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A HIERARCHICAL RANDOM EFFECTS MODEL
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University of Minnesota and University of Florida

We consider Gibbs and block Gibbs samplers for a Bayesian hierarchical
version of the one-way random effects model. Drift and minorization
conditions are established for the underlying Markov chains. The drift and
minorization are used in conjunction with results from J. S. Rosenthal
[J. Amer. Statist. Assoc. 90 (1995) 558–566] and G. O. Roberts and
R. L. Tweedie [Stochastic Process. Appl. 80 (1999) 211–229] to construct
analytical upper bounds on the distance to stationarity. These lead to upper
bounds on the amount of burn-in that is required to get the chain within
a prespecified (total variation) distance of the stationary distribution. The
results are illustrated with a numerical example.

1. Introduction. We consider a Bayesian hierarchical version of the standard
normal theory one-way random effects model. The posterior density for this model
is intractable in the sense that the integrals required for making inferences cannot
be computed in closed form. Hobert and Geyer (1998) analyzed a Gibbs sampler
and a block Gibbs sampler for this problem and showed that the Markov chains
underlying these algorithms converge to the stationary (i.e., posterior) distribution
at a geometric rate. However, Hobert and Geyer stopped short of constructing
analytical upper bounds on the total variation distance to stationarity. In this
article, we construct such upper bounds and this leads to a method for determining
a sufficientburn-in.

Our results are useful from a practical standpoint because they obviate
troublesome, ad hoc convergence diagnostics [Cowles and Carlin (1996) and
Cowles, Roberts and Rosenthal (1999)]. More important, however, we believe
that this is the first analysis of apractically relevant Gibbs sampler on a
continuous state space that provides viable burn-ins. By practically relevant, we
mean that the stationary distribution is complex enough that independent and
identically distributed (i.i.d.) sampling is not straightforward. We note that the
Gibbs samplers analyzed by Hobert (2001) and Rosenthal (1995a, 1996) are not
practically relevant since i.i.d. samples can be drawn from the corresponding
stationary distributions using simple, sequential sampling schemes [Jones (2001)
and Marchev and Hobert (2004)]. Some notation is now introduced that will allow
for a more detailed overview.
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Let X = {Xi , i = 0,1, . . . } be a discrete time, time homogeneous Markov
chain that is irreducible, aperiodic and positive Harris recurrent. LetP n(x, ·) be
the probability measure corresponding to the random variableXn conditional on
starting the chain atX0 = x; that is,P n is then-step Markov transition kernel. Let
π(·) be the invariant probability measure of the chain and let‖ · ‖ denote the total
variation norm. Formally, the issue of burn-in can be described as follows. Given
a starting valuex0 and an arbitraryε > 0, can we find ann∗ = n∗(x0, ε) such that∥∥P n∗

(x0, ·) − π(·)∥∥< ε?(1)

If the answer is “yes,” then, since the left-hand side of (1) is nonincreasing in
the number of iterations, the distribution ofXk is within ε of π for all k ≥ n∗.
Because we are not demanding thatn∗ be the smallest value for which (1) holds, it
is possible that the chain actually gets withinε of stationarity in much fewer than
n∗ iterations. For this reason, we calln∗ a sufficient burn-in.

Several authors [see, e.g., Meyn and Tweedie (1994), Rosenthal (1995a),
Cowles and Rosenthal (1998), Roberts and Tweedie (1999) and Douc, Moulines
and Rosenthal (2002)] have recently provided results that allow one to calculaten∗
whenX is geometrically ergodic. However, to use these results one must establish
both adrift condition and an associatedminorization condition for X. [For an
accessible treatment of these concepts, see Jones and Hobert (2001).] In this article
we establish drift and minorization for the Gibbs samplers analyzed by Hobert
and Geyer (1998). These conditions are used in conjunction with the theorems of
Rosenthal (1995a) and Roberts and Tweedie (1999) to construct formulas that can
be used to calculaten∗.

The rest of the article is organized as follows. The model and algorithms are
described in Section 2. Section 3 contains important background material on
general state space Markov chain theory as well as statements of the theorems of
Rosenthal (1995a) and Roberts and Tweedie (1999). This section also contains a
newconversion lemma that provides a connection between the two different types
of drift used in these theorems. We establish drift and minorization for the block
Gibbs sampler in Section 4 and the same is done for the Gibbs sampler in Section 5.
In Section 6 the results are illustrated and Rosenthal’s theorem is compared with
the theorem of Roberts and Tweedie. Section 7 contains some concluding remarks.

2. The model and the Gibbs samplers. Consider the following Bayesian
version of the standard normal theory one-way random effects model. First,
conditional onθ = (θ1, . . . , θK)T andλe the dataYij are independent with

Yij |θ, λe ∼ N(θi, λ
−1
e ),

wherei = 1, . . . ,K andj = 1, . . . ,mi . At the second stage, conditional onµ and
λθ , θ1, . . . , θK andλe are independent with

θi |µ,λθ ∼ N(µ,λ−1
θ ) and λe ∼ Gamma(a2, b2),
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wherea2 andb2 are known positive constants. [We sayW ∼ Gamma(α,β) if its
density is proportional towα−1e−wβI (w > 0).] Finally, at the third stageµ andλθ

are assumed independent with

µ ∼ N(m0, s
−1
0 ) and λθ ∼ Gamma(a1, b1),

wherem0, s0, a1 andb1 are known constants; all butm0 are assumed to be positive
so that all of the priors are proper. The posterior density of this hierarchical model
is characterized by

πh(θ,µ,λ|y) ∝ f (y|θ, λe)f (θ |µ,λθ )f (λe)f (µ)f (λθ ),(2)

where λ = (λθ , λe)
T , y is a vector containing all of the data, andf denotes

a generic density. [ We will often abuse notation and useπh to denote the
probability distribution associated with the density in (2).] Expectations with
respect toπh are typically ratios of intractable integrals, the numerators of which
can have dimension as high asK + 3 [Jones and Hobert (2001)]. Thus, to make
inferences usingπh, we must resort to (possibly) high dimensional numerical
integration, analytical approximations or Monte Carlo and Markov chain Monte
Carlo techniques.

In their seminal article on the Gibbs sampler, Gelfand and Smith (1990) used
the balanced version of this model (in whichmi ≡ m) as an example. [See also
Gelfand, Hills, Racine-Poon and Smith (1990) and Rosenthal (1995b).] Each
iteration of the standard, fixed-scan Gibbs sampler consists of updating all of the
K + 3 variables in the same predetermined order. Thefull conditionals required
for this Gibbs sampler are now reported. Define

v1(θ,µ) =
K∑

i=1

(θi − µ)2,

v2(θ) =
K∑

i=1

mi(θi − ȳi)
2 and SSE=∑

i,j

(yij − ȳi)
2,

whereȳi = m−1
i

∑mi

j=1 yij . The full conditionals for the variance components are

λθ |θ,µ,λe, y ∼ Gamma
(

K

2
+ a1,

v1(θ,µ)

2
+ b1

)
(3)

and

λe|θ,µ,λθ , y ∼ Gamma
(

M

2
+ a2,

v2(θ) + SSE

2
+ b2

)
,(4)

whereM =∑i mi . Letting θ−i = (θ1, . . . , θi−1, θi+1, . . . , θK)T and θ̄ = K−1 ×∑
i θi , the remaining full conditionals are

θi |θ−i ,µ,λθ , λe, y ∼ N
(

λθµ + miλeȳi

λθ + miλe

,
1

λθ + miλe

)



GIBBS SAMPLERS FOR A RANDOM EFFECTS MODEL 787

for i = 1, . . . ,K and

µ|θ,λθ , λe, y ∼ N
(

s0m0 + Kλθ θ̄

s0 + Kλθ

,
1

s0 + Kλθ

)
.

We consider the fixed-scan Gibbs sampler that updatesµ, then theθi ’s, then
λθ andλe. Since theθi ’s are conditionally independent given(µ,λ), the order
in which they are updated is irrelevant. The same is true ofλθ andλe since these
two random variables are conditionally independent given(θ,µ). If we write a
one-step transition as(µ′, θ ′, λ′) → (µ, θ, λ), then the Markov transition density
(MTD) of our Gibbs sampler is given by

k(µ, θ,λ|µ′, θ ′, λ′) = f (µ|θ ′, λ′
θ , λ

′
e, y)

[
K∏

i=1

f (θi |θ−i ,µ,λ′
θ , λ

′
e, y)

]

× f (λθ |θ,µ,λ′
e, y)f (λe|θ,µ,λθ , y).

Hobert and Geyer (1998) considered this same update order. We note here that,
in general, Gibbs samplers with different update orders correspond to different
Markov chains. However, two chains whose update orders are cyclic permutations
of one another converge at the same rate.

As an alternative to the standard Gibbs sampler, Hobert and Geyer (1998)
introduced the more efficientblock Gibbs sampler in which all of the components
of ξ = (θ1, . . . , θK,µ)T are updated simultaneously. These authors showed that
ξ |λ,y ∼ N(ξ∗,V ) and gave formulas forξ∗ = ξ∗(λ, y) andV = V (λ, y). Because
we will make extensive use of these formulas, they are restated in Appendix A. One
iteration of the block Gibbs sampler consists of updatingλθ , λe and ξ in some
order. Due to the conditional independence ofλθ andλe, the block Gibbs sampler
is effectively a two-variable Gibbs sampler ordata augmentation algorithm
[Tanner and Wong (1987)], the two components beingξ and λ. We choose
to updateλ first because, as we will see later, updating the most complicated
distribution last typically simplifies the calculations required to establish drift and
minorization conditions. If we write a one-step transition as(λ′, ξ ′) → (λ, ξ), then
the corresponding MTD is given by

k(λ, ξ |λ′, ξ ′) = f (λ|ξ ′, y) f (ξ |λ,y)

= f (λθ |ξ ′, y) f (λe|ξ ′, y) f (ξ |λθ ,λe, y).
(5)

Hobert and Geyer (1998) considered the opposite update order because they were
not attempting to simultaneously establish driftand minorization. Note, however,
that our update order is just a cyclic permutation of the order used by Hobert and
Geyer.

A proper formulation of the burn-in problem requires some concepts and
notation from Markov chain theory. These are provided in the following section.
More general accounts of this material can be found in Nummelin (1984), Meyn
and Tweedie (1993) and Tierney (1994).
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3. Markov chain background. Let X ⊂ R
p for p ≥ 1 and letB denote

the associated Borelσ -algebra. Suppose thatX = {Xi, i = 0,1, . . . } is a discrete
time, time homogeneous Markov chain with state spaceX and Markov transition
kernel P ; that is, for x ∈ X and A ∈ B, P (x,A) = Pr(Xi+1 ∈ A|Xi = x).
Also, for n = 1,2,3, . . . , let P n denote then-step transition kernel, that is,
P n(x,A) = Pr(Xi+n ∈ A|Xi = x) so, in particular,P ≡ P 1. Note thatP n(x, ·)
is the probability measure of the random variableXn conditional on starting the
chain atX0 = x.

Let ν be a measure onB. We will say that the Markov chainX satisfies
assumption (A) if it is ν-irreducible, aperiodic and positive Harris recurrent with
invariant probability measureπ(·). It is straightforward to show that the Gibbs
samplers described in the previous section satisfy assumption (A) with ν equal to
Lebesgue measure. Under assumption (A), for everyx ∈ X we have

‖P n(x, ·) − π(·)‖ ↓ 0 asn → ∞,

where ‖P n(x, ·) − π(·)‖ := supA∈B |P n(x,A) − π(A)| is the total variation
distance betweenP n and π . The chainX is calledgeometrically ergodic if it
satisfies assumption (A) and, in addition, there exist a constant 0< t < 1 and a
functiong :X → [0,∞) such that, for anyx ∈ X,

‖P n(x, ·) − π(·)‖ ≤ g(x)tn(6)

for n = 1,2, . . . . It has recently been demonstrated that establishing drift and
minorization conditions forX verifies geometric ergodicity (the existence of
g and t) and yields an upper bound on the right-hand side of (6). See Jones and
Hobert (2001) for an expository look at this theory. In this paper, we will focus
on the results due to Rosenthal (1995a) and Roberts and Tweedie (1999). Slightly
simplified versions of these results follow.

THEOREM 3.1 [Rosenthal (1995a)].Let X be a Markov chain satisfying
assumption (A). Suppose X satisfies the following drift condition. For some
function V :X → [0,∞), some 0 < γ < 1 and some b < ∞,

E[V (Xi+1)|Xi = x] ≤ γV (x) + b ∀x ∈ X.(7)

Let C = {x ∈ X :V (x) ≤ dR}, where dR > 2b/(1−γ ) and suppose that X satisfies
the following minorization condition. For some probability measure Q on B and
some ε > 0,

P (x, ·) ≥ εQ(·) ∀x ∈ C.(8)

Let X0 = x0 and define two constants as follows:

α = 1+ dR

1+ 2b + γ dR
and U = 1+ 2(γ dR + b).
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Then, for any 0 < r < 1,

‖P n(x0, ·) − π(·)‖ ≤ (1− ε)rn +
(

Ur

α1−r

)n(
1+ b

1− γ
+ V (x0)

)
.

THEOREM 3.2 [Roberts and Tweedie (1999, 2001)].Let X be a Markov chain
satisfying assumption (A). Suppose X satisfies the following drift condition. For
some function W :X → [1,∞), some 0 < ρ < 1 and some L < ∞,

E[W(Xi+1)|Xi = x] ≤ ρW(x) + LIS(x) ∀x ∈ X,(9)

where S = {x ∈ X :W(x) ≤ dRT} and

dRT ≥ L

1− ρ
− 1.

Suppose further that X satisfies the following minorization condition. For some
probability measure Q on B and some ε > 0,

P (x, ·) ≥ εQ(·) ∀x ∈ S.(10)

Let X0 = x0 and define some constants as follows:

κ = ρ + L

1+ dRT
, J = (κdRT − ε)(1+ dRT) + LdRT

(1+ dRT)κ
,

ζ = log[(1/2)(L/(1− ρ) + w(x0))]
log(κ−1)

, η = log[(1− ε)−1J ]
log(κ−1)

,

βRT = exp
[

logκ log(1− ε)

logJ − log(1− ε)

]
.

Then if J ≥ 1 and n′ = k − ζ > η(1− ε)/ε, we have, for any 1 ≤ β < βRT,

‖P k(x0, ·) − π(·)‖ <

[
1− β(1− ε)

(1+ η/n′)1/η

](
1+ n′

η

)(
1+ η

n′
)n′/η

β−n′
.(11)

REMARK 3.1. The version of Theorem 3.2 in Roberts and Tweedie (1999)
relies on their Theorem 5.2, whose proof contains an error. Using Roberts
and Tweedie’s (1999) notation, supposeV :X → [1,∞), d > 0, C = {x ∈ X :
V (x) ≤ d} andh(x, y) = (V (x) + V (y))/2. Roberts and Tweedie (1999) claim
that

h(x, y) ≥ (1+ d)I[C×C]c (x, y),

which is false and, in fact, all that we can claim is that

h(x, y) ≥ 1+ d

2
I[C×C]c (x, y).
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We have accounted for this error in our statement of Theorem 3.2 and we are
grateful to an anonymous referee for bringing the error to our attention.

REMARK 3.2. Roberts and Tweedie (1999) provide a different bound for the
caseJ < 1 but, since we do not use it in our application (see Section 6), it is not
stated here.

REMARK 3.3. Roberts and Tweedie (1999) show that the right-hand side
of (11) is approximately minimized whenβ = βRT/(1+ η/n′)1/η.

REMARK 3.4. It is well known [see, e.g., Meyn and Tweedie (1993),
Chapter 15] that (7) and (8) together [or (9) and (10) together] imply thatX is
geometrically ergodic. See Jones and Hobert (2001) for an heuristic explanation.

In our experience it is often easier to establish a Rosenthal-type drift condition
than a Roberts-and-Tweedie-type drift condition. The following new result
provides a useful connection between these two versions of drift.

LEMMA 3.1. Let X be a Markov chain satisfying assumption (A). Suppose
there exist V :X → [0,∞), γ ∈ (0,1) and b < ∞ such that

E[V (Xn+1)|Xn = x] ≤ γV (x) + b ∀x ∈ X.(12)

Set W(x) = 1+ V (x). Then, for any a > 0,

E[W(Xn+1)|Xn = x] ≤ ρW(x) + LIC(x) ∀x ∈ X,(13)

where ρ = (a + γ )/(a + 1), L = b + (1− γ ) and

C =
{
x ∈ X :W(x) ≤ (a + 1)L

a(1− ρ)

}
.

PROOF. Clearly, (12) implies that

E[W(Xi+1)|Xi = x] ≤ γW(x) + b + (1− γ ) = γW(x) + L ∀x ∈ X.

Set�W(x) = E[W(Xn+1)|Xn = x] − W(x) andβ = (1− γ )/(a + 1). Then

E[W(Xn+1)|Xn = x] ≤ [1− (a + 1)β]W(x) + L

or, equivalently,

�W(x) ≤ −βW(x) − aβW(x) + L

for all x ∈ X. If x /∈ C, then

W(x) >
(a + 1)L

a(1− ρ)
>

(a + 1)L

a(1− γ )
= L

aβ
.
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Now write W(x) = L
aβ

+ s(x), wheres(x) > 0. Then

�W(x) ≤ −βW(x) − aβ

[
L

aβ
+ s(x)

]
+ L

= −βW(x) − aβs(x)

≤ −βW(x).

If, on the other hand,x ∈ C, then

�W(x) ≤ −βW(x) − aβW(x) + L

≤ −βW(x) + L.

Now putting these together gives

E[W(Xn+1)|Xn = x] ≤ (1− β)W(x) + LIC

= ρW(x) + LIC. �

REMARK 3.5. Since

(a + 1)L

a(1− ρ)
≥ L

1− ρ
− 1,

(13) constitutes a drift condition of the form (9). Therefore, if we can establish (12)
as well as a minorization condition on the setC, it will be as straightforward to
apply Theorem 3.2 as it is to apply Theorem 3.1. Indeed, this is the approach we
take with our Gibbs samplers. Moreover, we usea = 1 in our application since
(a+1)L
a(1−ρ)

is minimized at this value.

While the Gibbs sampler is easier to implement than the block Gibbs sampler, it
is actually harder to analyze because it is effectively a three-variable Gibbs sampler
as opposed to the block Gibbs sampler, which is effectively a two-variable Gibbs
sampler. Thus, we begin with block Gibbs.

4. Drift and minorization for the block Gibbs sampler. Drift conditions of
the form (7) are established for the unbalanced and balanced cases in Sections
4.1 and 4.2, respectively. A minorization condition that works for both cases
is established in Section 4.3. Throughout this section we assume thatm′ =
min{m1,m2, . . . ,mK } ≥ 2 and thatK ≥ 3.

4.1. Drift: unbalanced case. Define two constants as follows:

δ1 = 1

2a1 + K − 2
and δ2 = 1

2a2 + M − 2
.

Also define δ3 = (K + 1)δ2 and δ4 = δ2
∑K

i=1 m−1
i . Our assumptions about
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K andm′ guarantee that 0< δi < 1 for i = 1,2,3,4. Setδ = max{δ1, δ3}. Also, let
� denote the length of the convex hull of the set{ȳ1, ȳ2, . . . , ȳK,m0} and define

c1 = 2b1

2a1 + K − 2
and c2 = 2b2 + SSE

2a2 + M − 2
.

PROPOSITION4.1. Fix γ ∈ (δ,1) and let φ1 and φ2 be positive numbers such
that φ1δ4

φ2
+ δ < γ . Define the drift function as V1(θ,µ) = φ1v1(θ,µ) + φ2v2(θ),

where v1(θ,µ) and v2(θ) are as defined in Section 2.Then the block Gibbs sampler
satisfies (7) with

b = φ1

[
c1 + c2

K∑
i=1

m−1
i + K�2

]
+ φ2[c2(K + 1) + M�2].

PROOF. It suffices to show that

E[V1(θ,µ)|λ′, θ ′,µ′] ≤ φ1δ1v1(θ
′,µ′) +

(
φ1δ4

φ2
+ δ3

)
φ2v2(θ

′) + b(14)

because

φ1δ1v1(θ
′,µ′) +

(
φ1δ4

φ2
+ δ3

)
φ2v2(θ

′) + b

≤ φ1δv1(θ
′,µ′) +

(
φ1δ4

φ2
+ δ

)
φ2v2(θ

′) + b

≤ γ φ1v1(θ
′,µ′) + γ φ2v2(θ

′) + b

= γV1(θ
′,µ′) + b.

In bounding the left-hand side of (14), we will use the following rule:

E[V1(θ,µ)|λ′, θ ′,µ′] = E[V1(θ,µ)|θ ′,µ′] = E{E[V1(θ,µ)|λ]|θ ′,µ′},(15)

which follows from the form of the MTD for the block Gibbs sampler given in (5).
We begin with some preliminary calculations. First, note that

E(λ−1
θ |θ ′,µ′) = 2b1

2a1 + K − 2
+ v1(θ

′,µ′)
2a1 + K − 2

= c1 + δ1v1(θ
′,µ′)

(16)

and

E(λ−1
e |θ ′,µ′) = 2b2 + SSE

2a2 + M − 2
+ v2(θ

′)
2a2 + M − 2

= c2 + δ2v2(θ
′).

(17)
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We now begin the main calculation. Using our rule, we have

E[v1(θ,µ)|θ ′,µ′] =
K∑

i=1

E[(θi − µ)2|θ ′,µ′]

= E

{
K∑

i=1

E[(θi − µ)2|λ]
∣∣∣θ ′,µ′

}
.

Using results from Appendix A, we have

E[(θi − µ)2|λ]
= Var(θi |λ) + Var(µ|λ) − 2 Cov[(θi,µ)|λ] + [E(θi |λ) − E(µ|λ)]2

= 1

λθ + miλe

+ λ2
θ + (λθ + miλe)

2 − 2λθ(λθ + miλe)

(s0 + t)(λθ + miλe)2

+ [E(θi |λ) − E(µ|λ)]2

= 1

λθ + miλe

+ m2
i λ

2
e

(s0 + t)(λθ + miλe)2
+ [E(θi |λ) − E(µ|λ)]2

≤ 1

miλe

+ miλe

t (λθ + miλe)
+ �2.

Hence,

K∑
i=1

E[(θi − µ)2|λ] ≤ λ−1
e

K∑
i=1

m−1
i + λ−1

θ + K�2.(18)

Thus, by combining (16)–(18) we obtain

E[φ1v1(θ,µ)|θ ′,µ′]

≤ δ1φ1v1(θ
′,µ′) + δ4φ1v2(θ

′) + φ1

[
c1 + c2

K∑
i=1

m−1
i + K�2

]
.

(19)

Now

E[v2(θ)|θ ′,µ′] =∑
i

miE[(θi − ȳi )
2|θ ′,µ′] = E

{∑
i

miE[(θi − ȳi )
2|λ]
∣∣∣θ ′,µ′

}
.

We can bound the innermost expectation as follows:

E[(θi − ȳi)
2|λ] = Var(θi |λ) + [E(θi |λ) − ȳi]2

= 1

λθ + miλe

+ λ2
θ

(s0 + t)(λθ + miλe)2 + [E(θi |λ) − ȳi]2

≤ 1

miλe

+ λθ

t (λθ + miλe)
+ �2.
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Hence
K∑

i=1

miE[(θi − ȳi)
2|λ] ≤ (K + 1)λ−1

e + M�2,(20)

and so by combining (17) and (20) we obtain

E[φ2v2(θ)|θ ′,µ′] ≤ δ3φ2v2(θ
′) + φ2[(K + 1)c2 + M�2].(21)

Combining (19) and (21) yields (14).�

REMARK 4.1. The upper bound on the total variation distance that is the
conclusion of Theorem 3.1 involves the starting value of the Markov chain,x0,
only throughV (x0). Moreover, given the way in whichV (x0) enters the formula,
it is clear that the optimal starting value, in terms of minimizing the upper bound,
is the starting value that minimizesV (x0). This starting value is also optimal for
the application of Theorem 3.2. In Appendix B we show that the value of(θ,µ)

that minimizesV1(θ,µ) has components

θ̂i = φ1[∑K
j=1(mj ȳj /(φ1 + φ2mj))/

∑K
j=1(mj/(φ1 + φ2mj))] + φ2miȳi

φ1 + φ2mi

andµ̂ = K−1∑K
i=1 θ̂i .

While the conclusion of Proposition 4.1 certainly holds when the data are bal-
anced, it is possible to do better in this case. Specifically, the proof of Propo-
sition 4.1 uses the general bounds on[E(θi|λ) − E(µ|λ)]2 and [E(θi |λ) − ȳi]2
given in Appendix A. Much sharper bounds are possible by explicitly using the
balancedness, and these lead to a better drift condition.

4.2. Drift: balanced case. Now assume thatmi = m ≥ 2 for all i = 1, . . . ,K

and letδ5 = Kδ2 ∈ (0,1).

PROPOSITION 4.2. Fix γ ∈ (δ,1) and let φ be a positive number such that
φδ5 + δ < γ . Define the drift function as V2(θ,µ) = φv1(θ,µ) + m−1v2(θ). Then
the block Gibbs sampler satisfies (7) with

b = φc1 + [(φK + K + 1)/m]c2 + max{φ,1}
K∑

i=1

max
{
(ȳ − ȳi)

2, (m0 − ȳi )
2},

where ȳ := K−1∑K
i=1 ȳi .

PROOF. When the data are balanced,

t = Mλθλe

λθ + mλe

,
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so thatE(µ|λ) = (tȳ + m0s0)/(s0 + t). Hence for alli = 1, . . . ,K we have

[E(θi|λ) − ȳi]2 =
[

λθ

λθ + mλe

(
t ȳ + m0s0

s0 + t

)
+ λemȳi

λθ + mλe

− ȳi

]2

=
(

λθ

λθ + mλe

)2[ t (ȳ − ȳi) + s0(m0 − ȳi)

s0 + t

]2

≤
(

λθ

λθ + mλe

)2 t (ȳ − ȳi)
2 + s0(m0 − ȳi )

2

s0 + t
,

where the last inequality is Jensen’s. A similar argument shows that, for all
i = 1, . . . ,K ,

[E(θi |λ) − E(µ|λ)]2 ≤
(

mλe

λθ + mλe

)2 t (ȳ − ȳi)
2 + s0(m0 − ȳi )

2

s0 + t
.

Therefore,

φ[E(θi|λ) − E(µ|λ)]2 + [E(θi |λ) − ȳi]2

≤ max{φ,1}
[
t (ȳ − ȳi)

2 + s0(m0 − ȳi )
2

s0 + t

]
,

and hence
K∑

i=1

{
φ[E(θi|λ) − E(µ|λ)]2 + [E(θi |λ) − ȳi]2}

≤ max{φ,1}
K∑

i=1

max
{
(ȳ − ȳi )

2, (m0 − ȳi )
2}.

To prove the result, it suffices to show that

E[V2(θ,µ)|λ′, θ ′,µ′] ≤ φδ1v1(θ
′,µ′) + (φδ5 + δ3)m

−1v2(θ
′) + b(22)

since

φδ1v1(θ
′,µ′) + (φδ5 + δ3)m

−1v2(θ
′) + b

≤ φδv1(θ
′,µ′) + (φδ5 + δ)m−1v2(θ

′) + b

≤ γ φv1(θ
′,µ′) + γm−1v2(θ

′) + b

= γV2(θ
′,µ′) + b.

The remainder of the proof is nearly identical to the proof of Proposition 4.1 and
is therefore left to the reader.�

REMARK 4.2. This result is stated (without proof) in Jones and Hobert
[(2001), Appendix A] and the statement contains an error. Specifically,b is stated
incorrectly and should appear as above.
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4.3. Minorization. We now use a technique based on Rosenthal’s (1995a)
Lemma 6b to establish a minorization condition of the form (8) on the set

SB = {(θ,µ) :V1(θ,µ) ≤ d
}= {(θ,µ) :φ1v1(θ,µ) + φ2v2(θ) ≤ d

}
,

for anyd > 0. SinceV2 of Proposition 4.2 is a special case ofV1, this minorization
will also work forV2. First note thatSB is contained inCB := CB1 ∩ CB2, where

CB1 = {(θ,µ) :v1(θ,µ) < d/φ1
}

and CB2 = {(θ,µ) :v2(θ) < d/φ2
}
.

Hence, it suffices to establish a minorization condition that holds onCB . We will
accomplish this by finding anε > 0 and a densityq(λ, θ,µ) on R

2+ × R
K × R

such that

k(λ, θ,µ|λ′, θ ′,µ′) ≥ εq(λ, θ,µ) ∀ (θ ′,µ′) ∈ CB,

wherek(λ, θ,µ|λ′, θ ′,µ′) is the MTD for the block Gibbs sampler given in (5).
We will require the following lemma, whose proof is given in Appendix C.

LEMMA 4.1. Let Gamma(α,β;x) denote the value of the Gamma(α,β)

density at the point x > 0. If α > 1, b > 0 and c > 0 are fixed, then, as a function
of x,

inf
0<β<c

Gamma(α, b + β/2;x) =
{

Gamma(α, b;x), if x < x∗,

Gamma(α, b + c/2;x), if x > x∗,

where

x∗ = 2α

c
log
(

1+ c

2b

)
.

Here is the minorization condition.

PROPOSITION4.3. Let q(λ, θ,µ) be a density on R
2+ × R

K × R defined as

q(λ, θ,µ) =
[

h1(λθ )∫
R+ h1(λθ) dλθ

][
h2(λe)∫

R+ h2(λe) dλe

]
f (ξ |λ,y),

where

h1(λθ ) =




Gamma
(

K

2
+ a1, b1;λθ

)
, λθ < λ∗

θ ,

Gamma
(

K

2
+ a1,

d

2φ1
+ b1;λθ

)
, λθ ≥ λ∗

θ ,

for

λ∗
θ = φ1(K + 2a1)

d
log
(

1+ d

2b1φ1

)
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and

h2(λe) =




Gamma
(

M

2
+ a2,

SSE

2
+ b2;λe

)
, λe < λ∗

e ,

Gamma
(

M

2
+ a2,

φ2SSE+ d

2φ2
+ b2;λe

)
, λe ≥ λ∗

e ,

for

λ∗
e = φ2(M + 2a2)

d
log
(

1+ d

φ2(2b2 + SSE)

)
.

Set εB = [∫
R+ h1(λθ) dλθ ][∫R+ h2(λe) dλe]. Then the Markov transition density for

the block Gibbs sampler satisfies the following minorization condition:

k(λ, θ,µ|λ′, θ ′,µ′) ≥ εBq(λ, θ,µ) ∀ (θ ′,µ′) ∈ CB.

PROOF. We useξ = (θ,µ) andξ ′ = (θ ′,µ′) to simplify notation. Ifξ ′ ∈ CB ,
we have

f (λθ |ξ ′, y)f (λe|ξ ′, y)f (ξ |λ,y)

≥ f (ξ |λ,y) inf
ξ∈CB

[f (λθ |ξ, y)f (λe|ξ, y)]

≥ f (ξ |λ,y)

[
inf

ξ∈CB

f (λθ |ξ, y)

][
inf

ξ∈CB

f (λe|ξ, y)

]

≥ f (ξ |λ,y)

[
inf

ξ∈CB1

f (λθ |ξ, y)

][
inf

ξ∈CB2

f (λe|ξ, y)

]
.

Thus we can take

q(λ, θ,µ) ∝ f (ξ |λ,y)

[
inf

ξ∈CB1

f (λθ |ξ, y)

][
inf

ξ∈CB2

f (λe|ξ, y)

]
.

Two applications of Lemma 4.1 yield the result.�

The drift and minorization conditions given in Propositions 4.1–4.3 can be used
in conjunction with either Theorem 3.1 or 3.2 to get a formula giving an upper
bound on the total variation distance to stationarity for the block Gibbs sampler.
One such formula is stated explicitly at the start of Section 6.

5. Drift and minorization for the Gibbs sampler. In this section we
develop drift and minorization conditions for the Gibbs sampler. We continue
to assume thatm′ = min{m1,m2, . . . ,mK } ≥ 2 and thatK ≥ 3. Let m′′ =
max{m1,m2, . . . ,mK}.
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5.1. Drift. Recall thatδ1 = 1/(2a1 + K − 2) and define

δ6 = K2 + 2Ka1

2s0b1 + K2 + 2Ka1
and δ7 = 1

2(a1 − 1)
.

Clearly δ6 ∈ (0,1). It is straightforward to show that ifa1 > 3/2, thenδ7 ∈ (0,1)

and there existsρ1 ∈ (0,1) such that(
K + δ6

δ7

)
δ1 < ρ1.(23)

Define the functionv3(θ, λ) = Kλθ
s0+Kλθ

(θ̄ − ȳ)2. Also, lets2 =∑K
i=1(ȳi − ȳ)2. We

will require the following lemma, whose proof is given in Appendix D.

LEMMA 5.1. Let a and b be constants such that 5b > a ≥ b > 0. Then if x

and y are positive, (
ax

ax + y

)2

+
(

y

bx + y

)2

< 1.(24)

Here is the drift condition.

PROPOSITION5.1. Assume that a1 > 3/2 and let ρ1 ∈ (0,1) satisfy (23).As-
sume also that 5m′ > m′′. Fix c3 ∈ (0,min{b1, b2}) and fix γ ∈ (max{ρ1, δ6, δ7},1).
Define the drift function as

V3(θ, λ) = ec3λθ + ec3λe + δ7

Kδ1λθ

+ v3(θ, λ).

Then the Gibbs sampler satisfies (7) with

b =
(

b1

b1 − c3

)a1+K/2

+
(

b2

b2 − c3

)a2+N/2

+ (δ6 + δ7)

[
1

s0
+ (m0 − ȳ)2 + s2

K

]
+ 2b1δ7

K
.

PROOF. It suffices to show that

E[V3(θ, λ)|µ′, θ ′, λ′]

≤ δ7[(K + δ6/δ7)δ1]
Kδ1λ

′
θ

+
[
δ7

(
m′′λ′

e

λ′
θ + m′′λ′

e

)2

+ δ6

(
λ′

θ

λ′
θ + m′λ′

e

)2
]
v3(θ

′, λ′) + b,

(25)
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because, using Lemma 5.1 and (23), we have

δ7

Kδ1λ
′
θ

[(
K + δ6

δ7

)
δ1

]
+
[
δ7

(
m′′λ′

e

λ′
θ + m′′λ′

e

)2

+ δ6

(
λ′

θ

λ′
θ + m′λ′

e

)2
]
v3(θ

′, λ′) + b

≤ ρ1δ7

Kδ1λ
′
θ

+ max{δ6, δ7}v3(θ
′, λ′) + b

≤ γV3(θ
′, λ′) + b.

Recall that we are considering Hobert and Geyer’s (1998) updating scheme
for the Gibbs sampler:(µ′, θ ′, λ′) → (µ, θ, λ). Establishing (25) requires the
calculation of several expectations, and these will be calculated using the following
rule:

E[V3(θ, λ)|µ′, θ ′, λ′] = E[V3(θ, λ)|θ ′, λ′]
= E
{
E{E[V3(θ, λ)|µ,θ, θ ′, λ′]|µ,θ ′, λ′}|θ ′, λ′}

= E
{
E{E[V3(θ, λ)|µ,θ]|µ,λ′}|θ ′, λ′}.

We now establish (25). First, it is easy to show that

E
[
ec3λθ |θ,µ

]≤ ( b1

b1 − c3

)a1+K/2

and

E
[
ec3λe |θ,µ

]≤ ( b2

b2 − c3

)a2+N/2

.

(26)

Now we evaluateE[ δ7
Kδ1λθ

|µ′, θ ′, λ′]. Note that

E[λ−1
θ |µ,θ] = δ1

[
2b1 +

K∑
i=1

(θi − µ)2

]
(27)

and

E[(θi − µ)2|µ,λ′] = Var(θi|µ,λ′) + [E(θi |µ,λ′) − µ]2

= 1

λ′
θ + miλ

′
e

+
(

miλ
′
e

λ′
θ + miλ

′
e

)2

(µ − ȳi)
2(28)

≤ 1

λ′
θ

+
(

m′′λ′
e

λ′
θ + m′′λ′

e

)2

(µ − ȳi)
2.

It follows that

K∑
i=1

E[(θi − µ)2|µ,λ′] ≤ K

λ′
θ

+
(

m′′λ′
e

λ′
θ + m′′λ′

e

)2

K(µ − ȳ)2 + s2.(29)



800 G. L. JONES AND J. P. HOBERT

Letting θ ′ = K−1∑
i θ

′
i , we have

E[(µ − ȳ)2|θ ′, λ′] = Var(µ|θ ′, λ′) + [E(µ|θ ′, λ′) − ȳ]2

= 1

s0 + Kλ′
θ

+
[

s0

s0 + Kλ′
θ

(m0 − ȳ) + Kλ′
θ

s0 + Kλ′
θ

(θ ′ − ȳ)

]2

(30)
≤ 1

s0 + Kλ′
θ

+ s0

s0 + Kλ′
θ

(m0 − ȳ)2 + Kλ′
θ

s0 + Kλ′
θ

(θ ′ − ȳ)2

≤ 1

s0
+ (m0 − ȳ)2 + v3(θ

′, λ′),

where the first inequality is Jensen’s. On combining (27)–(30), we have

E

[
δ7

Kδ1λθ

∣∣∣µ′, θ ′, λ′
]

≤ δ7

λ′
θ

+ δ7

(
m′′λ′

e

λ′
θ + m′′λ′

e

)2

v3(θ
′, λ′)

+ δ7

[
1

s0
+ (m0 − ȳ)2 + s2

K

]
+ 2b1δ7

K
.

(31)

The last thing we need to evaluate isE[v3(θ, λ)|µ′, θ ′, λ′]. As in Hobert and
Geyer (1998), Jensen’s inequality yields

E

(
Kλθ

s0 + Kλθ

∣∣∣µ,θ

)
≤ KE(λθ |µ,θ)

s0 + KE(λθ |µ,θ)
≤ K2 + 2Ka1

2s0b1 + K2 + 2Ka1
= δ6.(32)

These authors also note that the conditional independence of theθi ’s implies that

θ̄ |µ,λ ∼ N

(
1

K

K∑
i=1

λθµ + miλeȳi

λθ + miλe

,
1

K2

K∑
i=1

1

λθ + miλe

)
,

from which it follows that

E[(θ̄ − ȳ)2|µ,λ′] = Var(θ̄ |µ,λ′) + [E(θ̄ |µ,λ′) − ȳ]2

= 1

K2

K∑
i=1

1

λ′
θ + miλ′

e

+
[

1

K

K∑
i=1

λ′
θ

λ′
θ + miλ′

e

(µ − ȳi )

]2

≤ 1

K

1

λ′
θ + m′λ′

e

+ 1

K

K∑
i=1

(
λ′

θ

λ′
θ + miλ

′
e

)2

(µ − ȳi)
2

≤ 1

Kλ′
θ

+
(

λ′
θ

λ′
θ + m′λ′

e

)2

(µ − ȳ)2 + s2

K
,

(33)
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where, again, (part of) the first inequality is Jensen’s. On combining (30),
(32) and (33), we have

E[v3(θ, λ)|µ′, θ ′, λ′]

≤ δ6

Kλ′
θ

+ δ6

(
λ′

θ

λ′
θ + m′λ′

e

)2

v3(θ
′, λ′) + δ6

[
1

s0
+ (m0 − ȳ)2 + s2

K

]
.

(34)

Combining (26), (31) and (34) yields (25).�

REMARK 5.1. Note that our drift condition for the block Gibbs sampler
(Proposition 4.1) holds for all hyperparameter configurations (corresponding to
proper priors) and nearly all values ofm′ andm′′. In contrast, it is assumed in
Proposition 5.1 thata1 > 3/2 and that 5m′ > m′′. On the other hand, Hobert and
Geyer’s (1998) drift condition for the Gibbs sampler involves even more restrictive
assumptions abouta1 and the relationship betweenm′ andm′′. Specifically, Hobert
and Geyer (1998) assume thata1 ≥ (3K −2)/(2K −2) and thatm′ > (

√
5−2)m′′.

Note that(3K −2)/(2K −2) > 3/2 for all K ≥ 2 and that 5> (
√

5−2)−1 ≈ 4.23.

REMARK 5.2. In this case the optimal starting value minimizes

V3(θ, λ) = ec3λθ + ec3λe + δ7

Kδ1λθ

+ Kλθ

s0 + Kλθ

(θ̄ − ȳ)2.

The last term will vanish as long as theθi ’s are such that̄θ = ȳ. The optimal
starting value forλθ is the minimizer of the functionec3λθ + δ7/(Kδ1λθ). This
cannot be computed in closed form, but is easily found numerically. Finally, since
λe = 0 is not appropriate, we simply startλe at a small positive number.

5.2. Minorization. Fix d > 0 and defineSG = {(θ, λ) :V3(θ, λ) ≤ d}. Similar
to our previous work with the block Gibbs sampler, our goal will be to find a
densityq(µ, θ,λ) onR × R

K × R
2+ and anε > 0 such that

k(µ, θ,λ|µ′, λ′, θ ′) ≥ εq(µ, θ,λ) ∀ (θ ′, λ′) ∈ SG.

As before, we will actually establish the minorization on a superset ofSG with
which it is more convenient to work. Letc4 = δ7/(Kδ1d) and putcl and cu

equal toȳ −
√

(m0 − ȳ)2 + d and ȳ +
√

(m0 − ȳ)2 + d, respectively. We show
in Appendix E thatSG ⊂ CG = CG1 ∩ CG2 ∩ CG3, where

CG1 =
{
(θ, λ) : c4 ≤ λθ ≤ logd

c3

}
, CG2 =

{
(θ, λ) : 0< λe ≤ logd

c3

}
,

CG3 =
{
(θ, λ) : cl ≤ s0m0 + Kλθ θ̄

s0 + Kλθ

≤ cu

}
.

Also, CG1 ∩ CG2 is nonempty as long asd logd > (c3δ7)/(Kδ1). We will require
the following obvious lemma.
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LEMMA 5.2. Let N(τ, σ 2;x) denote the value of the N(τ, σ 2) density at the
point x. If a ≤ b, then, as a function of x,

inf
a≤τ≤b

N(τ, σ 2;x) =
{

N(b, σ 2;x), if x ≤ (a + b)/2,

N(a, σ 2;x), if x > (a + b)/2.

Here is the minorization condition.

PROPOSITION5.2. Let q(µ, θ,λ) be a density on R × R
K × R

2+ defined as
follows:

q(µ, θ,λ) =
[

g1(µ, θ)g2(µ)∫
R

∫
RK g1(µ, θ)g2(µ)dθ dµ

]
f (λ|µ,θ, y),

where

g1(µ, θ) =
(

c4

2π

)K/2

exp

{
− logd

2c3

K∑
i=1

[
(θi − µ)2 + mi(θi − ȳi )

2]}

and

g2(µ) =
{

N(cu, [s0 + K log(d)/c3]−1;µ), µ ≤ ȳ,

N(cl, [s0 + K log(d)/c3]−1;µ), µ > ȳ.

Set

εG =
[

s0 + Kc4

s0 + K log(d)/c3

]1/2[∫
R

∫
RK

g1(µ, θ)g2(µ)dθ dµ

]
.

Then the Markov transition density for the Gibbs sampler satisfies the minorization
condition

k(µ, θ,λ|µ′, θ ′, λ′) ≥ εGq(µ, θ,λ) ∀ (θ ′, λ′) ∈ CG.

PROOF. Recall thatk(µ, θ,λ|µ′, θ ′, λ′) = f (µ|θ ′, λ′, y)f (θ |µ,λ′, y)f (λ|µ,

θ, y). For(θ ′, λ′) ∈ CG, we have

f (µ|θ ′, λ′, y)f (θ |µ,λ′, y)

≥ inf
(θ ′,λ′)∈CG

f (µ|θ ′, λ′, y)f (θ |µ,λ′, y)

≥
[

inf
(θ ′,λ′)∈CG

f (µ|θ ′, λ′, y)

][
inf

(θ ′,λ′)∈CG

f (θ |µ,λ′, y)

]

≥
[

inf
(θ ′,λ′)∈CG

f (µ|θ ′, λ′, y)

][
inf

λ′∈CG1∩CG2

f (θ |µ,λ′, y)

]
.
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Using the fact that theθi ’s are conditionally independent, we have

inf
λ′∈CG1∩CG2

f (θ |µ,λ′, y)

= inf
λ′∈CG1∩CG2

K∏
i=1

f (θi |µ,λ′, y) ≥
K∏

i=1

inf
λ′∈CG1∩CG2

f (θi |µ,λ′, y).

Now, using Jensen’s inequality again, we have

f (θi |µ,λ′, y)

=
√

λ′
θ + miλ

′
e

2π
exp

{
−λ′

θ + miλ
′
e

2

(
θi − λ′

θµ + miλ
′
eȳi

λ′
θ + miλ

′
e

)2
}

=
√

λ′
θ + miλ′

e

2π

× exp

{
−λ′

θ + miλ
′
e

2

[
λ′

θ

λ′
θ + miλ

′
e

(θi − µ) + miλ
′
e

λ′
θ + miλ

′
e

(θi − ȳi)

]2
}

≥
√

λ′
θ + miλ

′
e

2π

× exp
{
−λ′

θ + miλ
′
e

2

[
λ′

θ

λ′
θ + miλ

′
e

(θi − µ)2 + miλ
′
e

λ′
θ + miλ

′
e

(θi − ȳi)
2
]}

=
√

λ′
θ + miλ

′
e

2π
exp
{
−1

2

[
λ′

θ (θi − µ)2 + miλ
′
e(θi − ȳi )

2]}.
Hence,

inf
λ′∈CG1∩CG2

f (θ |µ,λ′, y)

≥
(

c4

2π

)K/2

exp

{
− logd

2c3

K∑
i=1

[
(θi − µ)2 + mi(θi − ȳi )

2]}

= g1(µ, θ).

Now, if (θ ′, λ′) ∈ CG, thenc4 ≤ λ′
θ ≤ logd

c3
and hence

f (µ|θ ′, λ′, y) =
√

s0 + Kλ′
θ

2π
exp

{
−s0 + Kλ′

θ

2

(
µ − s0m0 + Kλ′

θ θ
′

s0 + Kλ′
θ

)2
}

≥
√

s0 + Kc4

s0 + (K logd)/c3

√
s0 + (K logd)/c3

2π

× exp

{
−s0 + (K logd)/c3

2

(
µ − s0m0 + Kλ′

θ θ
′

s0 + Kλ′
θ

)2
}
.
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Thus,

inf
(θ ′,λ′)∈CG

f (µ|θ ′, λ′, y)

≥
√

s0 + Kc4

s0 + (K logd)/c3
inf

(θ ′,λ′)∈CG

√
s0 + (K logd)/c3

2π

× exp

{
−s0 + (K logd)/c3

2

(
µ − s0m0 + Kλ′

θ θ
′

s0 + Kλ′
θ

)2
}

≥
√

s0 + Kc4

s0 + (K logd)/c3
inf

(θ ′,λ′)∈CG3

√
s0 + (K logd)/c3

2π

× exp

{
−s0 + (K logd)/c3

2

(
µ − s0m0 + Kλ′

θ θ
′

s0 + Kλ′
θ

)2
}

≥ g2(µ)

√
s0 + Kc4

s0 + (K logd)/c3
,

where the last inequality is an application of Lemma 5.2.�

REMARK 5.3. In Appendix F we give a closed form expression forεG

involving the standard normal cumulative distribution function.

6. A numerical example. Consider a balanced data situation and letπh(·)
denote the probability measure corresponding to the posterior density in (2). Let
P n((λ0, ξ0), ·) denote then-step Markov transition kernel for the block Gibbs
sampler started at(λ0, ξ0). [Equation (5) shows that a starting value forλ0 is
actually not required.] We now write down an explicit upper bound for∥∥P n

(
(λ0, ξ0), ·)− πh(·)

∥∥,
based on Theorem 3.1 and Propositions 4.2 and 4.3. Although it has been sup-
pressed in the notation, bothπh and P n depend heavily on the six hyperpara-
meters,a1, b1, a2, b2, s0 andm0. Our upper bound holds for all hyperparameter
configurations such thata1, b1, a2, b2, s0 are positive, that is, all hyperparameter
configurations such that the priors onλθ , λe andµ are proper. Due to its gener-
ality, the bound is complicated tostate. First,recall that SSE=∑i,j (yij − ȳi)

2,
whereȳi = m−1∑m

j=1 yij . Recall further that

δ1 = 1

2a1 + K − 2
, δ2 = 1

2a2 + M − 2
,
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δ3 = (K + 1)δ2, δ5 = Kδ2, δ = max{δ1, δ3}, c1 = 2b1δ1 andc2 = (2b2 + SSE)δ2.
Note that all of these quantities depend only on the dataand the hyperparameters.

Now chooseγ ∈ (δ,1) andφ > 0 such thatφδ5 + δ < γ . Also, let

b = φc1 + [(φK + K + 1)/m]c2 + max{φ,1}
K∑

i=1

max
{
(ȳ − ȳi)

2, (m0 − ȳi)
2},

and choosedR > 2b/(1− γ ). Finally, let

εB =
[∫

R+
h1(λθ) dλθ

][∫
R+

h2(λe) dλe

]
,

where

h1(λθ ) =




Gamma
(

K

2
+ a1, b1;λθ

)
, λθ < λ∗

θ ,

Gamma
(

K

2
+ a1,

dR

2φ
+ b1;λθ

)
, λθ ≥ λ∗

θ ,

for

λ∗
θ = φ(K + 2a1)

dR
log
(

1+ dR

2b1φ

)

and

h2(λe) =




Gamma
(

M

2
+ a2,

SSE

2
+ b2;λe

)
, λe < λ∗

e ,

Gamma
(

M

2
+ a2,

SSE+ mdR

2
+ b2;λe

)
, λe ≥ λ∗

e ,

for

λ∗
e = (M + 2a2)

mdR
log
(

1+ mdR

2b2 + SSE

)
.

Note thatεB cannot be calculated in closed form, but can be evaluated numerically
with four calls to a routine that evaluates the incomplete gamma function. Recall
from the statement of Theorem 3.1 that

α = 1+ dR

1+ 2b + γ dR
and U = 1+ 2(γ dR + b).

Here is the bound. For any 0< r < 1 and anyn ∈ {1,2,3, . . . },∥∥P n
(
(λ0, ξ0), ·)− πh(·)

∥∥
≤ (1− εB)rn +

(
Ur

α1−r

)n(
1+ b

1− γ
+ φv1(θ0,µ0) + m−1v2(θ0)

)
.
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TABLE 1
Simulated data

Cell 1 2 3 4 5

ȳi −0.80247 −1.0014 −0.69090 −1.1413 −1.0125

M = mK = 50

ȳ = M−1∑5
i=1
∑10

j=1 yij = −0.92973

SSE=∑5
i=1
∑10

j=1(yij − ȳi )
2 = 32.990

Using the optimal starting values from Remark 4.1, this becomes∥∥P n
(
(λ0, ξ

opt
0 ), ·)− πh(·)

∥∥
≤ (1− εB)rn +

(
Ur

α1−r

)n
(

1+ b

1− γ
+ φ

1+ φ

K∑
i=1

(ȳi − ȳ)2

)
.

(35)

Explicit upper bounds can also be written for the block Gibbs sampler in the
unbalanced case and for the Gibbs sampler. These are similar and are left to the
reader. It is interesting to note that becauseour drift and minorization conditions
for the block Gibbs sampler are free ofs0, so too is the bound in (35).

To evaluate (35), the user must provide values forγ , φ, dR and r . In our
experience, small changes in these quantities can lead to dramatically different
results. Unfortunately, the right-hand side of (35) is a very complicated function of
γ , φ, dR andr . Hence, it would be quite difficult to find “optimal” values. In our
applications of (35), we simply define reasonable ranges for these four quantities
and then perform a grid search to find the configuration that leads to the smallest
upper bound. We now provide an example of the use of (35) and of the analogous
bound based on Theorem 3.2.

The data in Table 1 were simulated according to the model defined in Section 2
with K = 5, m = 10, a1 = 2.5, a2 = b1 = b2 = 1, m0 = 0 and s0 = 1. We
now pretend that the origin of the data is unknown and consider using the block
Gibbs sampler to make approximate draws from four different intractable posterior

TABLE 2
Four different prior specifications

Hyperparameter
setting a1 b1 a2 b2 m0

1 2.5 1 1 1 0
2 2.5 1 1 1 ȳ

3 0.1 0.1 0.1 0.1 ȳ

4 0.01 0.01 0.01 0.01 ȳ
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TABLE 3
Total variation bounds for the block Gibbs sampler via Theorem 3.1

Hyperparameter
setting γ φ dR r εB n∗ Bound

1 0.2596 0.9423 15.997 0.0188 3.1×10−7 7.94× 108 0.00999
2 0.2596 0.5385 3.0079 0.0789 0.0171 3.415×103 0.00999
3 0.4183 0.3059 2.8351 0.0512 6.8×10−4 1.315×105 0.00999
4 0.4340 0.2965 2.8039 0.0483 8.1×10−6 1.1796×107 0.00999

distributions corresponding to the four hyperparameter settings listed in Table 2.
The first setting in Table 2 is the “correct” prior in that it is exactly the setting
under which the data were simulated. As one moves from setting 2 to setting 4,
the prior variances onλθ andλe become larger; that is, the priors become more
“diffuse.” For reasons discussed belowm0 is set equal tōy in settings 2–4.

For each of the hyperparameter settings in Table 2 weused (35) as well as the
analogous bound based on Theorem 3.2 to find ann∗ such that∥∥P n∗(

(λ0, ξ
opt
0 ), ·)− πh(·)

∥∥≤ 0.01.

The results are given in Tables 3 and 4. For example, consider hyperparameter
setting 2. Theorem 3.1 yields∥∥P 3415((λ0, ξ

opt
0 ), ·)− πh(·)

∥∥≤ 0.00999,

while Theorem 3.2 yields∥∥P 6563((λ0, ξ
opt
0 ), ·)− πh(·)

∥∥≤ 0.00999.

While examining then∗’s in Tables 3 and 4, keep in mind that it takes about 1.5
minutes to run one million iterations of the block Gibbs sampler on a standard PC.
Thus, even the largern∗’s arefeasible.

Note that the results based on Theorem 3.1 are better across the board than those
based on Theorem 3.2. We suspect that our use of Lemma 3.1 in the application of
Theorem 3.2 has somewhat (artificially) inflated then∗’s in Table 4.

TABLE 4
Total variation bounds for the block Gibbs sampler via Theorem 3.2

Hyperparameter
setting ρ φ dRT εB n∗ Bound

1 0.615 0.84 15.213 4.1×10−7 1.8835×109 0.00999
2 0.5975 0.49 2.6564 0.0234 6.563×103 0.00999
3 0.7113 0.3181 2.8492 7.2×10−4 3.3915×105 0.00999
4 0.7191 0.3084 2.8154 8.6×10−6 2.966×107 0.00999
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A comparison of then∗’s for hyperparameter settings 1 and 2 (in either table)
shows that our bound is extremely sensitive to the distance betweenm0 and ȳ.
This is due to the fact thatεB decreases rapidly asb increases andb contains the
term

∑K
i=1 max{(ȳ − ȳi)

2, (m0 − ȳi )
2}, which is minimized whenm0 = ȳ. While

there may actually be some difference in the convergence rates of the two Markov
chains corresponding to settings 1 and 2, it seems unlikely that the difference is as
large as these numbers suggest. (Remember, these are only sufficient burn-ins.) It
is probably the case that our results simply produce a better bound under setting 2
than they do under setting 1. This issue is discussed further in Section 7.

Another noteworthy feature of Tables 3 and 4 is thatn∗ increases as the priors
become more “diffuse.” Figure 1 contains two plots describing the relationship

FIG. 1. These two plots show how the “diffuseness” of the priors on λθ and λe affects n∗. The top
plot shows n∗ against a2 = b2 where the hyperparameters associated with λθ are held constant at
a1 = b1 = 1. When a2 = b2, the prior variance of λe is 1/b2 and the prior mean is constant at 1.

The bottom plot shows log(log(n∗)) against a1 = b1 where the hyperparameters associated with λe

are held constant at a2 = b2 = 1. When a1 = b1, the prior variance of λθ is 1/b1 and the prior mean
is constant at 1. In all cases m0 was set equal to ȳ.
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between the prior variances onλθ and λe and n∗. [The n∗’s in this plot were
calculated using (35).] Note thatn∗ increases quite rapidly with the prior variance
on λθ . While it is tempting to conclude that the chains associated with “diffuse”
priors are relatively slow to converge, we cannot be sure that this is the case
because, again, these are only sufficient burn-ins. However, our findings are
entirely consistent with the work of Natarajan and McCulloch (1998), whose
empirical results suggest that the mixing rate of the Gibbs sampler (for a probit–
normal hierarchical model) becomes much slower as the priors become more
diffuse.

7. Discussion. The quality of the upper bounds produced using Theorems
3.1 and 3.2 depends not only on the sharpness of the inequalities used to prove
the theorems themselves, but also on the quality of the drift and minorization
conditions used in the particular application. Consequently, it is possible, and
perhaps even likely, that the chains we have analyzed actually get within 0.01
of stationarity much sooner than then∗’s in Tables 3 and 4 would suggest. For
example, weknow from Table 3 that a sufficient burn-in for hyperparameter
setting 2 is 3415. Thus, the value 6563 from Table 4 is too large byat least a
factor of 1.9. The question then becomes how conservative are the results based
on Rosenthal’s theorem? As we now explain, this question was addressed by van
Dyk and Meng (2001) in a different context.

Hobert (2001) used Theorem 3.1 to calculate a sufficient burn-in for a Markov
chain Monte Carlo (MCMC) algorithm developed in Meng and van Dyk (1999).
In the Rejoinder of van Dyk and Meng (2001) an empirical estimator of the
total variation distance to stationarity was developed and used to demonstrate
that Hobert’s upper bound is probably extremely conservative. Indeed, Hobert’s
sufficient burn-in wasn∗ = 335 while van Dyk and Meng’s simulation results
suggested that a burn-in of 2 is sufficient. We have experimented with van Dyk
and Meng’s empirical techniques in our situation and have come to similar
conclusions. It would be interesting to use a Markov chain whose convergence
behavior is known exactly to study how the sharpness of the bounds produced by
Theorems 3.1 and 3.2 changes when different drift and minorization conditions are
used.

In situations where it is possible to rigorously analyze two different MCMC
algorithms for the same family of intractable posteriors, it is tempting to compare
the algorithms using sufficient burn-in. However, we do not believe that this is
an entirely fair method of comparison. Consider using our results in this way to
compare Gibbs and block Gibbs. As we mentioned above, our Gibbs sampler is
more difficult to analyze than our block Gibbs sampler. This probably results in
relatively lower quality drift and minorization conditions for the Gibbs sampler.
Indeed, using Propositions 5.1 and 5.2 in conjunction with Theorem 3.1 almost
always yields extremely largen∗’s. Specifically, unless the priors are extremely
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TABLE 5
Simulated data

Cell 1 2 3

ȳi −0.54816 0.92516 −0.19924

MT = mK = 12

ȳ = M−1
T

∑3
i=1
∑4

j=1 yij = 0.059253

SSE=∑3
i=1
∑4

j=1(yij − ȳi )
2 = 20.285

“informative,” it is difficult to find a hyperparameter configuration under which
εG is not effectively 0. Here is a comparison.

The data in Table 5 were simulated according to the model defined in Section 2
with K = 3, m = 4, a1 = a2 = b1 = b2 = 2, s0 = 1 andm0 = 0. We use the
informative hyperparameter setting:a1 = 5, a2 = 2, b1 = 20, b2 = 20, m0 = 0
ands0 = 4. For the block Gibbs sampler (35) yields

∥∥P 16631((λ0, ξ
opt
0 ), ·)− πh(·)

∥∥≤ 0.00999.

For the Gibbs sampler Propositions 5.1 and 5.2 in conjunction with Theorem 3.1
yield

∥∥P 4.826×1019

G

(
(µ0, θ

opt
0 , λ

opt
0 ), ·)− πh(·)

∥∥≤ 0.00999.

As starting values for the Gibbs sampler we used(θ
opt
0 , λ

opt
0 ) = (ȳ, ȳ, ȳ,10−6,

0.2839) (see Remark 5.2). The constants used to construct these bounds are given
in Table 6.

While it is probably the case that block Gibbs converges faster than Gibbs, it is
unlikely that the true difference is anywhere near as large as these numbers suggest.
Thus, if we use these results to compare Gibbs and block Gibbs, the former will
be penalized by the fact that it is simply more analytically cumbersome.

TABLE 6
Constants used to construct total variation bounds

Sampler γ φ ρ1 c3 dR r ε

Block Gibbs 0.3956 0.3589 na na 28.328 0.0111 0.0246
Gibbs 0.41528 na 0.41527 2.6667 26.010 0.0009 5.6×10−17
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APPENDIX A

A.1. The elements of ξ∗ and V . Hobert and Geyer [(1998), page 418]
show thatξ |λ,y ∼ N(ξ∗,V ) and give the specific forms ofξ∗ = ξ∗(λ, y) and
V = V (λ, y). We restate their results here. First we let

t =
K∑

i=1

miλθλe

λθ + miλe

,

then

Var(θi |λ) = 1

λθ + miλe

[
1+ λ2

θ

(λθ + miλe)(s0 + t)

]
,

Cov(θi, θj |λ) = λ2
θ

(λθ + miλe)(λθ + mjλe)(s0 + t)
,

Cov(θi,µ|λ) = λθ

(λθ + miλe)(s0 + t)
,

Var(µ|λ) = 1

s0 + t
.

Finally,

E(µ|λ) = 1

s0 + t

[
K∑

i=1

miλθλeȳi

λθ + miλe

+ m0s0

]

and

E(θi |λ) = λθ

λθ + miλe

[
1

s0 + t

[
K∑

j=1

mjλθλeȳj

λθ + mjλe

+ m0s0

]]
+ λemiȳi

λθ + miλe

.

Observe thatE(µ|λ) is a convex combination of̄yi and m0 and, furthermore,
E(θi|λ) is a convex combination ofE(µ|λ) andȳi . If we let � denote the length
of the convex hull of the set{ȳ1, ȳ2, . . . , ȳK,m0}, then for anyi = 1,2, . . . ,K ,
[E(θi |λ) − E(µ|λ)]2 ≤ �2 and[E(θi |λ) − ȳi]2 ≤ �2.

APPENDIX B

B.1. Optimal starting values. We desire the value of(θ,µ) that minimizes

V1(θ,µ) = φ1v1(θ,µ) + φ2v2(θ) = φ1

K∑
i=1

(θi − µ)2 + φ2

K∑
i=1

mi(θi − ȳi )
2.

Clearly, no matter what values are chosen for theθi ’s, the minimizing value ofµ
is θ̄ . Thus, we need to find the value ofθ that minimizes

φ1

K∑
i=1

(θi − θ̄ )2 + φ2

K∑
i=1

mi(θi − ȳi )
2.
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Setting the derivative with respect toθi equal to 0 yields

θi = φ1θ̄ + φ2miȳi

φ1 + φ2mi

.(36)

Summing both sides overi and dividing byK yields an equation in̄θ whose
solution can be plugged back into (36) and this yields the optimal starting value

θi = φ1[∑K
j=1(mj ȳj /(φ1 + φ2mj))/

∑K
j=1(mj/(φ1 + φ2mj))] + φ2miȳi

φ1 + φ2mi

.

APPENDIX C

C.1. Proof of Lemma 4.1. Let

fc(x) = (b + c/2)α

�(α)
xα−1e−x(b+c/2),

fβ(x) = (b + β/2)α

�(α)
xα−1e−x(b+β/2),

f0(x) = bα

�(α)
xα−1e−xb.

Note thatx∗ is the only positive solution tofc(x) = f0(x). To prove the result
it suffices to show that (i)R0(β) = fβ(x)/f0(x) > 1 for all x ∈ (0, x∗) and all
β ∈ (0, c) and that (ii) Rc(β) = fβ(x)/fc(x) > 1 for all x ∈ (x∗,∞) and
all β ∈ (0, c). Fix k > 0 and define a function

h(u) = ku

1+ ku
− log(1+ ku)

for u ≥ 0. Sinceh(0) = 0 andh′(u) < 0, we knowh(u) < 0 for u ≥ 0. Hence,
1

u

k

1+ ku
− 1

u2
log(1+ ku) < 0(37)

for u ≥ 0. Define another function,

g(u) = 1

u
log(1+ ku)

for u > 0. Since the the left-hand side of (37) is equal tog′(u), we have established
thatg(u) is decreasing foru > 0. Thus, ifx < x∗ = 2α

c
log(1+ c

2b
) andβ ∈ (0, c),

then

logR0(β) = α log
(

1+ β

2b

)
− xβ

2

> α log
(

1+ β

2b

)
− αβ

c
log
(

1+ c

2b

)

= αβ

[
1

β
log
(

1+ β

2b

)
− 1

c
log
(

1+ c

2b

)]
> 0,
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and (i) is established. Case (ii) is similar.

APPENDIX D

D.1. Proof of Lemma 5.1. First, letg(v) = v + cv−1, wherec > 0 andv > 0.
It is easy to show thatg is minimized atv̂ = √

c. Thus,

1−
(

ax

ax + y

)2

−
(

y

bx + y

)2

= 2bx2y2[y/x + ab(x/y)] + x2y2(b2 + 4ab − a2)

(ax + y)2(bx + y)2

≥ 2bx2y2[2√
ab] + x2y2(b2 + 4ab − a2)

(ax + y)2(bx + y)2

≥ x2y2(5b2 + 4ab − a2)

(ax + y)2(bx + y)2

= x2y2(5b − a)(b + a)

(ax + y)2(bx + y)2

> 0.

APPENDIX E

E.1 SG ⊂ CG = CG1 ∩ CG2 ∩ CG3 . First,

SG = {(θ, λ) :V3(θ, λ) ≤ d}

=
{
(θ, λ) : ec3λθ + ec3λe + δ7

Kδ1λθ

+ v3(θ, λ) ≤ d

}

⊂
{
(θ, λ) : ec3λθ ≤ d, ec3λe ≤ d,

δ7

Kδ1λθ

≤ d, v3(θ, λ) ≤ d

}

=
{
(θ, λ) :

δ7

Kδ1d
≤ λθ ≤ logd

c3
,0 < λe ≤ logd

c3
, v3(θ, λ) ≤ d

}
.

As in the proof of Proposition 5.1, Jensen’s inequality yields

(
s0m0 + Kλθ θ̄

s0 + Kλθ

− ȳ

)2

≤ s0

s0 + Kλθ

(m0 − ȳ)2 + Kλθ

s0 + Kλθ

(θ̄ − ȳ)2

≤ (m0 − ȳ)2 + v3(θ, λ),
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and henceSG is contained in

CG :=
{
(θ, λ) :

δ7

Kδ1d
≤ λθ ≤ logd

c3
,0 < λe ≤ logd

c3
,

(
s0m0 + Kλθ θ̄

s0 + Kλθ

− ȳ

)2

≤ (m0 − ȳ)2 + d

}
.

Let c4 = δ7/(Kδ1d) and putcl and cu equal toȳ −
√

(m0 − ȳ)2 + d and ȳ +√
(m0 − ȳ)2 + d, respectively. Note thatCG = CG1 ∩ CG2 ∩ CG3, where

CG1 =
{
(θ, λ) : c4 ≤ λθ ≤ logd

c3

}
,

CG2 =
{
(θ, λ) : 0 < λe ≤ logd

c3

}
,

CG3 =
{
(θ, λ) : cl ≤ s0m0 + Kλθ θ̄

s0 + Kλθ

≤ cu

}
.

APPENDIX F

F.1. Closed form expression for εG. Recall that

εG =
[

s0 + Kc4

s0 + K log(d)/c3

]1/2[∫
R

∫
RK

g1(µ, θ)g2(µ)dθ dµ

]
.

A straightforward calculation shows that∫
RK

g1(µ, θ) dθ

=
(

c4c3

logd

)K/2 K∏
i=1

√
1

1+ mi

exp
{
− mi logd

2c3(1+ mi)
(µ − ȳi)

2
}
.

(38)

Thus,∫
RK

∫
R

g1(µ, θ)g2(µ)dθ dµ

=
(

c4c3

logd

)K/2 K∏
i=1

√
1

1+ mi

∫
R

g2(µ)

K∏
i=1

exp
{
− mi logd

2c3(1+ mi)
(µ − ȳi)

2
}

dµ.

Now ∫
R

g2(µ)exp

{
− logd

2c3

K∑
i=1

mi

1+ mi

(µ − ȳi )
2

}
dµ

=
√

s0 + K log(d)/c3

2π
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×
[∫ ȳ

−∞
exp
{
−s0 + K log(d)/c3

2
(µ − cu)

2
}

× exp

{
− logd

2c3

K∑
i=1

mi

1+ mi

(µ − ȳi)
2

}
dµ

+
∫ ∞
ȳ

exp
{
−s0 + K log(d)/c3

2
(µ − cl)

2
}

× exp

{
− logd

2c3

K∑
i=1

mi

1+ mi

(µ − ȳi )
2

}
dµ

]
.

Define

v =
[
s0 + logd

c3

(
K +

K∑
i=1

mi

1+ mi

)]−1

and put

ml = v

[
cls0 + logd

c3

(
Kcl +

K∑
i=1

ȳimi

1+ mi

)]

and

mu = v

[
cus0 + logd

c3

(
Kcu +

K∑
i=1

ȳimi

1+ mi

)]
.

Then∫ ȳ

−∞
exp
{
−s0 + K log(d)/c3

2
(µ − cu)

2
}

exp

{
− logd

2c3

K∑
i=1

mi

1+ mi

(µ − ȳi)
2

}
dµ

= exp

{
−c2

us0

2
− logd

2c3

[
Kc2

u +
K∑

i=1

ȳ2
i mi

1+ mi

]
+ m2

u

2v

}√
2πv�

(
ȳ − mu√

v

)

and

∫ ∞
ȳ

exp
{
−s0 + K log(d)/c3

2
(µ − cl)

2
}

exp

{
− logd

2c3

K∑
i=1

mi

1+ mi

(µ − ȳi)
2

}
dµ

= exp

{
−c2

l s0

2
− logd

2c3

[
Kc2

l +
K∑

i=1

ȳ2
i mi

1+ mi

]
+ m2

l

2v

}

× √
2πv

(
1− �

(
ȳ − ml√

v

))
.
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Putting all of this together yields

εG =√v(s0 + Kc4)

√√√√ K∏
i=1

1

1+ mi

(
c4c3

logd

)K/2

exp

{
− logd

2c3

K∑
i=1

ȳ2
i mi

1+ mi

}

×
[

exp
{
−c2

us0

2
− Kc2

u logd

2c3
+ m2

u

2v

}
�

(
ȳ − mu√

v

)

+ exp
{
−c2

l s0

2
− Kc2

l logd

2c3
+ m2

l

2v

}(
1− �

(
ȳ − ml√

v

))]
,

where�(·) denotes the standard normal cumulative distribution function.
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