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Abstract

A relation between coprime fractions and the gap metric is
presented. Using this result we provide some sufficient
conditions for BIBO robust stabilization for a very wide class of
systems. These conditions allow the plant and compensator to be
disturbed simutaneously.

Kevy words: Robust stabilization; Gap metric; Coprime fraction.

{ Introductiopn

In a very real sense, almost all control system design
Problems are concerned with robust stabilization. One wuses a
mathematical model to design a controller that produces a sitable
feedback system when either the model or the physical system is
in the loop. Mathematical design procedures often produce a high
order controller, while the engineers prefer a low order one
which can be easily manipulated. On the whole, 1n control system
design 1t 1s necessary to consider the robust stabilization
Problem in which Dboth plant and controller are subjected to
uncertainties.

In order to investigate the system uncertainties involved in
robust stability problem 1n a general sense, Vidyasagar{ii] and



Zames et al.[13] proposed the graph topology and the gap topology
respectively. Znu[is] reformulated the two topologies in a very
general setting.

It 1is KkKnown[6,7,11,12,13,18] that Dboth the graph topology
and the gap topology are the weakest topologies in which feed-
backK stability is a robust property. More precisely, any plant

P, can Dbe stabilized by a controller which stabilizes
plant Py 1f the plant P, 1is 1in a neighborhood of Py
in the graph topelogy (or in the gap topology). So, these topolo-
gies are good measures of plants in the robust stability problem,
We list some propertiies of the two topologies from
[6,7,14,12,413,18] 1in the following

1) The gap topology can be defined for a more general class
of systems than the graph topology. If one confines them to the
same plant set, they coincide.

2) Restricted to stable plants, the graph topology { or the
gap topology ) 1s identical to the norm topology.

3) Both the gap topology and the graph topology can be
metrized,

4) The set of stable plants viewed as a subset of all
plants ( including stable plants and unstable plants ) is open in
the graph topology ( or the gap topology ).

5) A plant sequence (P,) converges to Py 1in the
graph 1topology ( or in the gap topology ) i1f and only if any
controller C€ which stabilize P, also stabilizes P, 1if n
large enough , and the closed loop transfer matrix sequence
H(Pn.cn}(see Figure 2.1) converges to H(Py.Co)-

When one wants to apply these topologies to practical prob-
lems, the metric descriptions of the topologies are needed,
Vidyasagar [11,12]) designed a graph metric for lumped linear time
invariant (LTI) systems, and by using this metric he offered a
sufficient condition for robust stability. Callier et al. (3]
extended 1this meiric 1to single-input-single-output (SISO) distri-
buted LIT systems, and Zhu [i14] presented a graph metric for a
class of multiple-inpuit-multiple-output (MIMO) distributed LTI
systems. Generally, 1t is difficulty to extend the definition of
the graph meiric to the distridbuted LTI systems because of the
the spectral factorization problem 1s involved, Praagman [10]



offered another graph metric which has a simple form and can be
easily computed in the SISO case.

The gap metric can be defined for distributed LTI systems as
well as lumped LTI systems. In this paper, we are going 1o give a
sufficient condition for robust stability using the gap meiric.
This is a parallel work to the sufficient result given by Vidya-
sagar{i2] in the graph metric, Our result depends upon a relation
obtained in this paper between the coprime fraction and the gap
metric. The concept of stability concerned 1in this paper 1is
bounded-input-bounded-output (BIBO) stability. For 1lumped LTI
system, BIBO stability 1s identical to the internal stability
{or exponential stability), whereas for distributed LTI system
this property 1is lost. The eguivalence of BRBIBO stability and
internal stability for a very wide class of infinite dimensional
systems has been offered by Curtain [5)

This paper 1s organized in the following way: In section 2,
we will introduce the framework as well as the definition of the
gap metric. A relation between the gap metric and coprime frac-
tions are presented 1n section 3. Finally, our main results,
sufficient conditions for robust stability, are given 1in section 4,

@ Eramework
In this section, we present the {frameworX which was built in

(15), and the definition of the gap metric.

Let H be an integral domain and F, which contains H, be a
subset of the quotient field of H . Assume that X 1is a Hilbert
space. Our framework is based on the following

Basic Assumptiop Each element P € F is a linear
operator mapping X to X and this operator 1is bounded iff Pe¢ H,

We consider F as the universe of the plants and H as the set
of the stable plants. The following examples are given in order
to demonstrate that the basic assumption is reasonable and in-
cluding many important cases.

Example 4: Let H Dbe the set of all proper rational
functions without poles in the closed right half plan (RHP) and F
be the set of all rational functions. The input and output space
is <chosen to be HZ®(C,), the Hardy space. In this case,
the Dbasic assumption 1s satisfied.

w



Example 2: TakKe H to Dbe A _(0), the algebra of the
transfer functions studied by Callier and Desocer [1,2], take F 1o
be B(0), and take X to Dbe HZ(C,), Then the basic assump-
tion holds.

As wusual, let M(H) and M(F) denote the set of matrices with
entries in H and F respectively. If necessary , WwWe write
M()RXM  to indicate the dimensions,

According to the Dbasic assumption, each element péH 1is a

bounded operator mappling X to X By (1%, lemma 2.3}, one c¢an
easily show that each element £f¢F 1s a c¢losed operator
mapping X to X. Consequently, each element PeM(H)P*M
is a bounded operator mapping X® to xX® and each element
Pe¢M(F)RXM is a closed operator mapping xm to
x n

We say that PeM(F)P*M  nhas a right coprime frac-
tion (r.c.f.) over 1the set of Dbounded operators, 1if there exist

Ne¢B(X™, XD and De¢B(X™) such that
1) D is invertible;
2) There exist X and Y in the set of bounded operators,
such that

XN + YD = I
3) P - Np~}

The left coprime fraction (l.c.f) c¢can be defined in the same
way.
In this paper our result only holds for a subset R(F) of

M(F) rather than M(F) itself, where R(F) consists of all elements
in M(F) which has both right and left coprime fractions over the
set of bounded operators.

Let us consider the standard feedback system in Figure 2.4,
where P 1is the plant and C is the compensator. the closed loop
transfer matrix 1is

(I+PC) 1 -p(I+cp) -1
H(P,C) : =
c(1+pc) "1 (1+cp) 1



It is assumed that the system is well posed, so that the
indicated inverse exists,

The feedback system 1s said 10 be stable 1£f
H(P,C)eM(H).

Now we are in a position to define the gap metric, We Know
that each element P in M(F) is a closed operator mapping XM
to XB.  Denote the graph of P by G(P). Then G(P) 1s a closed
subspace in  xXMxxD, Let M(P) denote the orthogonal
projection on the graph G(P). Then gap metric can be defined as

S(Py,Pp):=lM(P,)-T(P)I Py PaeM(F)

The topology generated by the gap metric is called the gap
topology.
From ({4), one Kknows that if P ¢ R(F), then

M(P) ( D*D+N*N )~ ![ D*, N* )

=1 - ( NE* + DD* )1 [ §.D)

where (N,D) and ('iI,ND) are any right and left coprime
fraction pair of P respectively, and D* means the dual of D.
( according to the Dbasic assumption, D ( or H etc. ) is a Dbounded
cperator, so the dual exist)

The main purpose of this section 1s to dig out the relation
between the gap metric and the coprime £fractions. This relation
Plays an important role in our main result in the next section.

Now we start with the following lemma.

Lemma 3.4 Assume that P¢R(F)M*XD, DeB(X™)



and NeB(XT xMy, i1f one regards P as an operator
mapping X™ to X% and denotes the graph of P Dby G(P),
then

G(P):=Range | D
N
={ (Dz, HNz) : =zl ] (3.1)

iff (N,D) is an r.c.f. pair of P.

Eroof The sufficient part can D»e found in [i12), here we
Just prove the necessary part.

Assume (Dy, Ny) 1is an nr.cf. pair of P and Dby the
sufficient part, one kKnows that

G(P)= { (Dyz, Nyz) : zex™ (%)
Let XY be the operators such 1that

XNi + YDi 4 I

Define

Uiz XN + YD

By () and (3.1), one Knows that for every x in X% there
is a unique y in X® such that

D]x = {Di b'd
N N,
and vice versa. Equivalently the operator U: XD-- xM
Uy = %
is Dbijective, Consequently, U™! as well as U i1s a bounded

operator. As a result,



U

D = Di
N Ny
Hence {N,D) is an r.c.f. pair of P. H

The next lemma 1s an alternative version of a result 1in
Krasnosel’skii et al. [9,p206].

Lemma 3.2 Let Py¢R(F)R*M (1=1,2). Then
M(Py) maps G(Pp) bijectively onto G(Py) 1ff

8(Py,Pp) < 1
Using lemma 3.4 and lemma 3.2, we c¢an prove

Iheorem 3.1 Let Pj€R(F)RxM (1=1,2), and
(Ny,Dy) be an r.c.f. pair of Py. Define

Dp Dy
(=T(Pp)
N Ny
Then {Ha. Dp) is an r.c.f. pair of Pp 1ff
8(Py,Pp) < 4
Proof (sufficiency) By lemma 3.2, M(Pp) maps
G(Py) onto G(Pp) Dbijectively, therefore we Know

G(Pp)= [ (Dpz, Npz) : zex™ j (%)

From lemma 3.1, one Knows that {Dp, Ng) is an r.c.f. pair
of Pa.

{(necessity) From the given condition and lemma 31 one can
easily check that M(Pp) maps G(Py) onto G(Pp)

bijectively. Furthermore, according to lemma 3.2, one has

S(P,, P, < !



Remark: The sufficient part of this result is also obtained

by Vidyasagar([ii). But the proof 1s different from the one given
here.

Now we turn our attention to the left coprime fraction and
we wish to get the similar result as Theorem 3.4

For a given plant Pe¢R(F)R*M let (D. 1) be
any lc.f. pair of P, 1i.e.

1) D is invertible;
2) there exist bounded operators X and Y such that
NX + DY =1
3) P = DI,
Define

TP:Z ﬁ*(“f)*-i)

Then ( N¥,-D*) is an r.c.f. pair of Tp, 1.e.

1) -D* is invertible:
2) X*N* + Y*D* - 1
3) Tp = N*(-D*°1)

Remark: TP 1s uniquely determined by P and independent
of the choice of an 1l.c.f. pair of P.

One c¢an readily prove the following lemma.
Lemma 3.3 Suppose that P¢R(F)BXM,

DeB(XD) and NeB(XD, xmy, Then

(D,N) is an l.c.f. pair of P
i1ff

(N*,-D*) is an r.c.f. pair of Tp



Lemma 3.4 Let P¢R(F)MXD, DeB(XD)

and Ne¢B(xM,xny, Then

G(P) : Ker [N,-D}

111

{ (x,7)exPxxD: Nx-Dy:=0 }

"

(D) 1is an 1l.c.f. pair ot P.

Proof One can easily checkK the sufficient part. To prove
the necessity, we take one of the Ll.c.f. pair (b,X). By the
sufficiency, we Know that

G(P) = Ker [R,-D}

: [ (x,7)exPxx?: fx-Dy:0 3
Hence
Ker [N,-Dj = Ker [N,-D)
And
Ker [N,-D1* : Ker [&,-Di*
10e
Range [-D* |- Range [-D*
ﬁ* 1,\\'1*
Because the right hand side of the above equality is G(TP).
and by lemma 3.1 we get that (N*,-D*) is an r.c.f.

pair of Tp. furthermore, by lemma 3.3 (D,§) is an 1.c.f.
pair of P.

Lemma 2.9 6(?1,?2):6(TP1STP2)

Preoof By definition one c<an easily check this. We omilt

the



details.
Theorem 3.2 Suppose Py ¢R(F)™M(1:1,2), and (By.H,)
is an l.c¢c.f. pair of Pi . Define

f) "“D 1*

-]
=1
[N
=

Then (-D*,H*,) is an l.c.f. pair of Py iff

8(Py,Pp) « |
Proof HNotice
1) (MPp)™ = M(Tpp)
2) 8(Py,Pp) = 8(Tp,,Tpya)

And by lemma 3.3, it 1s equivalent to prove that (N,D) 1is an
r.c.f. pair of TPE 1ff£

This 1s the result of theorem 3.1. So the conclusion 1is 1true.
4 Sufficient conditions for BIBO robust stability
Now we are ready to state our main result, Let Py and

Co in R(F)PXM  pe the nominal plant and controller
respectively with a stable closed loop transfer matrix

H(Py,Co)- Take any r.c.f. pair (Ro.Dg) of Po
and l.c.f. pair (Do Ny of Co respectively.
Denote
Do
AO:
N o
and
Bor- [Do. N

10



Define
Vo= Boao

It follows from [i12] that H(PyCqo) 1s stable 1ff
Ug 1s a bounded operator which maps XM pijectively onto
x B,
Remark: Because we have assumed that H(PO.CO) is
stable, Uy can Dbe chosen as the identity.

Suppose that P,C in R(F) are the plant and controller consi-
dered to e disturbed from Po and CQ respectively.

For the saKe of convenience, denote

w=llAgl IBgl UG~ 4N

Iheorem 4.4 If

3(C.,Cq)+d(P,Pgy) < w™! (4.1)
then H(P,C) is stable.

Eroof First, one can easily check that the right hand side
of (4.1) 1s smaller than 1, According to theorem 31 and theorem

3.2, we can define an r.c.ftf. pair (N,D) of P and an lc.f. pair
(‘i).'ii) of C respectively with

D Do
= TT(P)
N Ng
and
™ % )
-D Do
()t
* L
N No
Denote

11



and

then
IBA - BoAgl

IBA - BoA + BgA - BoAgl

(B - Bg)A + Bo(A - Ag)ll

A

A (B - Bo)ll + A - Ag)ll IBgl

lAgl I{IT(C)-TT(Cx)IBIl + N(T(RP)-T (Pl iAg)l Bl

-

= lAgl IBo)Il 6(C,Cq) + llAQ)I IBgl 8(P,Pg)
¢ U hit?

Therefore, BA 1s invertible and the 1inverse 1s also a bounded
operator. Consequently H(P,C) 1is stable.
!
We can also give a sufficient condition by using only r.c.i.
pairs of both plant and controller.

As before, let Pg, Co in R(F)DxM and
H(Py.Cp) is stable. Assume that (Npgo:Dpo) and
(Nco:'Deo) are any r.c.f. pairs of Pqg and Co

respectively. Denote

7
-Npg
Ao - p
DPpo
Dco
BO = 4
Neo




w o =max( llAgl ., 1Byl }
and
- -1
m = w IlUg™ "l
It follows from [12] that H(PO,CO) is stable 1f£
Ugp is bijective,
As above, suppose P, C 1in R(F)PXM o be the dis-

turbed plant and controller respectively.
Iheorem 4.2 If

S(C,Cg)+8(P,Pg) < m-1 (4.2)
then H(P,C) 1s stable.
Proof According to theorem 3.4, we can define an r.c.f.

pair (Np,Dp) of P and an r.c.f. pair (DsNE) of C
respectively with

Dp Dpo
= T(-P)
-Np -Npg
and
D¢ Dco
= TT{C)
Ne Neo
Denote
4 3\
-HP
A =4 b
Dp
\ A
7 3
Dc‘
B :1' 3
Ne
\ J



and

U =z [B, A ]
then

U - Ugll
:IIlB-Bg, A-Aplll
<IB-Boll+llA-Aoll
AIM(C) =M (Co)ll IBOU+ITT (-P) =TT (~Po)ll llAoll
= 8(C,ColiBgli+d (-P, -Po)llAoll
= 8(C,CoIBolI+s (P, Po)liAl
< [S(C,Cpl)+d (P ,Pp)lw
N
Therefore, U 1is bijective. Conseguently, H(P,C) 1s stable.

In the same way, we can alsce give another sufficient

condition Dby using only 1l.c.f. pairs. For the techniques are the
same we omit it.

14
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Figure 2.1 FeedbacKk System
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