zn−1 > 0

]
= E [Λ−α

1 1{Λ1 > x}].

Combining (60)–(62) and taking into account (22) and (30), we obtain

P(Zn−1 > excn ; Zn = 0) ∼ (1 − ρ)
P(Zn−1 > 0)

n

E [Λ−α
1 1{Λ1 > x}]
E [Λ−α

1 ]

= (1 − ρ)
P(Zn−1 > 0)

n
P(Λ̃1 > x).

To complete the proof of Theorem 2 it remains to note that

(1− ρ)
P(Zn−1 > 0)

n
∼ (1− ρ)

θP(T− > n− 1)

n
∼ θP(T− = n)

in view of (3) and (39).
Proof of Theorem 3. Let φ be an arbitrary bounded continuous function from

D[0, 1] and let

Z(n) =

{
logZ[(n−1)t]

cn
, 0 ≦ t ≦ 1

}
.

As in the proof of Theorem 2, for any x > 0,

∑

k>excn

E [φ(Z(n)); Zn−1 = k]P(Z1 = 0 |Z0 = k)

∼ P(X ≦ −cn)E

[
φ(Z(n))

(
logZn−1

cn

)−α

1{Zn−1 > excn}
]

∼ θP(T− = n)E

[
φ(Z(n))

(
logZn−1

cn

)−α

1{Zn−1 > excn}
∣∣∣Zn−1 > 0

]

∼ P(T = n)
E [φ(Λ)Λ−α

1 1{Λ1 > x}]
E [Λ−α

1 ]
= P(T = n)E [φ(Λ̃) 1{Λ̃1 > x}],(63)

where in the last step we have used Corollary 1.6 in [1].
On the other hand, according to (10),

∑

0<k≦excn

E [φ(Z(n)); Zn−1 = k]P(Z1 = 0 |Z0 = k)

≦ sup |φ|P(0 < Zn−1 ≦ excn ; Zn = 0) = o(P(T = n))(64)

as x ↓ 0. Combining (63) and (64), we get

lim
n→∞

E [φ(Z(n)) |T = n] = lim
x↓0

E [φ(Λ̃) 1{Λ̃1 > x}] = E [φ(Λ̃)],
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completing the proof of Theorem 3.
Proof of Theorem 4. By the equalities (52) and (53) we see that, as n → ∞

P({T = n}∆{Zn−1 > 0, µn = n}) = o(P(T− = n)),

where ∆ is the symmetric difference of the respective events. Hence, for arbitrary
bounded continuous function φ: D[0, 1] → R we have

E [φ(W rn,n); T = n] = E [φ(W rn,n); Zn−1 > 0, µn = n] + o(P(T− = n)).

Moreover, it follows from formula (54) that for any ε > 0 there exists l such that

|E [φ(W rn,n); Zn−1 > 0, µn−1 > l, µn = n]| ≦ εP(T− = n).

Thus, to prove Theorem 4 it suffices to find for each fixed k the asymptotics of the
quantity

E [φ(W rn,n); Zn−1 > 0, µn−1 = k, µn = n]

as n → ∞.
Let

ψ(z, s, r, n) := E z[φ(e
−sW r,n); Zn−1 > 0, T− = n],

where Ez[ · ] means that the process starts at moment zero by z individuals. Clearly,

E [φ(W rn,n); Zn−1 > 0, µn−1 = k, µn = n | Fk]

= ψ(Zk, Sk, rn − k, n− k) 1(Zk > 0) 1(µk = k).(65)

It follows from Proposition 3.1 in [1] that there exists a random variable W+

satisfying the condition P(0 < W+ < ∞) = 1 such that for each s ≧ 0

φ(e−sW rn,n) 1(Zn−1 > 0) → φ(e−sW+) 1(W+ > 0) P+-a.s.

This fact and Lemma 4 imply, as n → ∞,

ψ(z, s, r, n) ∼ E+
z [φ(e

−sW+) 1(W+ > 0)]P(T− = n),

whence, using (65), we deduce that for each fixed k

E [φ(W rn,n); Zn−1 > 0, µn−1 = k, µn = n]

∼ E [E+
Zk

[φ(e−SkW+) 1(W+ > 0)]; Zk > 0, µk = k]P(T− = n)

as n → ∞. As a result we get

E [φ(W rn,n); T = n] ∼ P(T− = n)

×
∞∑

k=0

E [E+
Zk

[φ(e−SkW+) 1(W+ > 0)]; Zk > 0, µk = k]

as n → ∞. Hence

lim
n→∞

E [φ(W rn,n) |T = n]

=
∞∑

k=0

E [E+
Zk

[φ(e−SkW+) 1(W+ > 0)]; Zk > 0, µk = k].
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Comparing the obtained relation with the proof of Theorem 3.1 in [1], we see that the
distribution specified by the right-hand side of the last equality coincides with that
one in [1]. Theorem 4 is proved.

Proof of Corollary 1. Letting x → 0 in (9), we get

lim inf
n→∞

P(T = n)

P(T− = n)
≧ θ.

Assuming that there exists ε > 0 such that

P(T = n) ≧ (θ + ε)P(T− = n)

for all n ≧ N and summing this inequality over n from arbitrary n0 > N to ∞, we
deduce

P(T ≧ n0) ≧ (θ + ε)P(T− ≧ n0)

for all n0 ≧ N , which contradicts (3).
Proof of (14). Representation (48) implies

P(Zn−1 = j) = E [H2
n−1e

−Sn−1(1−Hn−1e
−Sn−1)j−1], j ≧ 1.

Hence, by Lemma 5,

sup
j≧1

P(Zn−1 = j) ≦ E [H2
n−1e

−Sn−1] ≦ E [e2Ln−1−Sn−1 ] ≦
C

ncn
≦

C1

σn3/2
,

where in the last step we have used the relationship cn ∼ σ
√
n. Thus,

(66) P(Zn−1 > N ; T = n) =

∞∑

j=N+1

P(Zn−1 = j)E f j
00 ≦

C1

σn3/2

∞∑

j=N+1

E f j
00.

According to Theorem 1 in [7] the conditions σ2 < ∞ and (13) yield P(T = n) ∼
Cn−3/2. From this estimate, the first condition in (13), and (66) we get (14).
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