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Sufficient Conditions for Convergence of the
Sum-Product Algorithm

Joris M. Mooij and Hilbert J. Kappen

Abstract— Novel conditions are derived that guarantee con-
vergence of the Sum-Product algorithm (also known as Loopy
Belief Propagation or simply Belief Propagation) to a unique
fixed point, irrespective of the initial messages, for parallel
(synchronous) updates. The computational complexity of the
conditions is polynomial in the number of variables. In contrast
with previously existing conditions, our results are directly
applicable to arbitrary factor graphs (with discrete variables) and
are shown to be valid also in the case of factors containing zeros,
under some additional conditions. The conditions are compared
with existing ones, numerically and, if possible, analytically. For
binary variables with pairwise interactions, sufficient conditions
are derived that take into account local evidence (i.e., single-
variable factors) and the type of pair interactions (attractive or
repulsive). It is shown empirically that this bound outperforms
existing bounds.

Index Terms— Contraction, convergence, factor graphs, graph-
ical models, marginalization, message passing, Loopy Belief
Propagation, Sum-Product Algorithm

I. I NTRODUCTION

T HE Sum-Product Algorithm [2], also known as Loopy
Belief Propagation, which we will henceforth abbreviate

as BP, is a popular algorithm for approximate inference on
graphical models. Applications can be found in diverse areas
such as error correcting codes (iterative channel decoding
algorithms for Turbo Codes and Low Density Parity Check
Codes [3]), combinatorial optimization (satisfiability problems
such as 3-SAT and graph coloring [4]) and computer vision
(stereo matching [5] and image restoration [6]). BP can be
regarded as the most elementary one in a family of related
algorithms, consisting of double-loop algorithms [7], GBP
[8], EP [9], EC [10], the Max-Product Algorithm [11], the
Survey Propagation Algorithm [4], [12] and Fractional BP
[13]. A good understanding of BP may therefore be beneficial
to understanding these other algorithms as well.

In practice, there are two major obstacles in the application
of BP to concrete problems: (i) if BP converges, it is not
clear whether the results are a good approximation of the
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exact marginals; (ii) BP does not always converge, and in
these cases gives no approximations at all. These two issues
might actually be interrelated: the “folklore” is that failure
of BP to converge often indicates low quality of the Bethe
approximation on which it is based. This would mean that if
one has to “force” BP to converge (e.g., by using damping or
double-loop approaches), one may expect the results to be of
low quality.

Although BP is an old algorithm that has been reinvented
in many fields, a thorough theoretical understanding of the
two aforementioned issues and their relation is still lacking.
Significant progress has been made in recent years regarding
the question under what conditions BP converges [14]–[16]1,
on the uniqueness of fixed points [18], and on the accuracy
of the marginals [15], but the theoretical understanding is
still incomplete. For the special case of a graphical model
consisting of a single loop, it has been shown that convergence
rate and accuracy are indeed related [19].

In this work, we study the question of convergence of BP
and derive new sufficient conditions for BP to converge to a
unique fixed point. Our results are more general and in some
cases stronger than previously known sufficient conditions.

II. BACKGROUND

To introduce our notation, we give a short treatment of
factorizing probability distributions, the corresponding visu-
alizations called factor graphs, and the BP algorithm on factor
graphs. For an excellent, extensive treatment of these topics
we refer the reader to [2].

A. Graphical Models

ConsiderN discrete random variablesxi for i ∈ V :=
{1, 2, . . . , N}, with xi taking values inXi for xi. We write
x = (x1, . . . , xN ) ∈ X :=

∏

i∈V Xi. We are interested in the
class of probability measures onX that can be written as a
product offactors (also calledpotentials):

P (x1, . . . , xN ) :=
1

Z

∏

I∈F

ψI(xI). (1)

The factorsψI are indexed by subsets ofV, i.e.,F ⊆ P(V).
If I ∈ F is the subsetI = {i1, . . . , im} ⊆ V, we write
xI := (xi1 , . . . , xim

) ∈ ∏

i∈I Xi. Each factorψI is a positive

1After submission of this work, we came to the attention of [17],which
contains improved versions of results in [16], some of which are similar or
identical to results presented here (c.f. Section V-B).
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function2 ψI :
∏

i∈I Xi → (0,∞). Z is a normalizing constant
ensuring that

∑

x∈X P (x) = 1. The class of probability
measures described by (1) contains Markov Random Fields
as well as Bayesian Networks. We will use uppercase letters
for indices of factors (I, J,K, . . . ∈ F) and lowercase letters
for indices of variables (i, j, k, . . . ∈ V).

The factor graphthat corresponds to the probability distri-
bution (1) is a bipartite graph with vertex setV ∪ F . In the
factor graph (see also Fig. 1), eachvariable nodei ∈ V is
connected with all the factorsI ∈ F that contain the variable,
i.e., the neighbors ofi are the factor nodesNi := {I ∈ F : i ∈
I}. Similarly, eachfactor nodeI ∈ F is connected with all
the variable nodesi ∈ V that it contains and we will simply
denote the neighbors ofI by I = {i ∈ V : i ∈ I}. For
each variable nodei ∈ V, we define the set of its neighboring
variable nodes by∂i :=

(
⋃

Ni

)

\ {i}, i.e., ∂i is the set of
indices of those variables that interact directly withxi.

B. Loopy Belief Propagation

Loopy Belief Propagation is an algorithm that calculates
approximations to the marginals{P (xI)}I∈F and{P (xi)}i∈V

of the probability measure (1). The calculation is done by
message-passing on the factor graph: each node passes mes-
sages to its neighbors. One usually discriminates between two
types of messages: messagesµI→i(xi) from factors to vari-
ables and messagesµi→I(xi) from variables to factors (where
i ∈ I ∈ F). Both messages are positive functions onXi, or,
equivalently, vectors inRXi (with positive components). The
messages that are sent by a node depend on the incoming
messages; the new messages, designated byµ̃, are given in
terms of the incoming messages by the followingBP update
rules3

µ̃j→I(xj) ∝
∏

J∈Nj\I

µJ→j(xj) (2)

µ̃I→i(xi) ∝
∑

xI\i

ψI(xI)
∏

j∈I\i

µj→I(xj). (3)

Usually, one normalizes the messages in theℓ1-sense (i.e.,
such that

∑

xi∈Xi
µ(xi) = 1). If all messages have converged

to some fixed pointµ∞, one calculates the approximate
marginals orbeliefs

bi(xi) = Ci
∏

I∈Ni

µI→i
∞ (xi) ≈ P (xi)

bI(xI) = CIψI(xI)
∏

i∈I

µi→I
∞ (xi) ≈ P (xI),

where theCi’s andCI ’s are normalization constants, chosen
such that the approximate marginals are normalized inℓ1-
sense. A fixed point always exists if all factors are strictly
positive [8]. However, the existence of a fixed point does not
necessarily imply convergence towards the fixed point, and
fixed points may be unstable.

2In subsection IV-E we will loosen this assumption and allow for factors
containing zeros.

3We abuse notation slightly by writingX \ x instead ofX \ {x} for sets
X.

J

J ′

µJ→j

µJ ′→j

j
µj→I

I
µI→i

i

j′

µj′→I

j′′

µj′′→I

Fig. 1. Part of the factor graph illustrating the BP update rules (2) and (3).
The factor nodesI, J, J ′ ∈ F are drawn as rectangles, the variable nodes
i, j, j′, j′′ ∈ V as circles. Note thatNj \I = {J, J ′} andI \i = {j, j′, j′′}.
Apart from the messages that have been drawn, each edge also carries a
message flowing in the opposite direction.

Note that the beliefs are invariant under rescaling of the
messages

µI→i
∞ (xi) 7→ αI→iµI→i

∞ (xi), µi→I
∞ (xi) 7→ αi→Iµi→I

∞ (xi)

for positive constantsα, which shows that the precise way
of normalization in (2) and (3) is irrelevant. For numerical
stability however, some way of normalization (not necessarily
in ℓ1-sense) is desired to ensure that the messages stay in some
compact domain.

In the following, we will formulate everything in terms of
the messagesµI→i(xi) from factors to variables; the update
equations are then obtained by substituting (2) in (3):

µ̃I→i(xi) = CI→i
∑

xI\i

ψI(xI)
∏

j∈I\i

∏

J∈Nj\I

µJ→j(xj). (4)

with CI→i such that
∑

xi∈Xi
µ̃I→i(xi) = 1. We consider

here BP with aparallel update scheme, which means that all
message updates (4) are done in parallel.

III. SPECIAL CASE: BINARY VARIABLES WITH PAIRWISE

INTERACTIONS

In this section we investigate the simple special case of
binary variables (i.e.,|Xi| = 2 for all i ∈ V), and in addition
we assume that all potentials consist of at most two variables
(“pairwise interactions”). Although this is a special caseof the
more general theory to be presented later on, we start with this
simple case because it illustrates most of the underlying ideas
without getting involved with the additional technicalities of
the general case.

We will assume that all variables are±1-valued, i.e.,Xi =
{−1,+1} for all i ∈ V. We take the factor index set as
F = F1 ∪ F2 with F1 = V (the “local evidence”) and
F2 ⊆ {{i, j} : i, j ∈ V, i 6= j} (the “pair-potentials”). The
probability measure (1) can then be written as

P (x) =
1

Z
exp





∑

{i,j}∈F2

Jijxixj +
∑

i∈F1

θixi



 (5)

for some choice of the parametersJij (“couplings”) andθi

(“local fields”), with ψi(xi) = exp(θixi) for i ∈ F1 and
ψ{i,j}(xi, xj) = exp(Jijxixj) for {i, j} ∈ F2.
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Note from (4) that the messages sent from single-variable
factorsF1 to variables are constant. Thus the question whether
messages converge can be decided by studying only the
messages sent from pair-potentialsF2 to variables. It turns
out to be advantageous to use the following “natural” param-
eterization of the messages

tanh νi→j := µ{i,j}→j(xj = 1) − µ{i,j}→j(xj = −1), (6)

whereνi→j ∈ R is now interpreted as a message sent from
variable i to variablej (instead of a message sent from the
factor {i, j} to variable j). Note that in the pairwise case,
the product overj ∈ I \ i in (4) becomes trivial. Some
additional elementary algebraic manipulations show that the
BP update equations (4) become particularly simple in this
parameterization and can be written as:

tanh ν̃i→j = tanh(Jij) tanh



θi +
∑

t∈∂i\j

νt→i



 (7)

where ∂i = {t ∈ V : {i, t} ∈ F2} are the variables that
interact withi via a pair-potential.

Defining the set of ordered pairsD := {i → j : {i, j} ∈
F2}, we see that the parallel BP update is a mappingf :

R
D → R

D; (7) specifies the component
(

f(ν)
)i→j

:=
ν̃i→j in terms of the components ofν. Our goal is now to
derive sufficient conditions under which the mappingf is a
contraction. For this we need some elementary but powerful
mathematical theorems.

A. Normed Spaces, Contractions And Bounds

In this subsection we introduce some (standard) notation
and remind the reader of some elementary but important
properties of vector norms, matrix norms, contractions and
the Mean Value Theorem in arbitrary normed vector spaces,
which are the main mathematical ingredients for our basic tool,
Lemma 2. The reader familiar with these topics can skip this
subsection and proceed directly to Lemma 2 in section III-B.

Let (V, ‖·‖ ) be a normed finite-dimensional real vector
space. Examples of norms that will be important later on are
the ℓ1-norm onR

N , defined by

‖x‖1 :=

N
∑

i=1

|xi|

and theℓ∞-norm onR
N , defined by

‖x‖∞ := max
i∈{1,...,N}

|xi| .

A norm on a vector spaceV induces a metric onV by the
definition d(v, w) := ‖v − w‖ . The resulting metric space is
complete.4

Let (X, d) be a metric space. A mappingf : X → X is
called acontraction with respect tod if there exists0 ≤ K < 1
such that

d(f(x), f(y)) ≤ Kd(x, y) for all x, y ∈ X. (8)

4Completeness is a topological property which we will not further discuss,
but we need this to apply Theorem 1.

In cased is induced by a norm‖·‖ , we will call a contraction
with respect tod a ‖·‖ -contraction. If(X, d) is complete, we
can apply the following theorem, due to Banach:

Theorem 1 (Contracting Mapping Principle):Let
f : X → X be a contraction of a complete metric
space(X, d). Thenf has a unique fixed pointx∞ ∈ X and
for any x ∈ X, the sequencex, f(x), f2(x), . . . obtained by
iterating f converges tox∞. The rate of convergence is at
least linear, sinced(f(x), x∞) ≤ Kd(x, x∞) for all x ∈ X.

Proof: Can be found in many textbooks on analysis.
Note that linear convergence means that the error decreases
exponentially, indeedd(xn, x∞) ≤ CKn for someC.

Let (V, ‖·‖ ) be a normed space. The norm induces amatrix
norm(also calledoperator norm) on linear mappingsA : V →
V , defined as follows:

‖A‖ := sup
v∈V,
‖v‖≤1

‖Av‖ .

The ℓ1-norm onR
N induces the following matrix norm:

‖A‖1 = max
j∈{1,...,N}

N
∑

i=1

|Aij | (9)

whereAij := (Aej)i with ej the jth canonical basis vector.
The ℓ∞-norm onR

N induces the following matrix norm:

‖A‖∞ = max
i∈{1,...,N}

N
∑

j=1

|Aij | . (10)

In the following consequence of the well-known Mean
Value Theorem, the matrix norm of the derivative (“Jacobian”)
f ′(v) at v ∈ V of a differentiable mappingf : V → V is used
to bound the distance of thef -images of two vectors:

Lemma 1:Let (V, ‖·‖ ) be a normed space andf : V → V
a differentiable mapping. Then, forx, y ∈ V :

‖f(y) − f(x)‖ ≤ ‖y − x‖ · sup
z∈[x,y]

‖f ′(z)‖

where we wrote[x, y] for the segment{λx + (1 − λ)y : λ ∈
[0, 1]} joining x andy.

Proof: See [20, Thm. 8.5.4].

B. The Basic Tool

Combining Theorem 1 and Lemma 1 immediately yields
our basic tool:

Lemma 2:Let (V, ‖·‖ ) be a normed space,f : V → V
differentiable and suppose that

sup
v∈V

‖f ′(v)‖ < 1.

Then f is a ‖·‖ -contraction by Lemma 1. Hence, for any
v ∈ V , the sequencev, f(v), f2(v), . . . converges to a unique
fixed point v∞ ∈ V with a convergence rate that is at least
linear by Theorem 1.
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C. Sufficient Conditions For BP To Be A Contraction

We apply Lemma 2 to the case at hand: the parallel BP
update mappingf : R

D → R
D, written out in components

in (7). Different choices of the vector norm onRD will
yield different sufficient conditions for whether iterating f will
converge to a unique fixed point. We will study two examples:
the ℓ1 norm and theℓ∞ norm.

The derivative off is easily calculated from (7) and is given
by

(

f ′(ν)
)

i→j,k→l
=

∂ν̃i→j

∂νk→l
= Ai→j,k→lBi→j(ν) (11)

where5

Bi→j(ν) :=
1 − tanh2(θi +

∑

t∈∂i\j νt→i)

1 − tanh2(ν̃i→j(ν))
sgn Jij (12)

Ai→j,k→l := tanh |Jij | δi,l1∂i\j(k). (13)

Note that we have absorbed allν-dependence in the factor
Bi→j(ν); the reason for this will become apparent later on.
The factor Ai→j,k→l is nonnegative and independent ofν
and captures the structure of the graphical model. Note that
supν∈V |Bi→j(ν)| = 1, implying that

∣

∣

∣

∣

∂ν̃i→j

∂νk→l

∣

∣

∣

∣

≤ Ai→j,k→l (14)

everywhere onV .
1) Example: theℓ∞-norm: Theℓ∞-norm onR

D yields the
following condition:

Corollary 1: For binary variables with pairwise interac-
tions: if

max
i∈V

(

(|∂i| − 1)max
j∈∂i

tanh |Jij |
)

< 1, (15)

BP is anℓ∞-contraction and converges to a unique fixed point,
irrespective of the initial messages.

Proof: Using (10), (13) and (14):

‖f ′(ν)‖∞ = max
i→j

∑

k→l

∣

∣

∣

∣

∂ν̃i→j

∂νk→l

∣

∣

∣

∣

≤ max
i→j

∑

k→l

tanh |Jij | δil1∂i\j(k)

= max
i∈V

max
j∈∂i

∑

k∈∂i\j

tanh |Jij |

= max
i∈V

(

(|∂i| − 1)max
j∈∂i

tanh |Jij |
)

,

and now simply apply Lemma 2.
2) Another Example: theℓ1-norm: Using theℓ1-norm in-

stead, we find:
Corollary 2: For binary variables with pairwise interac-

tions:
max
i∈V

max
k∈∂i

∑

j∈∂i\k

tanh |Jij | < 1, (16)

BP is anℓ1-contraction and converges to a unique fixed point,
irrespective of the initial messages.

5For a setX, we define the indicator function1X of X by 1X(x) = 1
if x ∈ X and1X(x) = 0 if x 6∈ X.

Proof: Similar to the proof of Corollary 1, now using
(9) instead of (10):

‖f ′(ν)‖1 ≤ max
k→l

∑

i→j

tanh |Jij | δil1∂i\j(k)

= max
i∈V

max
k∈∂i

∑

j∈∂i\k

tanh |Jij | .

It is easy to see that condition (16) is implied by (15), but
not conversely; thus in this case theℓ1-norm yields a tighter
bound than theℓ∞-norm.

D. Beyond Norms: The Spectral Radius

Instead of pursuing a search for the optimal norm, we will
derive a criterion for convergence based on the spectral radius
of the matrix (13). The key idea is to look at several iterations
of BP at once. This will yield a significantly stronger condition
for convergence of BP to a unique fixed point.

For a square matrixA, we denote byσ(A) its spectrum, i.e.,
the set of eigenvalues ofA. By ρ(A) we denote itsspectral
radius, which is defined asρ(A) := sup |σ(A)|, i.e., the largest
modulus of eigenvalues ofA.6

Lemma 3:Let f : X → X be a mapping,d a metric on
X and suppose thatfN is a d-contraction for someN ∈ N.
Thenf has a unique fixed pointx∞ and for anyx ∈ X, the
sequencex, f(x), f2(x), . . . obtained by iteratingf converges
to x∞.

Proof: Take anyx ∈ X. Consider theN sequences
obtained by iteratingfN , starting respectively inx, f(x), . . . ,
fN−1(x):

x, fN (x), f2N (x), . . .

f(x), fN+1(x), f2N+1(x), . . .

...

fN−1(x), f2N−1(x), f3N−1(x), . . .

Each sequence converges tox∞ sincefN is a d-contraction
with fixed pointx∞. But then the sequencex, f(x), f2(x), . . .
must converge tox∞.

Theorem 2:Let f : R
m → R

m be differentiable and
suppose thatf ′(x) = B(x)A, where A has nonnegative
entries andB is diagonal with bounded entries|Bii(x)| ≤
1. If ρ(A) < 1 then for any x ∈ R

m, the sequence
x, f(x), f2(x), . . . obtained by iteratingf converges to a fixed
point x∞, which does not depend onx.

Proof: For a matrixB, we will denote by|B| the matrix
with entries |B|ij = |Bij |. For two matricesB,C we will
write B ≤ C if Bij ≤ Cij for all entries(i, j). Note that
if |B| ≤ |C|, then ‖B‖1 ≤ ‖C‖1 . Also note that|BC| ≤
|B| |C|. Finally, if 0 ≤ A and B ≤ C, thenAB ≤ AC and
BA ≤ CA.

6One should not confuse the spectralradius ρ(A) with the spectralnorm
‖A‖

2
=

p

ρ(AT A) of A, the matrix norm induced by theℓ2-norm.
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Using these observations and the chain rule, we have for
any n = 1, 2, . . . and anyx ∈ R

m:

|(fn)′(x)| =

∣

∣

∣

∣

∣

n
∏

i=1

f ′
(

f i−1(x)
)

∣

∣

∣

∣

∣

≤
n

∏

i=1

(

∣

∣B
(

f i−1(x)
)∣

∣ A
)

≤ An,

hence‖(fn)′(x)‖1 ≤ ‖An‖1 .
By the Gelfand spectral radius theorem,

lim
n→∞

‖An‖1
1/n = ρ(A).

Chooseǫ > 0 such thatρ(A)+ǫ < 1. For someN ,
∥

∥AN
∥

∥

1
≤

(ρ(A) + ǫ)N < 1. Hence for allx ∈ R
m,

∥

∥(fN )′(x)
∥

∥

1
< 1.

Applying Lemma 2, we conclude thatfN is a ℓ1-contraction.
Now apply Lemma 3.

Using (11), (12) and (13), this immediately yields:
Corollary 3: For binary variables with pairwise interac-

tions, BP converges to a unique fixed point, irrespective of
the initial messages, if the spectral radius of the|D| × |D|-
matrix

Ai→j,k→l := tanh |Jij | δi,l1∂i\j(k)

is strictly smaller than 1.
The calculation of the spectral norm of the (sparse) matrix
A can be done using standard numerical techniques in linear
algebra.

Any matrix norm of A is actually an upper bound on
the spectral radiusρ(A), since for any eigenvalueλ of A
with eigenvectorx we have|λ| ‖x‖ = ‖λx‖ = ‖Ax‖ ≤
‖A‖ ‖x‖ , henceρ(A) ≤ ‖A‖ . This implies that no norm in
Lemma 2 will result in a sharper condition than Corollary 3,
hence the title of this section.

Further, for a given matrixA and someǫ > 0, there exists
a vector norm‖·‖ such that the induced matrix norm ofA
satisfiesρ(A) ≤ ‖A‖ ≤ ρ(A) + ǫ; see [21] for a constructive
proof. Thusfor givenA one can approximateρ(A) arbitrarily
close by induced matrix norms. This immediately gives a result
on the convergence rate of BP (in caseρ(A) < 1): for any
ǫ > 0, there exists a norm-induced metric such that the linear
rate of contraction of BP with respect to that metric is bounded
from above byρ(A) + ǫ.

One might think that there is a shorter proof of Corollary
3: it seems quite plausible intuitively that in general, fora
continuously differentiablef : R

m → R
m, iterating f will

converge to a unique fixed point ifsupx∈Rm ρ(f ′(x)) < 1.
However, this conjecture (which has been open for a long
time) has been shown to be true in two dimensions but false
in higher dimensions [22].

E. Improved Bound For Strong Local Evidence

Empirically, it is known that the presence of strong local
fields (i.e., single-variable factors which are far from uniform)
often improves the convergence of BP. However, our results
so far are completely independent of the parameters(θi)i∈V

that measure the strength of the local evidence. By proceeding
more carefully than we have done above, the results can easily

be improved in such a way that local evidence is taken into
account.

Consider the quantityBi→j defined in (12). We have
bounded this quantity by noting thatsupν∈V |Bi→j(ν)| = 1.
Note that for all BP updates (except for the first one), the
argumentν (the incoming messages) is inf(V ), which can
be considerably smaller than the complete vector spaceV .
Thus, after the first BP update, we can use

sup
ν∈f(V )

|Bi→j(ν)| = sup
ν∈f(V )

1 − tanh2(θi +
∑

k∈∂i\j νk→i)

1 − tanh2(ν̃i→j(ν))

= sup
ν∈f(V )

1 − tanh2(hi\j)

1 − tanh2(Jij) tanh2(hi\j)

where we used (7) and defined thecavity field

hi\j(ν) := θi +
∑

k∈∂i\j

νk→i. (17)

The functionx 7→ 1−tanh2 x
1−tanh2(Jij) tanh2 x

is strictly decreasing for
x ≥ 0 and symmetric aroundx = 0, thus, defining

h
i\j
∗ := inf

ν∈f(V )

∣

∣

∣
hi\j(ν)

∣

∣

∣
, (18)

we obtain

sup
ν∈f(V )

|Bi→j(ν)| =
1 − tanh2(h

i\j
∗ )

1 − tanh2(Jij) tanh2(h
i\j
∗ )

.

Now, from (7) we derive that

{νk→i : ν ∈ f(V )} = (− |Jki| , |Jki|),

hence
{hi\j(ν) : ν ∈ f(V )} = (h

i\j
− , h

i\j
+ )

where we defined

h
i\j
± := θi ±

∑

k∈∂i\j

|Jki| .

We conclude thathi\j
∗ is simply the distance between 0 and

the interval(hi\j
− , h

i\j
+ ), i.e.,

h
i\j
∗ =















∣

∣

∣
h

i\j
+

∣

∣

∣
if h

i\j
+ < 0

h
i\j
− if h

i\j
− > 0

0 otherwise.

Thus the elementAi→j,k→i (for i ∈ ∂j, k ∈ ∂i \ j) of the
matrix A defined in Corollary 3 can be replaced by

tanh |Jij |
1 − tanh2(h

i\j
∗ )

1 − tanh2(Jij) tanh2(h
i\j
∗ )

=
tanh(|Jij | − h

i\j
∗ ) + tanh(|Jij | + h

i\j
∗ )

2
,

which is generally smaller thantanh |Jij | and thus gives a
tighter bound.

This trick can be repeated arbitrarily often: assume that
m ≥ 0 BP updates have been done already, which means that it
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suffices to take the supremum of|Bi→j(ν)| over ν ∈ fm(V ).
Define for all i → j ∈ D and all t = 0, 1, . . . ,m:

h
i\j
t := inf{hi\j(ν) : ν ∈ f t(V )}, (19)

h
i\j

t := sup{hi\j(ν) : ν ∈ f t(V )}, (20)

and define the intervals

Hi\j
t := [h

i\j
t , h

i\j

t ]. (21)

Specifically, fort = 0 we haveh
i\j
0 = −∞ and h

i\j

0 = ∞,
which means that

Hi\j
0 = R. (22)

Using (7) and (17), we obtain the following recursive relations
for the intervals (where we use interval arithmetic defined in
the obvious way):

Hi\j
t+1 = θi +

∑

k∈∂i\j

tanh−1
(

tanhJki tanhHk\i
t

)

. (23)

Using this recursion relation, one can calculateHi\j
m and define

h
i\j
∗ as the distance (in absolute value) of the intervalHi\j

m to
0:

h
i\j
∗ =















∣

∣

∣h
i\j

m

∣

∣

∣ if h
i\j

m < 0

hi\j
m if hi\j

m > 0

0 otherwise.

(24)

Thus by replacing the matrixA in Corollary 3 by

Ai→j,k→l

=
tanh(|Jij | − h

i\j
∗ ) + tanh(|Jij | + h

i\j
∗ )

2
δi,l1∂i\j(k),

(25)

we obtain stronger results that improve asm increases:
Corollary 4: Let m ≥ 0. For binary variables with pairwise

interactions, BP converges to a unique fixed point, irrespective
of the initial messages, if the spectral radius of the|D|× |D|-
matrix defined in (25) (withhi\j

∗ defined in equations (21)–
(24)) is strictly smaller than 1.

IV. GENERAL CASE

In the general case, when the domainsXi are arbitrarily
large (but finite), we do not know of a natural parameterization
of the messages that automatically takes care of the invariance
of the messagesµI→j under scaling (like (6) does in the
binary case). Instead of handling the scale invariance by the
parameterization and using standard norms and metrics, it
seems easier to take a simple parameterization and to change
the norms and metrics in such a way that they are insensitive
to the (irrelevant) extra degrees of freedom arising from the
scale invariance. This is actually the key insight in extending
the previous results beyond the binary case: once one sees how
to do this, the rest follows in a (more or less) straightforward
way.

Another important point is to reparameterize the messages:
a natural parameterization for our analysis is now in terms

of logarithms of messagesλI→i := log µI→i. The BP update
equations (4) can be written in terms of the log-messages as:

λ̃I→i(xi) = log
∑

xI\i

ψI(xI)h
I\i(xI\i) (26)

where we dropped the normalization and defined

hI\i(xI\i) := exp





∑

j∈I\i

∑

J∈Nj\I

λJ→j(xj)



 . (27)

Each log-messageλI→i is a vector in the vector space
VI→i := R

Xi ; we will use Greek letters as indices for the
components, e.g.,λI→i

α := λI→i(α) with α ∈ Xi. We will
call everything that concerns individual vector spacesVI→i

local and define theglobal vector spaceV as the direct sum
of the local vector spaces:

V :=
⊕

i∈I∈F

VI→i.

The parallel BP update is the mappingf : V → V, written out
in components in (26) and (27).

Note that the invariance of the messagesµI→i under scal-
ing amounts to invariance of the log-messagesλI→i under
translation. More formally, defining linear subspaces

WI→i := {λ ∈ VI→i : λα = λα′ for all α, α′ ∈ Xi} (28)

and their direct sum

W :=
⊕

i∈I∈F

WI→i ⊆ V,

the invariance amounts to the observation that

f(λ + w) − f(λ) ∈ W for all λ ∈ V, w ∈ W.

Sinceλ+w andλ are equivalent for our purposes, we want our
measures of distance inV to reflect this equivalence. Therefore
we will “divide out” the equivalence relation and work in the
quotient spaceV/W, which is the topic of the next subsection.

A. Quotient Spaces

Let V be a finite-dimensional vector space. LetW be a
linear subspace ofV . We can consider thequotient space
V/W := {v+W : v ∈ V }, wherev+W := {v+w : w ∈ W}.
Defining addition and scalar multiplication on the quotient
space in the natural way, the quotient space is again a vector
space.7 We will denote its elements asv := v + W . Note that
the projectionπ : V → V/W : v 7→ v is linear.

Let ‖·‖ be any vector norm onV . It induces aquotient
norm on V/W , defined by

‖v‖ := inf
w∈W

‖v + w‖ , (29)

which is indeed a norm, as one easily checks. The quo-
tient norm in turn induces thequotient metricd(v1, v2) :=
‖v2 − v1‖ on V/W . The metric space(V/W, d) is complete

7Indeed, we have a null vector0+W , addition(v1 +W )+(v2 +W ) :=
(v1 + v2) + W for v1, v2 ∈ V and scalar multiplicationλ(v + W ) :=
(λv) + W for λ ∈ R, v ∈ V .
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(since any finite-dimensional normed vector space is com-
plete).

Let f : V → V be a (possibly nonlinear) mapping with the
following symmetry:

f(v + w) − f(v) ∈ W for all v ∈ V , w ∈ W. (30)

We can then unambiguously define the quotient mapping

f : V/W → V/W : v 7→ f(v),

which yields the following commutative diagram:

V
f−−−−→ V





y

π





y

π

V/W
f−−−−→ V/W

π ◦ f = f ◦ π

For a linear mappingA : V → V , condition (30) amounts
to AW ⊆ W , i.e., A should leaveW invariant; we can then
unambiguously define the quotient mappingA : V/W →
V/W : v 7→ Av.

If f : V → V is differentiable and satisfies (30), the
symmetry property (30) implies thatf ′(x)W ⊆ W , hence we
can definef ′(x) : V/W → V/W . The operation of taking
derivatives is compatible with projecting onto the quotient
space. Indeed, by using the chain rule and the identityπ ◦f =
f ◦ π, one finds that the derivative of the induced mapping
f : V/W → V/W at x equals the induced derivative off at
x:

f
′
(x) = f ′(x) for all x ∈ V . (31)

By Lemma 2,f is a contraction with respect to the quotient
norm if

sup
x∈V/W

∥

∥

∥f
′
(x)

∥

∥

∥ < 1.

Using (29) and (31), this condition can be written more
explicitly as:

sup
x∈V

sup
v∈V,
‖v‖≤1

inf
w∈W

‖f ′(x) · v + w‖ < 1.

B. Constructing A Norm OnV
Whereas in the binary case, each messageνi→j was param-

eterized by a single real number, the messages are now|Xi|-
dimensional vectorsλI→i (with componentsλI→i

α indexed by
α ∈ Xi). In extending theℓ1-norm that proved to be useful in
the binary case to the more general case, we have the freedom
to choose the “local” part of the generalizedℓ1-norm. Here
we show how to construct such a generalization of theℓ1-
norm and its properties; for a more detailed account of the
construction, see Appendix A.

The “global” vector spaceV is the direct sum of the “local”
subspacesVI→i. Suppose that for each subspaceVI→i, we
have a local norm‖·‖I→i . A natural generalization of the
ℓ1-norm in the binary case is the following global norm onV:

‖λ‖ :=
∑

I→i

∥

∥λI→i
∥

∥

I→i
. (32)

It is easy to check that this is indeed a norm onV.

Each subspaceVI→i has a 1-dimensional subspaceWI→i

defined in (28) and the local norm onVI→i induces a local
quotient norm on the quotient spaceVI→i/WI→i. The global
norm (32) onV induces a global quotient norm onV/W,
which is simply the sum of the local quotient norms (c.f.
(A.57)):

∥

∥λ
∥

∥ =
∑

I→i

∥

∥

∥λI→i
∥

∥

∥

I→i
. (33)

Let λ ∈ V. The derivativef ′(λ) of f : V → V at λ is a
linear mappingf ′(λ) : V → V satisfyingf ′(λ)W ⊆ W. It
projects down to a linear mappingf ′(λ) : V/W → V/W.
The matrix norm off ′(λ) induced by the quotient norm (33)
is given by (c.f. (A.58)):

∥

∥

∥
f ′(λ)

∥

∥

∥
= max

J→j

∑

I→i

∥

∥

∥

(

f ′(λ)
)

I→i,J→j

∥

∥

∥

J→j

I→i
(34)

where the local quotient matrix norm of the “block”
(

f ′(λ)
)

I→i,J→j
is given by (c.f. (A.59)):

∥

∥

∥

(

f ′(λ)
)

I→i,J→j

∥

∥

∥

J→j

I→i

= sup
v∈VJ→j ,
‖v‖J→j ≤1

∥

∥

∥

(

f ′(λ)
)

I→i,J→j
v
∥

∥

∥

I→i
. (35)

The derivative of the (unnormalized) parallel BP update (26)
is easily calculated:

∂λ̃I→i(xi)

∂λJ→j(yj)
= 1Nj\I(J)1I\i(j)

×
∑

xI\i
ψI(xi, xj , xI\{i,j})δxj ,yj

hI\i(xI\i)
∑

xI\i
ψI(xi, xI\i)hI\i(xI\i)

.

(36)

To lighten the notation, we will use Greek subscripts instead
of arguments: letα correspond toxi, β to xj , β′ to yj andγ

to xI\{i,j}; for example, we writehI\i(xI\i) ash
I\i
βγ . Taking

the global quotient norm (34) of (36) yields:
∥

∥

∥f ′(λ)
∥

∥

∥ = max
J→j

∑

I→i

1Nj\I(J)1I\i(j)BI→i,J→j

(

hI\i(λ)
)

(37)
where

BI→i,J→j

(

hI\i(λ)
)

:=

∥

∥

∥

∥

∥

∥

∑

γ ψI
αβ′γh

I\i
β′γ(λ)

∑

β

∑

γ ψI
αβγh

I\i
βγ (λ)

∥

∥

∥

∥

∥

∥

J→j

I→i

. (38)

Note thatBI→i,J→j depends onλ via the dependence ofhI\i

on λ (c.f. (27)). We will for the moment simplify matters by
assuming thatλ can be any vector inV, and later discuss the
more careful estimate (whereλ ∈ fm(V)):

sup
λ∈V

BI→i,J→j

(

hI\i(λ)
)

≤ sup
hI\i>0

BI→i,J→j(h
I\i). (39)

Defining the matrixA by the expression on the r.h.s. and using
(35) and (29), we obtain:

AI→i,J→j := sup
hI\i>0

BI→i,J→j(h
I\i) =

sup
hI\i>0

sup
v∈VJ→j

‖v‖J→j ≤1

inf
w∈WI→i

∥

∥

∥

∥

∥

∑

β′

∑

γ ψI
αβ′γh

I\i
β′γvβ′

∑

β

∑

γ ψI
αβγh

I\i
βγ

− w

∥

∥

∥

∥

∥

I→i

(40)
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for I → i and J → j such thatj ∈ I \ i and J ∈ Nj \ I.
Surprisingly, it turns out that we can calculate (40) analytically
if we take all local norms to beℓ∞ norms. We have also
tried theℓ2 norm and theℓ1 norm as local norms, but were
unable to calculate expression (40) analytically in these cases.
Numerical calculations turned out to be difficult because of
the nested suprema.

C. Local ℓ∞ Norms

Take for each local norm‖·‖I→i the ℓ∞ norm onVI→i =
R

Xi . The local subspaceWI→i is spanned by the vector1 :=
(1, 1, . . . , 1) ∈ R

Xi . The local quotient norm of a vectorv ∈
VI→i is thus given by

‖v‖I→i = ‖v‖∞ = inf
w∈R

‖v + w1‖∞

=
1

2
sup

α,α′∈Xi

|vα − vα′ | .
(41)

For a linear mappingA : VJ→j → VI→i that satisfies
AWJ→j ⊆ WI→i, the induced quotient matrix norm (35)
is given by

∥

∥A
∥

∥

J→j

I→i
= sup

v∈VJ→j ,
‖v‖∞ ≤1

∥

∥Av
∥

∥

∞

= sup
v∈VJ→j ,
‖v‖∞ ≤1

1

2
sup

α,α′∈Xi

∣

∣

∣

∣

∑

β

(Aαβ − Aα′β)vβ

∣

∣

∣

∣

=
1

2
sup

α,α′∈Xi

∑

β

|Aαβ − Aα′β |

(42)

Fixing for the momentI → i and J → j (such thatj ∈
I \ i andJ ∈ Nj \ I) and dropping the superscripts from the
notation, using (42), we can write (40) as

sup
h>0

1

2
sup

α,α′∈Xi

∑

β

∣

∣

∣

∣

∣

∑

γ ψαβγhβγ
∑

β

∑

γ ψαβγhβγ
−

∑

γ ψα′βγhβγ
∑

β

∑

γ ψα′βγhβγ

∣

∣

∣

∣

∣

.

Interchanging the two suprema, fixing (for the moment)α
andα′, defining ψ̃βγ := ψαβγ/ψα′βγ and h̃βγ := hβγψα′βγ ,
noting that we can assume (without loss of generality) thath̃
is normalized inℓ1 sense, the previous expression (apart from
the 1

2 supα,α′ ) simplifies to

sup
h̃>0,

‖h̃‖
1
=1

∑

β

∣

∣

∣

∣

∣

∑

γ

h̃βγ

(

ψ̃βγ
∑

β

∑

γ ψ̃βγ h̃βγ

− 1

)∣

∣

∣

∣

∣

. (43)

In Appendix B we show that this equals

2 sup
β 6=β′

sup
γ,γ′

tanh

(

1

4
log

ψ̃βγ

ψ̃β′γ′

)

. (44)

We conclude that if we take all local norms to be theℓ∞
norms, thenAI→i,J→j equals

N(ψI , i, j)

:= sup
α6=α′

sup
β 6=β′

sup
γ,γ′

tanh

(

1

4
log

ψI
αβγ

ψI
α′βγ

ψI
α′β′γ′

ψI
αβ′γ′

)

,
(45)

i

xi = α

I

ψI

j

xj = β

J

| {z }

I \ {i, j}

xI\{i,j} = γ

Fig. 2. Part of the factor graph relevant in expressions (45), (46) and (47).
Here i, j ∈ I with i 6= j, andJ ∈ Nj \ I.

which is defined fori, j ∈ I with i 6= j and whereψI
αβγ is

shorthand forψI(xi = α, xj = β, xI\{i,j} = γ); see Fig. 2
for an illustration.

Now combining (37), (39) and (45), we finally obtain:
∥

∥

∥
f ′

(

λ
)

∥

∥

∥
=

∥

∥

∥
f ′(λ)

∥

∥

∥
≤ max

J→j

∑

I∈Nj\J

∑

i∈I\j

N(ψI , i, j).

Applying Lemma 2 now yields thatf is a contraction with
respect to the quotient norm onV/W if the right-hand side is
strictly smaller than 1.

Consider the mappingη : V/W → V that mapsλ to the
normalizedλ ∈ V, i.e., such that

∥

∥exp λI→i
∥

∥

1
= 1 for all

componentsI → i. If we take for f the ℓ1-normalized BP
update (in the log-domain), the following diagram commutes:

V f−−−−→ V




y

π

x





η

V/W f−−−−→ V/W

f = η ◦ f ◦ π.

Since bothπ and η are continuous, we can translate conver-
gence results forf back to similar results forf . We have
proved:

Theorem 3:If

max
J→j

∑

I∈Nj\J

∑

i∈I\j

N(ψI , i, j) < 1, (46)

BP converges to a unique fixed point irrespective of the initial
messages.

Now we can also generalize Corollary 3:
Theorem 4:If the spectral radius of the matrix

AI→i,J→j = 1Nj\I(J)1I\i(j)N(ψI , i, j), (47)

is strictly smaller than 1, BP converges to a unique fixed point
irrespective of the initial messages.

Proof: Similar to the binary pairwise case; see Theorem
10 in Appendix A for details.

Note that Theorem 3 is a trivial consequence of Theorem
4, since theℓ1-norm is an upper bound on the spectral radius.
However, to prove the latter, it seems that we have to go
through all the work (and some more) needed to prove the
former.

D. Special Cases

In this subsection we study the implications for two special
cases, namely factor graphs that contain no cycles and the case
of pairwise interactions.
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k

k ψk

ψki

ki i

i ψi

ψij

ij j

j ψj

Fig. 3. Part of the factor graph in the pairwise case relevantin (48) and
(49). Herek ∈ ∂i andj ∈ ∂i \ k.

1) Trees: Theorem 4 gives us a proof of the well-known
fact that BP converges on trees (whereas Theorem 3 is not
strong enough to prove that result):

Corollary 5: If the factor graph is a tree, BP converges to
a unique fixed point irrespective of the initial messages.

Proof: The spectral radius of (47) is easily shown to be
zero in this special case, for any choice of the potentials.

2) Pairwise Interactions:We formulate Theorems 3 and
4 for the special case of pairwise interactions (which corre-
sponds toγ taking on only one value), i.e., all factors consists
of either one or two variables. For a pair-potentialψij = ψij

αβ ,
expression (45) simplifies to (see also Fig. 3)

N(ψij) := sup
α6=α′

sup
β 6=β′

tanh

(

1

4

(

log
ψij

αβ

ψij
α′β

ψij
α′β′

ψij
αβ′

))

. (48)

Note that this quantity is invariant to “reallocation” of single-
variable factorsψi or ψj to the pairwise factorψij (i.e.,
N(ψij) = N(ψijψiψj)). N(ψij) can be regarded as a
measure of the strength of the potentialψij .

The ℓ1-norm based condition (46) can be written in the
pairwise case as:

max
i∈V

max
k∈∂i

∑

j∈∂i\k

N(ψij) < 1. (49)

The matrix defined in (47), relevant for the spectral radius
condition, can be replaced by the following|D| × |D|-matrix
in the pairwise case:

Ai→j,k→l := N(ψij)δi,l1∂i\j(k). (50)

For the binary case, we reobtain our earlier results, since
N

(

exp(Jijxixj)
)

= tanh |Jij |.

E. Factors Containing Zeros

Until now, we have assumed that all factors are strictly
positive. In many interesting applications of the Sum-Product
Algorithm, this assumption is violated: the factors may contain
zeros. It is thus interesting to see if and how our results can
be extended towards this more general case.

The easiest way to extend the results is by assuming that—
although the factors may contain zeros—the messages are
guaranteed to remain strictly positive (i.e., the log-messages
remain finite) after each update.8 Even more general exten-
sions with milder conditions may exist, but we believe that
considerably more work would be required to overcome the
technical problems that arise due to messages containing zeros.

8Additionally, the initial messages are required to be strictly positive, but
this requirement is easily met and is necessary for obtaining good BP results.

Assume that each factorψI is a nonnegative function
ψI :

∏

i∈I Xi → [0,∞). In addition, assume that all factors
involving only a single variable are strictly positive. This
can be assumed without loss of generality, since the single-
variable factors that contain one or more zeros can simply
be absorbed into multi-variable factors involving the same
variable. Additionally, for eachI ∈ F consisting of more
than one variable, assume that

∀i∈I ∀xi∈Xi
∃xI\i∈XI\i

: ψI(xi, xI\i) > 0. (51)

These conditions guarantee that strictly positive messages
remain strictly positive under the update equations (4), asone
easily checks, implying that we can still use the logarithmic
parameterization of the messages and that the derivative (36)
is still well-defined.

The expression for the potential strength (45) can be written
in a way that is also well-defined if the potentialψI contains
zeros:

N(ψI , i, j)

:= sup
α6=α′

sup
β 6=β′

sup
γ,γ′

√

ψI
αβγψI

α′β′γ′ −
√

ψI
α′βγψI

αβ′γ′

√

ψI
αβγψI

α′β′γ′ +
√

ψI
α′βγψI

αβ′γ′

(52)

which is defined fori, j ∈ I with i 6= j and whereψI
αβγ is

shorthand forψI(xi = α, xj = β, xI\{i,j} = γ).
The immediate generalization of Corollary 4 is then as

follows:
Theorem 5:Under the assumptions on the potentials de-

scribed above (strict positivity of single-variable factors and
(51) for the other factors): if the spectral radius of the matrix

AI→i,J→j = 1Nj\I(J)1I\i(j)N(ψI , i, j), (53)

(with N(ψI , i, j) defined in (52)) is strictly smaller than 1,
BP converges to a unique fixed point irrespective of the initial
messages.

Proof: Similar to the strictly positive case. The only
slight subtlety occurs in Appendix B where one has to take
a limit of strictly positive factors converging to the desired
nonnegative factor and use the continuity of the relevant
expressions with respect to the factor entries to prove that
the bound also holds in this limit.

1) Example: Define, for ǫ ≥ 0, the (“ferromagnetic”)
pairwise factorψ(ǫ) by the following matrix:

ψ(ǫ) :=

(

1 ǫ
ǫ 1

)

.

Now consider a binary pairwise factor graph, consisting of a
single loop ofN binary variables, i.e., the network topology
is that of a circle. Take for theN − 1 pair interactions
ψ{i,i+1} (for i = 1, 2, . . . , N − 1) the identity matrices (i.e.,
the above pair factors forǫ = 0) and take for the remaining
one ψ{1,N} = ψ(ǫ) for someǫ ≥ 0. Note that the potential
strengthN(ψ(ǫ)) = 1−ǫ

1+ǫ converges to 1 asǫ ↓ 0. The spectral
radius of the corresponding matrixAI→i,J→j can be shown
to be equal to

ρ(A) =

(

1 − ǫ

1 + ǫ

)1/N
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which is strictly smaller than 1 if and only ifǫ > 0. Hence BP
converges to a unique fixed point ifǫ > 0. This result is sharp,
since for ǫ = 0, BP simply “rotates” the messages around
without changing them and hence no convergence occurs
(except, obviously, if the initial messages already correspond
to the fixed point of uniform messages).

V. COMPARISON WITH OTHER WORK

In this section we explore the relations of our results with
previously existing work.

A. Comparison With Work Of Tatikonda And Jordan

In [14], [15], a connection is made between two seemingly
different topics, namely the Sum-Product Algorithm on the
one hand and the theory of Gibbs measures [23] on the
other hand. The main result of [14] states that BP converges
uniformly (to a unique fixed point) if the Gibbs measure on
the corresponding computation tree9 is unique.

This is a remarkable and beautiful result; however, the
question of convergence of BP is replaced by the question
of uniqueness of the Gibbs measure, which is not trivial.
Fortunately, sufficient conditions for the uniqueness of the
Gibbs measure exist; the most well-known areDobrushin’s
conditionand a weaker (but more easily verifiable) condition
known asSimon’s condition. In combination with the main
result of [14], they yield directly testable sufficient conditions
for convergence of BP to a unique fixed point. For reference,
we will state both results in our notation below. For details,
see [14], [15] and [23]. Note that the results are valid for the
case of positive factors consisting of at most two variables.

1) BP Convergence via Dobrushin’s Condition:Define
Dobrushin’s interdependence matrixas theN × N matrix C
with entries

Cij := sup
x∂i\j

sup
xj ,x′

j

1

2

∑

xi

∣

∣P (xi |x∂i\j , xj) − P (xi |x∂i\j , x
′
j)

∣

∣

(54)
for j ∈ ∂i and 0 otherwise.

Theorem 6:For pairwise (positive) factors, BP converges
to a unique fixed point if

max
i∈V

∑

j∈∂i

Cij < 1.

Proof: For a proof sketch, see [15]. For the proof of
Dobrushin’s condition see chapter 8 in [23].

We can rewrite the conditional probabilities in terms of
factors:

P (xi |x∂i\j , xj) =
ψi(xi)ψ

ij(xij)
∏

k∈∂i\j ψik(xik)
∑

xi
ψi(xi)ψij(xij)

∏

k∈∂i\j ψik(xik)
.

Note that the complexity of the calculation of this quantity
is generally exponential in the size of the neighborhood
∂j, which may prohibit practical application of Dobrushin’s
condition.

9The computation tree is an “unwrapping” of the factor graph with respect
to the Sum-Product Algorithm; specifically, the computation tree starting at
variablei ∈ V consists of all paths starting ati that never backtrack.

For the case of binary±1-valued variables, some elementary
algebraic manipulations yield

Cij = sup
x∂i\j

sinh 2 |Jij |
cosh 2Jij + cosh 2(θi +

∑

k∈∂i\j xkJik)

=
tanh(|Jij | − Hij) + tanh(|Jij | + Hij)

2

with

Hij := inf
x∂i\j

∣

∣

∣

∣

∣

∣

θi +
∑

k∈∂i\j

xkJik

∣

∣

∣

∣

∣

∣

.

2) BP Convergence via Simon’s Condition:Simon’s con-
dition is a sufficient condition for Dobrushin’s condition (see
proposition 8.8 in [23]). This leads to a looser, but more easily
verifiable, bound:

Theorem 7:For pairwise (positive) factors, BP converges
to a unique fixed point if

max
i∈V

∑

j∈∂i

(

1

2
sup
α,α′

sup
β,β′

log
ψij

αβ

ψij
α′β′

)

< 1.

It is not difficult to show that this bound is weaker than (49).
Furthermore, unlike Dobrushin’s condition and Corollary 4, it
does not take into account single-variable factors.

B. Comparison With Work Of Ihleret al.

In the recent and independent work [16] of Ihleret al., a
methodology was used which is very similar to the one used in
this work. In particular, the same localℓ∞ quotient metric is
used to derive sufficient conditions for BP to be a contraction.
In the work presented here, the Mean Value Theorem (in the
form of Lemma 1) is used in combination with a bound on the
derivative in order to obtain a bound on the convergence rate
K in (8). In contrast, in [16] a direct bound on the distance of
two outgoing messages is derived in terms of the distance of
two different products of incoming messages (equation (13)in
[16]). This bound becomes relatively stronger as the distance
of the products of incoming messages increases. This has the
advantage that it can lead to stronger conclusions about the
effect of finite message perturbations than would be possible
with our bound, based on the Mean Value Theorem. However,
for the question ofconvergence, the relevant limit turns out to
be that ofinfinitesimalmessage perturbations, i.e., it suffices
to study the derivative of the BP updates as we have done
here.

In the limit of infinitesimal message perturbations, the
fundamental bound (13) in [16] leads to the following measure
of potential strength:

D(ψij) := tanh

(

1

2

(

sup
α,β

sup
α′,β′

log
ψij

αβ

ψij
α′β′

))

.

Using this measure, Ihleret. al derive two different conditions
for convergence of BP. The first one is similar to our (49) and
the second condition is equivalent to our spectral radius result
(50), except that in both conditions,N(ψij) is used instead of
D(ψij). The latter condition is formulated in [16] in terms of
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the convergence properties of an iterative BP-like algorithm.
The equivalence of this formulation with a formulation in
terms of the spectral radius of a matrix can be seen from
the fact that for any square matrixA, ρ(A) < 1 if and only if
limn→∞ An = 0. However, our result also gives a contraction
rate, unlike the iterative formulation in [16].

Thus, the results in [16] are similar to ours in the pairwise
case, except for the occurrence ofD(ψij) instead ofN(ψij).
It is not difficult to see thatN(ψij) ≤ D(ψij) for any pair
factor ψij ; indeed, for any choice ofα, β, γ, δ:

√

ψαγψβδ

/√

ψβγψαδ ≤
(

sup
στ

ψστ

)/(

inf
στ

ψστ

)

.

Thus the convergence results in [16] are similar to, but weaker
than the results derived in the present work.

After initial submission of this work, [17] was published,
which improves upon [16] by exploiting the freedom of choice
of the single-variable factors (which can be “absorbed” to an
arbitrary amount by corresponding pair factors). This leads to
an improved measure of potential strength, which turns out
to be identical to our measureN(ψij). Thus, for pairwise,
strictly positive potentials, the results in [17] are equivalent
to the results (49) and (50) presented here. Our most general
results, Theorems 3, 4 and 5 and Corollary 4, are not present
in [17].

C. Comparison With Work Of Heskes

A completely different methodology to obtain sufficient
conditions for the uniqueness of the BP fixed point is used
in [18]. By studying the Bethe free energy and exploiting the
relationship between properties of the Bethe free energy and
the BP algorithm, conclusions are drawn about the uniqueness
of the BP fixed point; however, whether uniqueness of the
fixed point also implies convergence of BP seems to be an
open question. We state the main result of [18] in our notation
below.

The following measure of potential strength is used in [18].
For I ∈ F , let

ωI := sup
xI

sup
x′

I

(

log ψI(xI) + (|I| − 1) log ψI(x′
I)

−
∑

i∈I

log ψI(x′
I\i, xi)

)

.

The potential strength is then defined asσI := 1 − e−ωI .
Theorem 8:BP has a unique fixed point if there exists an

“allocation matrix” XIi between factorsI ∈ F and variables
i ∈ V such that

1) XIi ≥ 0 for all I ∈ F , i ∈ I;
2) (1− σI)maxi∈I XIi + σI

∑

i∈I XIi ≤ 1 for all I ∈ F ;
3)

∑

I∈Ni
XIi ≥ |Ni| − 1 for all i ∈ V.

Proof: See Theorem 8.1 in [18].
The (non)existence of such a matrix can be determined using
standard linear programming techniques.

VI. N UMERICAL COMPARISON OF VARIOUS BOUNDS

In this subsection, we compare various bounds on binary
pairwise graphical models, defined in (5), for various choices

Fig. 4. Comparison of various BP convergence bounds for the fully connected
N = 4 binary Ising model with uniform couplingJ and uniform local field
θ. (a) Heskes’ condition (b) Simon’s condition (c) spectral radius condition
(d) Dobrushin’s condition (e) improved spectral radius condition for m = 1
(f) improved spectral radius condition form = 5 (g) uniqueness of Gibbs’
measure condition. See the main text (section VI-A) for more explanation.

of the parameters. First we study the case of a completely
uniform model (i.e., full connectivity, uniform couplingsand
uniform local fields). Then we study nonuniform couplings
Jij , in the absence of local fields. Finally, we take fully random
models in various parameter regimes (weak/strong local fields,
strong/weak ferromagnetic/spin-glass/anti-ferromagnetic cou-
plings).

A. Uniform Couplings, Uniform Local Field

The fully connected Ising model consisting ofN binary
±1-valued variables with uniform couplingsJ and uniform
local field θ is special in the sense that an exact descrip-
tion of the parameter region for which the Gibbs mea-
sure on the computation tree is unique, is available. Using
the results of Tatikonda and Jordan, this yields a strong
bound on the parameter region for which BP converges
to a unique fixed point. Indeed, the corresponding com-
putation tree is a uniform Ising model on a Cayley tree
of degreeN − 2, for which (semi-)analytical expressions
for the paramagnetic–ferromagnetic and paramagnetic–anti-
ferromagnetic phase transition boundaries are known (see
section 12.2 in [23]). Since the Gibbs measure is known
to be unique in the paramagnetic phase, this gives an exact
description of the(J, θ) region for which the Gibbs measure
on the computation tree is unique, and hence a bound on BP
convergence on the original model.

In Fig. 4 we have plotted various bounds on BP convergence
in the (J, θ) plane for N = 4 (other values ofN yield
qualitatively similar results). The gray area (g) marks regions
where the Gibbs measure on the computation tree is not
unique; in the white area, the Gibbs measure is unique and
hence BP is guaranteed to converge. Note that this bound is
only available due to the high symmetry of the model. In [24]
it is shown that parallel BP does not converge in the lower
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Fig. 5. Comparison of various bounds for BP convergence for toroidal Ising
model of size10×10 with normally distributed couplingsJij ∼ N (J0, σJ

2)
and zero local fields. (a) Heskes’ condition (b) Dobrushin’scondition (c)
ℓ1-norm condition (d) spectral radius condition (e) empiricalconvergence
boundary. See the main text (section VI-B) for more explanation.

(anti-ferromagnetic) gray region. In the upper (ferromagnetic)
region on the other hand, parallel BP does converge, but it
may be that the fixed point is no longer unique.

The various lines correspond to different sufficient condi-
tions for BP convergence; the regions enclosed by two lines
of the same type (i.e., the inner regions for whichJ is
small) mark the regions of guaranteed convergence. The lightly
dotted lines (a) correspond with Heskes’ condition, Theorem 8.
The dash-dotted lines (b) correspond with Simon’s condition,
Theorem 7. The dashed lines (d) correspond with Dobrushin’s
condition (Theorem 6), which is seen to improve upon Simon’s
condition for θ 6= 0, but is nowhere sharp. The solid lines
(c) correspond with the spectral radius condition Corollary 3
(which coincides with theℓ1-norm based condition Corollary
2 in this case and is also equivalent to the result of [16]),
which is independent ofθ but is actually sharp forθ = 0.
The heavily dotted lines (e) correspond to Corollary 4 with
m = 1, the +-shaped lines (f) to the same Corollary with
m = 5. Both (e) and (f) are seen to coincide with (c) for
small θ, but improve for largeθ.

We conclude that the presence of local fields makes it
more difficult to obtain sharp bounds on BP convergence;
only Dobrushin’s condition (Theorem 6) and Corollary 4 take
into account local fields. Furthermore, in this case, our result
Corollary 4 is stronger than the other bounds. Note that the
calculation of Dobrushin’s condition is exponential in the
number of variablesN , whereas the time complexity of our
bound is polynomial inN . Similar results are obtained for
higher values ofN .

B. Nonuniform Couplings, Zero Local Fields

We have investigated in more detail the influence of the
distribution of the couplingsJij , in the absence of local fields,
and have also compared with the empirical convergence behav-
ior of BP. We have taken a binary Ising model on a rectangular

toroidal grid (i.e., with periodic boundary conditions) ofsize
10 × 10. The couplings were random independent normally
distributed nearest-neighbor couplingsJij ∼ N (J0, σJ

2), the
local fields wereθi = 0. Let (rJ , φJ ) be the polar coordi-
nates corresponding to the Cartesian coordinates(J0, σJ). For
various anglesφJ ∈ [0, π], we have determined the critical
radius rJ for each bound. The results have been averaged
over 40 instances of the model and can be found in Fig. 5.
The lines correspond to the mean bounds, the gray areas
are “error bars” of one standard deviation. The inner area
(for which the couplings are small) bounded by each line
means “convergence”, either guaranteed or empirical (thus
the larger the enclosed area, the tighter the bound). From
bottom to top: the thin solid line (a) corresponds with Heskes’
result (Theorem 8), the dash-dotted line (b) with Dobrushin’s
condition (Theorem 6), the dotted line (c) corresponds with
the ℓ1-norm based condition Corollary 2, the dashed line (d)
with the spectral radius condition Corollary 3 and the thick
solid line (e) with the empirical convergence behavior of BP.

We conclude from Fig. 5 that the spectral radius condition
improves upon theℓ1-norm based condition for nonuniform
couplings and that the improvement can be quite substantial.
For uniform couplings (and zero local fields), both conditions
coincide and it can be proved that they are sharp [25].

C. Fully Random Models

Finally, we have considered fully connected binary pairwise
graphical models with completely random couplings and lo-
cal fields (in various parameter regimes). We drew random
couplings and local fields as follows: first, we drew i.i.d.
random parametersJ0, σJ , θ0, σθ from a normal distribution
with mean 0 and variance 1. Then, for each variablei we
independently drew a local field parameterθi ∼ N (θ0, σθ

2),
and for each pair{i, j} we independently drew a coupling
parameterJij ∼ N (J0, σJ

2).
For the resulting graphical model, we have verified whether

various sufficient conditions for BP convergence hold. If
condition A holds whereas condition B does not hold, we say
that A wins from B. We have counted for each ordered pair
(A,B) of conditions how often A wins from B. The results
(for 50000 random models consisting ofN = 4, 8 variables)
can be found in Table I: the number at rowA, columnB is
the number of trials for which boundA wins from boundB.
On the diagonal (A = B) is the total number of trials for
which boundA predicts convergence. Theorem 6 is due to
[15], Corollary 3 was first published (for the binary case) in
[16] and Theorem 8 is due to [18].

Our result Corollary 4 (form = 1) outperforms the other
bounds in each trial. For other values ofN , we obtain similar
results.

VII. D ISCUSSION

In this paper we have derived sufficient conditions for
convergence of BP to a unique fixed point. Our conditions are
directly applicable to arbitrary graphical models with discrete
variables and nonnegative factors. This is in contrast with
the sufficient conditions of Tatikonda and Jordan and with
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TABLE I

COMPARISON OF BOUNDS(50000TRIALS, FOR N = 4 AND N = 8)

N = 4 Th. 6 Cor. 3 Th. 8 Cor. 4

Th. 6, [15] (5779) 170 3564 0

Cor. 3, [16] 10849 (16458) 13905 0

Th. 8, [18] 338 0 (2553) 0

Cor. 4,m = 1, this work 13820 3141 17046 (19599)

N = 8 Th. 6 Cor. 3 Th. 8 Cor. 4

Th. 6, [15] (668) 39 597 0

Cor. 3, [16] 507 (1136) 1065 0

Th. 8, [18] 0 0 (71) 0

Cor. 4,m = 1, this work 972 504 1569 (1640)

the results of Ihler, Fisher and Willsky, which were only
formulated for pairwise, positive factors. We have shown cases
where our results are stronger than previously known sufficient
conditions.

Our numerical experiments lead us to conjecture that Corol-
lary 4 is stronger than the other bounds. We have no proof for
this conjecture at the moment, apart from the obvious fact that
Corollary 3 is weaker than Corollary 4. To prove that Corollary
4 is stronger than Theorem 6 seems subtle, since it is generally
not the case thatρ(A) ≤ ‖C‖∞ , although it seems that the
weaker relation‖C‖∞ < 1 =⇒ ρ(A) < 1 does hold in
general. The relation with the condition in Theorem 8 is not
evident as well.

In the binary pairwise case, it turned out to be possible
to derive sufficient conditions that take into account local
evidence (Corollary 4). In the general case, such an im-
provement is possible in principle but seems to be more
involved. The resulting optimization problem (essentially (43)
with additional assumptions onh) looks difficult in general.
If the variables’ cardinalities and connectivities are small,
the resulting optimization problem can be solved, but writing
down a general solution does not appear to be trivial. The
question of finding an efficient solution in the general case is
left for future investigation.

The work reported here raises new questions, some of
which have been (partially) answered elsewhere after the initial
submission of this paper. The influence of damping the BP
update equations has been considered for the binary pairwise
case in [25], where it was shown that damping has the most
effect for anti-ferromagnetic interactions. Furthermore, it has
been proved in [25] that the bounds for BP convergence
derived in the present work are sharp in the case of binary
variables with (anti-)ferromagnetic pairwise interactions and
zero local fields, as suggested by Fig. 5. An extension of the
results towards sequential update schemes has been given in
[26]. Likewise, in [24] it is shown that Dobrushin’s condition
is also valid for sequential BP.

APPENDIX A
GENERALIZING THE ℓ1-NORM

Let (Vi, ‖·‖i ) be a finite collection of normed vector spaces
and letV =

⊕

i Vi be the direct sum of theVi’s. The function

‖·‖ : V → R defined by

‖v‖ :=
∑

i

‖vi‖i (A.55)

is a norm onV , as one easily checks. LetA : V → V be a
linear mapping with “blocks”Aij : Vj → Vi defined by

∀vj ∈ Vj : Avj =
∑

i

Aijvj , Aijvj ∈ Vi

for all j.
Theorem 9:The matrix norm ofA induced by the vector

norm ‖·‖ is given by:

‖A‖ = max
j

∑

i

‖Aij‖j
i (A.56)

where
‖Aij‖j

i := sup
x∈Vj ,
‖x‖j ≤1

‖Aijx‖i .

Proof: Let vk ∈ Vk such that‖vk‖k = 1. Then

‖Avk‖ =

∥

∥

∥

∥

∥

∑

i

Aikvk

∥

∥

∥

∥

∥

=
∑

i

‖Aikvk‖i

≤
∑

i

‖Aik‖k
i ≤ max

j

∑

i

‖Aij‖j
i .

Now let v ∈ V such that‖v‖ = 1. Thenv can be written as
the convex combinationv =

∑

k ‖vk‖k ṽk, where

ṽk :=

{

vk

‖vk‖k
if vk 6= 0

0 if vk = 0.

Hence:

‖Av‖ =

∥

∥

∥

∥

∥

∑

k

‖vk‖k Aṽk

∥

∥

∥

∥

∥

≤
∑

k

‖vk‖k ‖Aṽk‖

≤ max
j

∑

i

‖Aij‖j
i .

It is evident that this value is also achieved for somev ∈ V
with ‖v‖ = 1.

An illustrative example is obtained by consideringV = R
N

to be the direct sum ofN copies ofR with the absolute value
as norm; then the norm (A.55) onRN is simply theℓ1-norm
and the induced matrix norm (A.56) reduces to (9).

Suppose that eachVi has a linear subspaceWi. We can
consider the quotient spacesVi/Wi with quotient norms‖·‖i .
The direct sumW :=

⊕

i Wi is itself a subspace ofV ,
yielding a quotient spaceV/W . Forv ∈ V we havev =

∑

i vi

and henceV/W =
⊕

i(Vi/Wi). The quotient norm onV/W
is simply the sum of the quotient norms on theVi/Wi:

‖v‖ := inf
w∈W

‖v + w‖ = inf
w∈W

∑

i

‖vi + wi‖i

=
∑

i

inf
wi∈Wi

‖vi + wi‖i =
∑

i

‖vi‖i .
(A.57)

Let A : V → V be a linear mapping such thatAW ⊆ W .
ThenA induces a linearA : V/W → V/W ; sinceAijWj ⊆
Wi, each blockAij : Vj → Vi induces a linearAij : Vj/Wj →
Vi/Wi, andA can be regarded as consisting of the blocksAij .
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Corollary 6: The matrix norm ofA : V/W → V/W
induced by the quotient norm‖·‖ on V/W is:

∥

∥A
∥

∥ = max
j

∑

i

∥

∥Aij

∥

∥

j

i
(A.58)

where
∥

∥Aij

∥

∥

j

i
= sup

x∈Vj ,
‖x‖j ≤1

∥

∥Aijx
∥

∥

i
. (A.59)

Proof: We can directly apply the previous Theorem to
the quotient spaces to obtain (A.58); because

{x ∈ Vj/Wj : ‖x‖j ≤ 1} = {x ∈ Vj : ‖x‖j ≤ 1},

we have:

∥

∥Aij

∥

∥

j

i
:= sup

x∈Vj/Wj

‖x‖j ≤1

∥

∥Aijx
∥

∥

i
= sup

x∈Vj

‖x‖j ≤1

∥

∥Aijx
∥

∥

i
.

For a linearA : V → V such thatAW ⊆ W , we define
the matrix|A| with entries|A|ij :=

∥

∥Aij

∥

∥

j

i
. Let A,B be two

such linear mappings; then

|AB|ij =
∥

∥

∥(AB)ij

∥

∥

∥

j

i
=

∥

∥

∥

∥

∥

∑

k

AikBkj

∥

∥

∥

∥

∥

j

i

≤
∑

k

∥

∥

∥AikBkj

∥

∥

∥

j

i
≤

∑

k

∥

∥Aik

∥

∥

k

i

∥

∥Bkj

∥

∥

j

k

=
∑

k

|A|ik |B|kj

hence|AB| ≤ |A| |B|. Note that ‖|A|‖1 =
∥

∥A
∥

∥ . We can
generalize Theorem 2:

Theorem 10:Let f : V → V be differentiable and suppose
that it satisfies (30). Suppose further that|f ′(v)| ≤ A for some
matrixAij (which does not depend onv) with ρ(A) < 1. Then
for any v ∈ V/W , the sequencev, f(v), f

2
(v), . . . obtained

by iteratingf converges to a unique fixed pointv∞.
Proof: Using the chain rule, we have for anyn =

1, 2, . . . and anyv ∈ V :

∥

∥

∥(f
n
)′(v)

∥

∥

∥ =
∥

∥

∥(fn)′(v)
∥

∥

∥ =

∥

∥

∥

∥

∥

n
∏

i=1

f ′
(

f i−1(v)
)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

n
∏

i=1

f ′
(

f i−1(v)
)

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

1

≤
∥

∥

∥

∥

∥

n
∏

i=1

∣

∣f ′
(

f i−1(v)
)∣

∣

∥

∥

∥

∥

∥

1

≤
∥

∥

∥

∥

∥

n
∏

i=1

A

∥

∥

∥

∥

∥

1

= ‖An‖1 .

By the Gelfand Spectral Radius Theorem,‖An‖1
1/n → ρ(A)

for n → ∞. Chooseǫ > 0 such thatρ(A) + ǫ < 1. For some

N ,
∥

∥AN
∥

∥

1
≤ (ρ(A) + ǫ)N < 1. Hence

∥

∥

∥(f
N

)′(v)
∥

∥

∥ < 1 for

all v ∈ V/W . By Lemma 2,f
N

is a contraction with respect
to the quotient norm onV/W . Now apply Lemma 3.

APPENDIX B
PROOF THAT (43) EQUALS (44)

Let ψ̃βγ be a matrix of positive numbers. Let

H := {h : hβγ ≥ 0,
∑

β,γ

hβγ = 1}.

Define the functiong : H → R by

g(h) =
∑

β

∣

∣

∣

∣

∣

∑

γ

hβγ

(

ψ̃βγ
∑

β

∑

γ ψ̃βγhβγ

− 1

)∣

∣

∣

∣

∣

.

Theorem 11:

sup
h∈H

g(h) = 2 sup
β 6=β′

sup
γ,γ′

tanh

(

1

4
log

ψ̃βγ

ψ̃β′γ′

)

.

Proof: First note that we can assume without loss of
generality that allψ̃βγ are different, because of continuity.
Define

ψ̃− := inf
βγ

ψ̃βγ , ψ̃+ := sup
βγ

ψ̃βγ ,

X := [ψ̃−, ψ̃+], X ′ := X \ {ψ̃βγ : β, γ}.
For Ψ ∈ X, define

HΨ := {h ∈ H :
∑

β,γ

ψ̃βγhβγ = Ψ},

which is evidently a closed convex set. The function

gΨ : HΨ → R : h 7→
∑

β

∣

∣

∣

∣

∣

∑

γ

hβγ

(

ψ̃βγ

Ψ
− 1

)∣

∣

∣

∣

∣

obtained by restrictingg to HΨ is convex. Hence it achieves
its maximum on an extremal point of its domain.

Define

H2 :=
{

h ∈ H : #{(β, γ) : hβγ > 0} = 2
}

as thoseh ∈ H with exactly two nonzero components. For
h ∈ H2, defineψ̃−(h) := inf{ψ̃βγ : hβγ 6= 0} and ψ̃+(h) :=

sup{ψ̃βγ : hβγ 6= 0}. Because of continuity, we can restrict
ourselves to theΨ ∈ X ′, in which case the extremal points of
HΨ are preciselyH∗

Ψ = HΨ ∩ H2 (i.e., the extremal points
have exactly two nonzero components).

Now

sup
h∈H

g(h) = sup
Ψ∈X

sup
h∈HΨ

gΨ(h)

= sup
Ψ∈X′

sup
h∈H∗

Ψ

gΨ(h)

= sup
h∈H2

sup
ψ̃−(h)≤Ψ≤ψ̃

+
(h)

gΨ(h)

= sup
h∈H2

g(h).

For thoseh ∈ H2 with components with differentβ, we
can use the Lemma below. Theh ∈ H2 with components
with equal β are suboptimal, since the two contributions in
the sum overγ in g(h) have opposite sign. Hence

sup
h∈H2

g(h) = 2 sup
β 6=β′

sup
γ,γ′

tanh

(

1

4
log

ψ̃βγ

ψ̃β′γ′

)

.
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Lemma 4:Let 0 < a < b. Then

sup
η∈(0,1)2

η1+η2=1

η1

∣

∣

∣

∣

a

η1a + η2b
− 1

∣

∣

∣

∣

+ η2

∣

∣

∣

∣

b

η1a + η2b
− 1

∣

∣

∣

∣

= 2 tanh

(

1

4
log

b

a

)

= 2

√
b −√

a√
b +

√
a
.

Proof: Elementary. The easiest way to see this is to
reparameterizeη = ( eν

2 cosh ν , e−ν

2 cosh ν ) with ν ∈ (−∞,∞).
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