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Sufficient Conditions for Convergence of the
Sum–Product Algorithm

Joris M. Mooij and Hilbert J. Kappen

Abstract—Novel conditions are derived that guarantee con-
vergence of the Sum-Product Algorithm (also known as Loopy
Belief Propagation or simply Belief Propagation (BP)) to a unique
fixed point, irrespective of the initial messages, for parallel
(synchronous) updates. The computational complexity of the con-
ditions is polynomial in the number of variables. In contrast with
previously existing conditions, our results are directly applicable
to arbitrary factor graphs (with discrete variables) and are shown
to be valid also in the case of factors containing zeros, under some
additional conditions. The conditions are compared with existing
ones, numerically and, if possible, analytically. For binary vari-
ables with pairwise interactions, sufficient conditions are derived
that take into account local evidence (i.e., single-variable factors)
and the type of pair interactions (attractive or repulsive). It is
shown empirically that this bound outperforms existing bounds.

Index Terms—Contraction, convergence, factor graphs, graph-
ical models, loopy belief propagation, marginalization, message
passing, sum–product algorithm.

I. INTRODUCTION

THE Sum-Product Algorithm [2], also known as (Loopy)
Belief Propagation, which we will henceforth abbreviate

as BP, is a popular algorithm for approximate inference on
graphical models. Applications can be found in diverse areas
such as error correcting codes (iterative channel decoding
algorithms for turbo codes and low-density parity-check codes
[3]), combinatorial optimization (satisfiability problems such
as 3-SAT and graph coloring [4]), and computer vision (stereo
matching [5] and image restoration [6]). BP can be regarded
as the most elementary one in a family of related algorithms,
consisting of double-loop algorithms [7], GBP [8], EP [9], EC
[10], the Max-Product Algorithm [11], the Survey Propagation
Algorithm [4], [12], and Fractional BP [13]. A good under-
standing of BP may therefore be beneficial to understanding
these other algorithms as well.

In practice, there are two major obstacles in the application
of BP to concrete problems: i) if BP converges, it is not clear
whether the results are a good approximation of the exact
marginals; ii) BP does not always converge, and in these cases
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gives no approximations at all. These two issues might actually
be interrelated: the “folklore” is that failure of BP to converge
often indicates low quality of the Bethe approximation on which
it is based. This would mean that if one has to “force” BP to
converge (e.g., by using damping or double-loop approaches),
one may expect the results to be of low quality.

Although BP is an old algorithm that has been reinvented in
many fields, a thorough theoretical understanding of the two
aforementioned issues and their relation is still lacking. Sig-
nificant progress has been made in recent years regarding the
question under what conditions BP converges [14]–[16],1 on
the uniqueness of fixed points [18], and on the accuracy of the
marginals [15], but the theoretical understanding is still incom-
plete. For the special case of a graphical model consisting of a
single loop, it has been shown that convergence rate and accu-
racy are indeed related [19].

In this work, we study the question of convergence of BP
and derive new sufficient conditions for BP to converge to a
unique fixed point. Our results are more general and in some
cases stronger than previously known sufficient conditions. A
part of this material has been published already in [1].

II. BACKGROUND

To introduce our notation, we give a short treatment of factor-
izing probability distributions, the corresponding visualizations
called factor graphs, and the BP algorithm on factor graphs. For
an excellent, extensive treatment of these topics we refer the
reader to [2].

A. Graphical Models

Consider discrete random variables for
, with taking values in . We write

. We are interested
in the class of probability measures on that can be written as
a product of factors (also called potentials or interactions)

(1)

The factors are indexed by subsets of , i.e., .
If is the subset , we write

. Each factor is a positive
function2 . is a normalizing constant

1After submission of this work, we became aware of [17], which contains
improved versions of results in [16], some of which are similar or identical to
results presented here (cf. Section V-B).

2In Section IV-E, we will loosen this assumption and allow for factors con-
taining zeros.
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Fig. 1. Part of the factor graph illustrating the BP update rules (2) and (3).
The factor nodes I; J; J 2 F are drawn as rectangles, the variable nodes
i; j; j ; j 2 V as circles. Note that N n I = fJ; J g and I n i = fj; j ; j g.
Apart from the messages that have been drawn, each edge also carries a message
flowing in the opposite direction.

ensuring that . The class of probability mea-
sures described by (1) contains Markov random fields as well as
Bayesian networks. We will use upper case letters for indices of
factors ( ) and lower case letters for indices of
variables ( ).

The factor graph that corresponds to the probability distribu-
tion (1) is a bipartite graph with vertex set . In the factor
graph (see also Fig. 1), each variable node is connected
with all the factors that contain the variable, i.e., the
neighbors of are the factor nodes .
Similarly, each factor node is connected with all the
variable nodes that it contains and we will simply denote
the neighbors of by . For each variable
node , we define the set of its neighboring variable nodes
by , i.e., is the set of indices of those
variables that interact directly with .

B. (Loopy) Belief Propagation

(Loopy) Belief Propagation (BP) is an algorithm that cal-
culates approximations to the marginals and

of the probability measure (1). The calculation is
done by message-passing on the factor graph: each node passes
messages to its neighbors. One usually discriminates between
two types of messages: messages from factors to
variables and messages from variables to factors
(where ). Both messages are positive functions on

, or, equivalently, vectors in (with positive components).
The messages that are sent by a node depend on the incoming
messages; the new messages, designated by , are given in
terms of the incoming messages by the following BP update
rules3

(2)

(3)

Usually, one normalizes the messages in the -sense (i.e., such
that ). If all messages have converged to
some fixed point , one calculates the approximate marginals
or beliefs

3We abuse notation slightly by writing X n x instead of X n fxg for sets X .

where the ’s and ’s are normalization constants, chosen
such that the approximate marginals are normalized in -sense.
A fixed point always exists if all factors are strictly positive
[8]. However, the existence of a fixed point does not necessarily
imply convergence towards the fixed point, and fixed points may
be unstable [25].

Note that the beliefs are invariant under rescaling of the
messages

for positive constants , which shows that the precise way of
normalization in (2) and (3) is irrelevant. For numerical sta-
bility, however, some way of normalization (not necessarily in

-sense) is desired to ensure that the messages stay in some
compact domain.

In the following, we will formulate everything in terms of the
messages from factors to variables; the update equa-
tions are then obtained by substituting (2) in (3)

(4)

with such that . We consider here
BP with a parallel update scheme, which means that all message
updates (4) are done in parallel.

III. SPECIAL CASE: BINARY VARIABLES WITH

PAIRWISE INTERACTIONS

In this section, we investigate the simple special case of bi-
nary variables (i.e., for all ), and in addition we
assume that all potentials consist of at most two variables (“pair-
wise interactions”). Although this is a special case of the more
general theory to be presented later on, we start with this simple
case because it illustrates most of the underlying ideas without
getting involved with the additional technicalities of the general
case.

We will assume that all variables are -valued, i.e.,
for all . We take the factor index set as

with (the “local evidence”) and
(the “pair potentials”). The probability measure

(1) can then be written as

(5)

for some choice of the parameters (“couplings”) and
(“local fields”), with for and

for .
Note from (4) that the messages sent from single-variable fac-

tors to variables are constant. Thus, the question whether
messages converge can be decided by studying only the mes-
sages sent from pair potentials to variables. It turns out to be
advantageous to use the following “natural” parameterization of
the messages

(6)
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where is now interpreted as a message sent from
variable to variable (instead of a message sent from the factor

to variable ). Note that in the pairwise case, the product
over in (4) becomes trivial. Some additional elementary
algebraic manipulations show that the BP update (4) becomes
particularly simple in this parameterization and can be written
as

(7)

where are the variables that interact
with via a pair potential.

Defining the set of ordered pairs
, we see that the parallel BP update is a mapping

; (7) specifies the component in terms
of the components of . Our goal is now to derive sufficient
conditions under which the mapping is a contraction. For this
we need some elementary but powerful mathematical theorems.

A. Normed Spaces, Contractions, and Bounds

In this subsection we introduce some (standard) notation and
remind the reader of some elementary but important proper-
ties of vector norms, matrix norms, contractions, and the Mean
Value Theorem in arbitrary normed vector spaces, which are the
main mathematical ingredients for our basic tool, Lemma 2. The
reader familiar with these topics can skip this subsection and
proceed directly to Lemma 2 in Section III-B.

Let be a normed finite-dimensional real vector
space. Examples of norms that will be important later on are
the -norm on , defined by

and the -norm on , defined by

A norm on a vector space induces a metric on by the
definition . The resulting metric space is
complete.4

Let be a metric space. A mapping is
called a contraction with respect to if there exists
such that

for all (8)

In case is induced by a norm , we will call a contraction
with respect to a -contraction. If is complete, we
can apply the following theorem, due to Banach:

Theorem 1 (Contracting Mapping Principle): Let
be a contraction of a complete metric space . Then

has a unique fixed point and for any ,
the sequence obtained by iterating con-
verges to . The rate of convergence is at least linear, since

for all .
Proof: Can be found in many textbooks on analysis.

Note that linear convergence means that the error decreases
exponentially, indeed for some .

4Completeness is a topological property which we will not further discuss,
but we need this to apply Theorem 1.

Let ( be a normed space. The norm induces a matrix
norm (also called operator norm) on linear mappings

, defined as follows:

The -norm on induces the following matrix norm:

(9)

where with the th canonical basis vector.
The -norm on induces the following matrix norm:

(10)

In the following consequence of the well-known Mean Value
Theorem, the matrix norm of the derivative (“Jacobian”)
at of a differentiable mapping is used to
bound the distance of the -images of two vectors.

Lemma 1: Let be a normed space and
a differentiable mapping. Then, for

where we wrote for the segment
joining and .

Proof: See [20, Theorem 8.5.4].

B. The Basic Tool

Combining Theorem 1 and Lemma 1 immediately yields our
basic tool.

Lemma 2: Let be a normed space,
differentiable and suppose that

Then is a -contraction by Lemma 1. Hence, for any
, the sequence converges to a unique fixed

point with a convergence rate that is at least linear by
Theorem 1.

C. Sufficient Conditions for BP to Be a Contraction

We apply Lemma 2 to the case at hand: the parallel BP update
mapping , written out in components in (7).
Different choices of the vector norm on will yield different
sufficient conditions for whether iterating will converge to a
unique fixed point. We will study two examples: the norm
and the norm.

The derivative of is easily calculated from (7) and is given
by

(11)
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where5

(12)

(13)

Note that we have absorbed all -dependence in the factor
; the reason for this will become apparent later on.

The factor is nonnegative and independent of
and captures the structure of the graphical model. Note that

, implying that

(14)

everywhere on .
1) Example: The -Norm: The -norm on yields the

following condition.

Corollary 1: For binary variables with pairwise interactions:
if

(15)

BP is an -contraction and converges to a unique fixed point,
irrespective of the initial messages.

Proof: Using (10), (13), and (14)

and now simply apply Lemma 2.

2) Another Example: The -Norm: Using the -norm in-
stead, we find the following.

Corollary 2: For binary variables with pairwise interactions:
if

(16)

BP is an -contraction and converges to a unique fixed point,
irrespective of the initial messages.

Proof: Similar to the proof of Corollary 1, now using (9)
instead of (10):

It is easy to see that condition (16) is implied by (15), but not
conversely; thus, in this case the -norm yields a tighter bound
than the -norm.

5For a set X , we define the indicator function 1 of X by 1 (x) = 1 if
x 2 X and 1 (x) = 0 if x 62 X .

D. Beyond Norms: The Spectral Radius

Instead of pursuing a search for the optimal norm, we will
derive a criterion for convergence based on the spectral radius
of the matrix (13). The key idea is to look at several iterations
of BP at once. This will yield a significantly stronger condition
for convergence of BP to a unique fixed point.

For a square matrix , we denote by its spectrum, i.e.,
the set of eigenvalues of . By we denote its spectral ra-
dius, which is defined as , i.e., the largest
modulus of eigenvalues of .6

Lemma 3: Let be a mapping, a metric on
and suppose that is a -contraction for some . Then

has a unique fixed point and for any , the sequence
obtained by iterating converges to .

Proof: Take any . Consider the se-
quences obtained by iterating , starting, respectively, in

...

Each sequence converges to since is a -contraction with
fixed point . But then the sequence must
converge to .

Theorem 2: Let be differentiable and suppose
that , where has nonnegative entries and
is diagonal with bounded entries . If
then for any , the sequence obtained
by iterating converges to a fixed point , which does not
depend on .

Proof: For a matrix , we will denote by the matrix
with entries . For two matrices we will write

if for all entries . Note that if ,
then . Also note that . Finally, if

and , then and .
Using these observations and the chain rule, we have for any

and any

hence, .
By the Gel’fand spectral radius theorem

Choose such that . For some ,
. Hence, for all , .

Applying Lemma 2, we conclude that is an -contraction.
Now apply Lemma 3.

6One should not confuse the spectral radius �(A) with the spectral norm
kAk = �(A A) of A, the matrix norm induced by the ` -norm.
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Using (11), (12) and (13), this immediately yields the
following.

Corollary 3: For binary variables with pairwise interactions,
BP converges to a unique fixed point, irrespective of the initial
messages, if the spectral radius of the -matrix

is strictly smaller than .

The calculation of the spectral norm of the (sparse) matrix
can be done using standard numerical techniques in linear

algebra.
Any matrix norm of is actually an upper bound on the spec-

tral radius , since for any eigenvalue of with eigen-
vector we have ,
hence, . This implies that no norm in Lemma 2
will result in a sharper condition than Corollary 3, hence the
title of this section.

Further, for a given matrix and some , there exists a
vector norm such that the induced matrix norm of satis-
fies ; see [21] for a constructive proof.
Thus, for given one can approximate arbitrarily close
by induced matrix norms. This immediately gives a result on
the convergence rate of BP (in case ): for any ,
there exists a norm-induced metric such that the linear rate of
contraction of BP with respect to that metric is bounded from
above by .

One might think that there is a shorter proof of Corollary 3: it
seems quite plausible intuitively that in general, for a continu-
ously differentiable , iterating will converge
to a unique fixed point if . However,
this conjecture (which has been open for a long time) has been
shown to be true in two dimensions but false in higher dimen-
sions [22].

E. Improved Bound for Strong Local Evidence

Empirically, it is known that the presence of strong local fields
(i.e., single-variable factors which are far from uniform) often
improves the convergence of BP. However, our results so far are
completely independent of the parameters that measure
the strength of the local evidence. By proceeding more carefully
than we have done above, the results can easily be improved in
such a way that local evidence is taken into account.

Consider the quantity defined in (12). We have bounded
this quantity by noting that . Note that
for all BP updates (except for the first one), the argument
(the incoming messages) is in , which can be considerably
smaller than the complete vector space . Thus, after the first
BP update, we can use

where we used (7) and defined the cavity field

(17)

The function

is strictly decreasing for and symmetric around ,
thus, defining

(18)

we obtain

Now, from (7) we derive that

hence

where we defined

We conclude that is simply the distance between and the
interval , i.e.,

if

if
otherwise.

Thus, the element (for ) of the
matrix defined in Corollary 3 can be replaced by

which is generally smaller than and thus gives a
tighter bound.

This trick can be repeated arbitrarily often: assume that
BP updates have been done already, which means that it suf-

fices to take the supremum of over . De-
fine for all and all

(19)

(20)

and define the intervals

(21)

Specifically, for we have and ,
which means that

(22)

Using (7) and (17), we obtain the following recursive relations
for the intervals (where we use interval arithmetic defined in the
obvious way):

(23)
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Using this recursion relation, one can calculate and define
as the distance (in absolute value) of the interval to

if

if
otherwise.

(24)

Thus, by replacing the matrix in Corollary 3 by

(25)

we obtain stronger results that improve as increases.

Corollary 4: Let . For binary variables with pairwise
interactions, BP converges to a unique fixed point, irrespective
of the initial messages, if the spectral radius of the -ma-
trix defined in (25) (with defined in (21)–(24)) is strictly
smaller than .

IV. GENERAL CASE

In the general case, when the domains are arbitrarily large
(but finite), we do not know of a natural parameterization of the
messages that automatically takes care of the invariance of the
messages under scaling (like (6) does in the binary case).
Instead of handling the scale invariance by the parameterization
and using standard norms and metrics, it seems easier to take
a simple parameterization and to change the norms and metrics
in such a way that they are insensitive to the (irrelevant) extra
degrees of freedom arising from the scale invariance. This is
actually the key insight in extending the previous results beyond
the binary case: once one sees how to do this, the rest follows in
a (more or less) straightforward way.

Another important point is to reparameterize the messages:
a natural parameterization for our analysis is now in terms of
logarithms of messages . The BP update (4)
can be written in terms of the log-messages as

(26)

where we dropped the normalization and defined

(27)

Each log message is a vector in the vector space
; we will use Greek letters as indices for the

components, e.g., with . We will call
everything that concerns individual vector spaces local
and define the global vector space as the direct sum of the
local vector spaces

The parallel BP update is the mapping , written out
in components in (26) and (27).

Note that the invariance of the messages under scaling
amounts to invariance of the log messages under transla-
tion. More formally, defining linear subspaces

for all (28)

and their direct sum

the invariance amounts to the observation that

for all

Since and are equivalent for our purposes, we want our
measures of distance in to reflect this equivalence. Therefore,
we will “divide out” the equivalence relation and work in the
quotient space , which is the topic of the next subsection.

A. Quotient Spaces

Let be a finite-dimensional vector space. Let be a linear
subspace of . We can consider the quotient space

, where . Defining
addition and scalar multiplication on the quotient space in the
natural way, the quotient space is again a vector space.7 We will
denote its elements as . Note that the projection

is linear.
Let be any vector norm on . It induces a quotient norm

on , defined by

(29)

which is indeed a norm, as one easily checks. The quotient norm
in turn induces the quotient metric on

. The metric space is complete (since any finite-
dimensional normed vector space is complete).

Let be a (possibly nonlinear) mapping with the
following symmetry:

for all (30)

We can then unambiguously define the quotient mapping

which yields the following commutative diagram:

7Indeed, we have a null vector 0 +W , addition (v +W ) + (v +W ) :=
(v + v ) + W for v ; v 2 V , and scalar multiplication �(v + W ) :=
(�v) +W for � 2 ; v 2 V .
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For a linear mapping , condition (30) amounts to
, i.e., should leave invariant; we can then un-

ambiguously define the quotient mapping
.

If is differentiable and satisfies (30), the sym-
metry property (30) implies that , hence, we can
define . The operation of taking deriva-
tives is compatible with projecting onto the quotient space. In-
deed, by using the chain rule and the identity , one
finds that the derivative of the induced mapping

at equals the induced derivative of at

for all (31)

By Lemma 2, is a contraction with respect to the quotient
norm if

Using (29) and (31), this condition can be written more explic-
itly as

B. Constructing a Norm on

Whereas in the binary case, each message was param-
eterized by a single real number, the messages are now -di-
mensional vectors (with components indexed by

). In extending the -norm that proved to be useful in
the binary case to the more general case, we have the freedom
to choose the “local” part of the generalized -norm. Here we
show how to construct such a generalization of the -norm and
its properties; for a more detailed account of the construction,
see Appendix A.

The “global” vector space is the direct sum of the “local”
subspaces . Suppose that for each subspace , we have
a local norm . A natural generalization of the -norm
in the binary case is the following global norm on :

(32)

It is easy to check that this is indeed a norm on .
Each subspace has a one-dimensional subspace

defined in (28) and the local norm on induces a local quo-
tient norm on the quotient space . The global norm
(32) on induces a global quotient norm on , which is
simply the sum of the local quotient norms (cf. (A57))

(33)

Let . The derivative of at is a linear
mapping satisfying . It projects
down to a linear mapping . The matrix
norm of induced by the quotient norm (33) is given by (cf.
(A58)):

(34)

where the local quotient matrix norm of the “block”
is given by (cf. (A59))

(35)

The derivative of the (unnormalized) parallel BP update (26)
is easily calculated

(36)

To lighten the notation, we will use Greek subscripts instead of
arguments: let correspond to , to , to , and to

; for example, we write as . Taking the
global quotient norm (34) of (36) yields

(37)
where

(38)

Note that depends on via the dependence of
on (cf. (27)). We will for the moment simplify matters by
assuming that can be any vector in , and later discuss the
more careful estimate (where )

(39)

Defining the matrix by the expression on the right-hand side
(RHS) and using (35) and (29), we obtain

(40)

for and such that and .
Surprisingly, it turns out that we can calculate (40) analytically
if we take all local norms to be norms. We have also tried
the norm and the norm as local norms, but were unable
to calculate expression (40) analytically in these cases. Numer-
ical calculations turned out to be difficult because of the nested
suprema.
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C. Local Norms

Take for each local norm the norm on
. The local subspace is spanned by the vector

. The local quotient norm of a vector
is thus given by

(41)

For a linear mapping that satisfies
, the induced quotient matrix norm (35) is

given by

(42)

Fixing for the moment and (such that
and ) and dropping the superscripts from the notation,
using (42), we can write (40) as

Interchanging the two suprema, fixing (for the moment) and
, defining , and ,

noting that we can assume (without loss of generality) that
is normalized in sense, the previous expression (apart from
the ) simplifies to

(43)

In Appendix B we show that this equals

(44)

We conclude that if we take all local norms to be the norms,
then equals

(45)

which is defined for with and where is
shorthand for ; see Fig. 2 for
an illustration.

Now combining (37), (39), and (45), we finally obtain

Fig. 2. Part of the factor graph relevant in expressions (45), (46), and (47). Here
i; j 2 I with i 6= j , and J 2 N n I .

Applying Lemma 2 now yields that is a contraction with re-
spect to the quotient norm on if the RHS is strictly smaller
than .

Consider the mapping that maps to the nor-
malized , i.e., such that for all compo-
nents . If we take for the -normalized BP update (in
the log-domain), the following diagram commutes:

Since both and are continuous, we can translate convergence
results for back to similar results for . Thus, we have proved
the following theorem.

Theorem 3: If

(46)

BP converges to a unique fixed point irrespective of the initial
messages.

Now we can also generalize Corollary 3.

Theorem 4: If the spectral radius of the matrix

(47)

is strictly smaller than , BP converges to a unique fixed point
irrespective of the initial messages.

Proof: Similar to the binary pairwise case; see Theorem 10
in Appendix A for details.

Note that Theorem 3 is a trivial consequence of Theorem 4,
since the -norm is an upper bound on the spectral radius. How-
ever, to prove the latter, it seems that we have to go through all
the work (and some more) needed to prove the former.

D. Special Cases

In this subsection, we study the implications for two special
cases, namely, factor graphs that contain no cycles and the case
of pairwise interactions.

1) Trees: Theorem 4 gives us a proof of the well-known fact
that BP converges on trees (whereas Theorem 3 is not strong
enough to prove that result).

Corollary 5: If the factor graph is a tree, BP converges to a
unique fixed point irrespective of the initial messages.
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Fig. 3. Part of the factor graph in the pairwise case relevant in (48) and (49).
Here k 2 @i and j 2 @i n k.

Proof: The spectral radius of (47) is easily shown to be
zero in this special case, for any choice of the potentials.

2) Pairwise Interactions: We formulate Theorems 3 and 4
for the special case of pairwise interactions (which corresponds
to taking on only one value), i.e., all factors consists of either
one or two variables. For a pair potential , expression
(45) simplifies to (see also Fig. 3)

(48)

Note that this quantity is invariant to “reallocation” of
single-variable factors or to the pairwise factor
(i.e., ). can be regarded as a
measure of the strength of the potential .

The -norm based condition (46) can be written in the pair-
wise case as

(49)

The matrix defined in (47), relevant for the spectral radius con-
dition, can be replaced by the following -matrix in the
pairwise case:

(50)

For the binary case, we again obtain our earlier results, since
.

E. Factors Containing Zeros

Until now, we have assumed that all factors are strictly posi-
tive. In many interesting applications of BP, this assumption is
violated: the factors may contain zeros. It is thus interesting to
see if and how our results can be extended towards this more
general case.

The easiest way to extend the results is by assuming that—al-
though the factors may contain zeros—the messages are guar-
anteed to remain strictly positive (i.e., the log messages remain
finite) after each update.8 Even more general extensions with
milder conditions may exist, but we believe that considerably
more work would be required to overcome the technical prob-
lems that arise due to messages containing zeros.

Assume that each factor is a nonnegative function

In addition, assume that all factors involving only a single vari-
able are strictly positive. This can be assumed without loss of

8Additionally, the initial messages are required to be strictly positive, but this
requirement is easily met and is necessary for obtaining good BP results.

generality, since the single-variable factors that contain one or
more zeros can simply be absorbed into multivariable factors
involving the same variable. Additionally, for each con-
sisting of more than one variable, assume that

(51)

These conditions guarantee that strictly positive messages re-
main strictly positive under the update (4), as one easily checks,
implying that we can still use the logarithmic parameterization
of the messages and that the derivative (36) is still well defined.

The expression for the potential strength (45) can be written
in a way that is also well defined if the potential contains
zeros

(52)

which is defined for with and where is
shorthand for .

The immediate generalization of Corollary 4 is then as
follows.

Theorem 5: Under the assumptions on the potentials de-
scribed above (strict positivity of single-variable factors and
(51) for the other factors): if the spectral radius of the matrix

(53)

(with defined in (52)) is strictly smaller than ,
BP converges to a unique fixed point irrespective of the initial
messages.

Proof: Similar to the strictly positive case. The only slight
subtlety occurs in Appendix B where one has to take a limit of
strictly positive factors converging to the desired nonnegative
factor and use the continuity of the relevant expressions with
respect to the factor entries to prove that the bound also holds in
this limit.

1) Example: Define, for , the (“ferromagnetic”) pair-
wise factor by the following matrix:

Now consider a binary pairwise factor graph, consisting of a
single loop of binary variables, i.e., the network topology is
that of a circle. Take for the pair interactions (for

) the identity matrices (i.e., the above pair
factors for ) and take for the remaining one
for some . Note that the potential strength
converges to as . The spectral radius of the corresponding
matrix can be shown to be equal to

which is strictly smaller than if and only if . Hence,
BP converges to a unique fixed point if . This result is
sharp, since for , BP simply “rotates” the messages around
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without changing them and hence no convergence occurs (ex-
cept, obviously, if the initial messages already correspond to the
fixed point of uniform messages).

V. COMPARISON WITH OTHER WORK

In this section, we explore the relations of our results with
previously existing work.

A. Comparison With Work of Tatikonda and Jordan

In [14], [15], a connection is made between two seemingly
different topics, namely, the Sum-Product Algorithm on the one
hand and the theory of Gibbs measures [23] on the other hand.
The main result of [14] states that BP converges uniformly (to a
unique fixed point) if the Gibbs measure on the corresponding
computation tree9 is unique.

This is a remarkable and beautiful result; however, the ques-
tion of convergence of BP is replaced by the question of unique-
ness of the Gibbs measure, which is not trivial. Fortunately, suf-
ficient conditions for the uniqueness of the Gibbs measure exist;
the most well known are Dobrushin’s condition and a weaker
(but more easily verifiable) condition known as Simon’s con-
dition. In combination with the main result of [14], they yield
directly testable sufficient conditions for convergence of BP to
a unique fixed point. For reference, we will state both results in
our notation below. For details, see [14], [15], and [23]. Note
that the results are valid for the case of positive factors con-
sisting of at most two variables.

1) BP Convergence Via Dobrushin’s Condition: Define Do-
brushin’s interdependence matrix as the matrix with
entries

(54)
for and otherwise.

Theorem 6: For pairwise (positive) factors, BP converges to
a unique fixed point if

Proof: For a proof sketch, see [15]. For the proof of
Dobrushin’s condition see [23, Ch. 8].

We can rewrite the conditional probabilities in terms of
factors

Note that the complexity of the calculation of this quantity is
generally exponential in the size of the neighborhood , which
may prohibit practical application of Dobrushin’s condition.

For the case of binary -valued variables, some elementary
algebraic manipulations yield

9The computation tree is an “unwrapping” of the factor graph with respect to
BP; specifically, the computation tree starting at variable i 2 V consists of all
paths starting at i that never backtrack.

with

2) BP Convergence Via Simon’s Condition: Simon’s condi-
tion is a sufficient condition for Dobrushin’s condition (see [23,
Proposition 8.8]). This leads to a looser, but more easily verifi-
able, bound:

Theorem 7: For pairwise (positive) factors, BP converges to
a unique fixed point if

It is not difficult to show that this bound is weaker than (49).
Furthermore, unlike Dobrushin’s condition and Corollary 4, it
does not take into account single-variable factors.

B. Comparison With Work of Ihler et al.

In the recent and independent work [16] of Ihler et al., a
methodology was used which is very similar to the one used
in this work. In particular, the same local quotient metric is
used to derive sufficient conditions for BP to be a contraction.
In the work presented here, the Mean Value Theorem (in the
form of Lemma 1) is used in combination with a bound on the
derivative in order to obtain a bound on the convergence rate
in (8). In contrast, in [16], a direct bound on the distance of two
outgoing messages is derived in terms of the distance of two dif-
ferent products of incoming messages [16, eq. (13)]. This bound
becomes relatively stronger as the distance of the products of in-
coming messages increases. This has the advantage that it can
lead to stronger conclusions about the effect of finite message
perturbations than would be possible with our bound, based on
the Mean Value Theorem. However, for the question of con-
vergence, the relevant limit turns out to be that of infinitesimal
message perturbations, i.e., it suffices to study the derivative of
the BP updates as we have done here.

In the limit of infinitesimal message perturbations, the funda-
mental bound [16, eq. (13)] leads to the following measure of
potential strength:

Using this measure, Ihler et al. derive two different conditions
for convergence of BP. The first one is similar to our (49) and
the second condition is equivalent to our spectral radius result
(50), except that in both conditions, is used instead of

. The latter condition is formulated in [16] in terms of the
convergence properties of an iterative BP-like algorithm. The
equivalence of this formulation with a formulation in terms of
the spectral radius of a matrix can be seen from the fact that for
any square matrix , if and only if
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. However, our result also gives a contraction rate, unlike the
iterative formulation in [16].

Thus, the results in [16] are similar to ours in the pairwise
case, except for the occurrence of instead of . It
is not difficult to see that for any pair factor

; indeed, for any choice of

Thus, the convergence results in [16] are similar to, but weaker
than the results derived in the present work.

After initial submission of this work, [17] was published,
which improves upon [16] by exploiting the freedom of choice
of the single-variable factors (which can be “absorbed” to an
arbitrary amount by corresponding pair factors). This leads to
an improved measure of potential strength, which turns out to
be identical to our measure . Thus, for pairwise, strictly
positive potentials, the results in [17] are equivalent to the results
(49) and (50) presented here. Our most general results, Theo-
rems 3–5 and Corollary 4, are not present in [17].

C. Comparison With Work of Heskes

A completely different methodology to obtain sufficient con-
ditions for the uniqueness of the BP fixed point is used in [18].
By studying the Bethe free energy and exploiting the relation-
ship between properties of the Bethe free energy and the BP
algorithm, conclusions are drawn about the uniqueness of the
BP fixed point; however, whether uniqueness of the fixed point
also implies convergence of BP seems to be an open question.
We state the main result of [18] in our notation below.

The following measure of potential strength is used in [18].
For , let

The potential strength is then defined as .

Theorem 8: BP has a unique fixed point if there exists an
“allocation matrix” between factors and variables

such that
1) , for all ;
2) , for all ;
3) , for all .

Proof: See [18, Theorem 8.1].

The (non)existence of such a matrix can be determined using
standard linear programming techniques.

VI. NUMERICAL COMPARISON OF VARIOUS BOUNDS

In this section, we compare various bounds on binary pair-
wise graphical models, defined in (5), for various choices of
the parameters. First we study the case of a completely uniform
model (i.e., full connectivity, uniform couplings, and uniform

local fields). Then we study nonuniform couplings , in the
absence of local fields. Finally, we take fully random models
in various parameter regimes (weak/strong local fields, strong/
weak ferromagnetic/spin-glass/antiferromagnetic couplings).

A. Uniform Couplings, Uniform Local Field

The fully connected Ising model consisting of binary
-valued variables with uniform couplings and uniform

local field is special in the sense that an exact description
of the parameter region for which the Gibbs measure on the
computation tree is unique, is available. Using the results of
Tatikonda and Jordan, this yields a strong bound on the pa-
rameter region for which BP converges to a unique fixed point.
Indeed, the corresponding computation tree is a uniform Ising
model on a Cayley tree of degree , for which (semi-)
analytical expressions for the paramagnetic–ferromagnetic and
paramagnetic–antiferromagnetic phase transition boundaries
are known (see [23, Sec. 12.2]). Since the Gibbs measure
is known to be unique in the paramagnetic phase, this gives
an exact description of the region for which the Gibbs
measure on the computation tree is unique, and hence a bound
on BP convergence on the original model.

In Fig. 4, we have plotted various bounds on BP convergence
in the plane for (other values of yield quali-
tatively similar results). The gray area (g) marks regions where
the Gibbs measure on the computation tree is not unique; in the
white area, the Gibbs measure is unique and hence BP is guar-
anteed to converge. Note that this bound is only available due
to the high symmetry of the model. In [24], it is shown that par-
allel BP does not converge in the lower (antiferromagnetic) gray
region. In the upper (ferromagnetic) region, on the other hand,
parallel BP does converge, but it may be that the fixed point is
no longer unique.

The various lines correspond to different sufficient condi-
tions for BP convergence; the regions enclosed by two lines
of the same type (i.e., the inner regions for which is small)
mark the regions of guaranteed convergence. The lightly dotted
lines (a) correspond to Heskes’ condition, Theorem 8. The dash-
dotted lines (b) correspond to Simon’s condition, Theorem 7.
The dashed lines (d) correspond to Dobrushin’s condition (The-
orem 6), which is seen to improve upon Simon’s condition for

, but is nowhere sharp. The solid lines (c) correspond to
the spectral radius condition Corollary 3 (which coincides with
the -norm based condition Corollary 2 in this case and is also
equivalent to the result of [16]), which is independent of but
is actually sharp for . The heavily dotted lines (e) corre-
spond to Corollary 4 with , the -shaped lines (f) to the
same corollary with . Both e and f are seen to coincide
with c for small , but improve for large .

We conclude that the presence of local fields makes it more
difficult to obtain sharp bounds on BP convergence; only Do-
brushin’s condition (Theorem 6) and Corollary 4 take into ac-
count local fields. Furthermore, in this case, our result (Corol-
lary 4) is stronger than the other bounds. Note that the calcula-
tion of Dobrushin’s condition is exponential in the number of
variables , whereas the time complexity of our bound is poly-
nomial in . Similar results are obtained for higher values of .
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Fig. 4. Comparison of various BP convergence bounds for the fully connected N = 4 binary Ising model with uniform coupling J and uniform local field �.
a: Heskes’ condition, b: Simon’s condition, c: spectral radius condition, d: Dobrushin’s condition, e: improved spectral radius condition for m = 1, f: improved
spectral radius condition for m = 5, g: uniqueness of Gibbs’ measure condition. See the main text (Section VI-A) for more explanation.

B. Nonuniform Couplings, Zero Local Fields

We have investigated in more detail the influence of the dis-
tribution of the couplings , in the absence of local fields, and
have also compared with the empirical convergence behavior
of BP. We have taken a binary Ising model on a rectangular
toroidal grid (i.e., with periodic boundary conditions) of size

. The couplings were random independent normally
distributed nearest neighbor couplings , the
local fields were . Let be the polar coordinates
corresponding to the Cartesian coordinates . For various
angles , we have determined the critical radius for
each bound. The results have been averaged over 40 instances
of the model and can be found in Fig. 5. The lines correspond to
the mean bounds, the gray areas are “error bars” of one standard
deviation. The inner area (for which the couplings are small)
bounded by each line means “convergence”, either guaranteed
or empirical (thus the larger the enclosed area, the tighter the
bound). From bottom to top: the thin solid line (a) corresponds
to Heskes’ result (Theorem 8 ), the dash-dotted line (b) to Do-
brushin’s condition (Theorem 6 ), the dotted line (c) corresponds
toh the -norm based condition Corollary 2, the dashed line (d)
to the spectral radius condition Corollary 3, and the thick solid
line (e) to the empirical convergence behavior of BP.

We conclude from Fig. 5 that the spectral radius condition im-
proves upon the -norm based condition for nonuniform cou-
plings and that the improvement can be quite substantial. For
uniform couplings (and zero local fields), both conditions coin-
cide and it can be proved that they are sharp [25].

C. Fully Random Models

Finally, we have considered fully connected binary pairwise
graphical models with completely random couplings and local
fields (in various parameter regimes). We drew random cou-
plings and local fields as follows: first, we drew independent and
identically distributed (i.i.d.) random parameters
from a normal distribution with mean and variance . Then,
for each variable , we independently drew a local field param-
eter , and for each pair we independently
drew a coupling parameter .

For the resulting graphical model, we have verified whether
various sufficient conditions for BP convergence hold. If con-
dition holds whereas condition does not hold, we say that

wins from . We have counted for each ordered pair
of conditions how often wins from . The results (for 50 000
random models consisting of variables) can be found
in Table I: the number at row , column is the number of
trials for which bound wins from bound . On the diagonal
( ) is the total number of trials for which bound pre-
dicts convergence. Theorem 6 is due to [15], Corollary 3 was
first published (for the binary case) in [16] and Theorem 8 is
due to [18].

Our result Corollary 4 (for ) outperforms the other
bounds in each trial. For other values of , we obtain similar
results.

VII. DISCUSSION

In this paper, we have derived sufficient conditions for conver-
gence of BP to a unique fixed point. Our conditions are directly
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Fig. 5. Comparison of various bounds for BP convergence for toroidal Ising model of size 10 � 10 with normally distributed couplings J � N (J ; � ) and
zero local fields. a: Heskes’ condition, b: Dobrushin’s condition, c: ` -norm condition, d: spectral radius condition, e: empirical convergence boundary. See the
main text (Section VI-B) for more explanation.

TABLE I
COMPARISON OF BOUNDS (50 000 TRIALS, FOR N = 4 AND N = 8)

applicable to arbitrary graphical models with discrete variables
and nonnegative factors. This is in contrast with the sufficient
conditions of Tatikonda and Jordan and with the results of Ihler,
Fisher, and Willsky, which were only formulated for pairwise,
positive factors. We have shown cases where our results are
stronger than previously known sufficient conditions.

Our numerical experiments lead us to conjecture that Corol-
lary 4 is stronger than the other bounds. We have no proof for
this conjecture at the moment, apart from the obvious fact that
Corollary 3 is weaker than Corollary 4. To prove that Corollary 4
is stronger than Theorem 6 seems subtle, since it is generally not
the case that , although it seems that the weaker
relation does hold in general. The
relation with the condition in Theorem 8 is not evident as well.

In the binary pairwise case, it turned out to be possible to de-
rive sufficient conditions that take into account local evidence

(Corollary 4). In the general case, such an improvement is pos-
sible in principle but seems to be more involved. The resulting
optimization problem (essentially (43) with additional assump-
tions on ) looks difficult in general. If the variables’ cardi-
nalities and connectivities are small, the resulting optimization
problem can be solved, but writing down a general solution does
not appear to be trivial. The question of finding an efficient so-
lution in the general case is left for future investigation.

The work reported here raises new questions, some of which
have been (partially) answered elsewhere after the initial sub-
mission of this paper. The influence of damping the BP update
equations has been considered for the binary pairwise case in
[25], where it was shown that damping has the most effect for
antiferromagnetic interactions. Furthermore, it has been proved
in [25] that the bounds for BP convergence derived in the present
work are sharp in the case of binary variables with (anti-) fer-
romagnetic pairwise interactions and zero local fields, as sug-
gested by Fig. 5. An extension of the results towards sequential
update schemes has been given in [26]. Likewise, in [24] it is
shown that Dobrushin’s condition is also valid for sequential
BP.

APPENDIX A
GENERALIZING THE -NORM

Let be a finite collection of normed vector spaces
and let be the direct sum of the ’s. The function

defined by

(A55)
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is a norm on , as one easily checks. Let be a linear
mapping with “blocks” defined by

for all .

Theorem 9: The matrix norm of induced by the vector
norm is given by

(A56)

where

Proof: Let such that . Then

Now let such that . Then can be written as the
convex combination , where

if
if .

Hence

It is evident that this value is also achieved for some with
.

An illustrative example is obtained by considering
to be the direct sum of copies of with the absolute value
as norm; then the norm (A55) on is simply the -norm and
the induced matrix norm (A56) reduces to (9).

Suppose that each has a linear subspace . We can con-
sider the quotient spaces with quotient norms . The
direct sum is itself a subspace of , yielding a
quotient space . For we have and hence

. The quotient norm on is simply the
sum of the quotient norms on the

(A57)

Let be a linear mapping such that .
Then induces a linear ; since

, each block induces a linear
, and can be regarded as consisting of the blocks .

Corollary 6: The matrix norm of
induced by the quotient norm on is

(A58)

where

(A59)

Proof: We can directly apply the previous theorem to the
quotient spaces to obtain (A58); because

we have:

For a linear such that , we define the
matrix with entries . Let be two such
linear mappings; then

hence, . Note that . We can
generalize Theorem 2 as follows.

Theorem 10: Let be differentiable and suppose
that it satisfies (30). Suppose further that for some
matrix (which does not depend on ) with . Then
for any , the sequence obtained by
iterating converges to a unique fixed point .

Proof: Using the chain rule, we have for any
and any

By the Gel’fand Spectral Radius Theorem,
for . Choose such that . For some

, . Hence, for

all . By Lemma 2, is a contraction with respect to
the quotient norm on . Now apply Lemma 3.



4436 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 12, DECEMBER 2007

APPENDIX B
PROOF THAT (43) EQUALS (44)

Let be a matrix of positive numbers. Let

Define the function by

Theorem 11:

Proof: First note that we can assume without loss of gen-
erality that all are different, because of continuity. Define

For , define

which is evidently a closed convex set. The function

obtained by restricting to is convex. Hence, it achieves its
maximum on an extremal point of its domain.

Define

as those with exactly two nonzero components. For
, define and

. Because of continuity, we can restrict
ourselves to the , in which case the extremal points of

are precisely (i.e., the extremal points have
exactly two nonzero components).

Now

For those with components with different , we can
use the lemma below. The with components with equal

are suboptimal, since the two contributions in the sum over
in have opposite sign. Hence

Lemma 4: Let . Then

Proof: Elementary. The easiest way to see this is to repa-
rameterize with .
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