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Sufficient Conditions for Convergence of the
Sum-Product Algorithm

Joris M. Mooij and Hilbert J. Kappen

Abstract— Novel conditions are derived that guarantee con- exact marginals; (ii) BP does not always converge, and in
vergence of the Sum-Product algorithm (also known as Loopy these cases gives no approximations at all. These two issues
Belief Propagation or simply Belief Propagation) to a unique gt actually be interrelated: the “folklore” is that faie
fixed point, irrespective of the initial messages, for parallel o .

(synchronous) updates. The computational complexity of the of BP f[o C(_)nverge often_ |r.1d|cates Iow_quallty of the Bethg
conditions is polynomial in the number of variables. In contrast @pproximation on which it is based. This would mean that if
with previously existing conditions, our results are directly one has to “force” BP to converge (e.g., by using damping or
applicable to arbitrary factor graphs (with discrete variables) and double-loop approaches), one may expect the results to be of
are shown to be valid also in the case of factors containing zeros, low quality.

under some additional conditions. The conditions are compared . . .
with existing ones, numerically and, if possible, analytically. For _ Although BP is an old algorithm that has been reinvented

binary variables with pairwise interactions, sufficient conditions in many fields, a thorough theoretical understanding of the
are derived that take into account local evidence (i.e., single- two aforementioned issues and their relation is still lagki

variable factors) and the type of pair interactions (attractive o Sjgnificant progress has been made in recent years regarding
repulsive). It is shown empirically that this bound outperforms the question under what conditions BP converges [14]1[16]
existing bounds. . . .
_ on the uniqueness of fixed points [18], and on the accuracy
_ Index Terms— Contraction, convergence, factor graphs, graph- of the marginals [15], but the theoretical understanding is
'lga' models, Smarglujnagzat%, ”_“issage passing, Loopy Beliefgsy incomplete. For the special case of a graphical model
ropagation, Sum-Product Algorithm L 9 ;
pagat ! ! gon consisting of a single loop, it has been shown that convesgen
rate and accuracy are indeed related [19].
I. INTRODUCTION In this work, we study the question of convergence of BP

HE Sum-Product Algorithm [2], also known as Loopyand derive new sufficient conditions for BP to converge to a
T Belief Propagation, which we will henceforth abbreviatgnique fixed point. Our results are more general and in some
as BP, is a popular algorithm for approximate inference &®Ses stronger than previously known sufficient conditions
graphical models. Applications can be found in diverse @rea
such as error correcting codes (iterative channel decoding Il. BACKGROUND
algorithms for Turbo Codes and Low Density Parity Check , ) .

Codes [3]), combinatorial optimization (satisfiabilityoplems 10 introduce our notation, we give a short treatment of

such as 3-SAT and graph coloring [4]) and computer Visigﬁ_ctor_lzmg probability distributions, the Correspprgilmsu-

(stereo matching [5] and image restoration [6]). BP can flizations called factor graphs, an_d the BP algorithm otofac_

regarded as the most elementary one in a family of relat@f@PNS. For an excellent, extensive treatment of thesedopi

algorithms, consisting of double-loop algorithms [7], GBRVE refer the reader to [2].

[8], EP [9], EC [10], the Max-Product Algorithm [11], the

Survey Propagation Algorithm [4], [12] and Fractional BFy Graphical Models

[13]. A good understanding of BP may therefore be beneficial i i _ ]

to understanding these other algorithms as well. Consider N discrete random variables; for i € V :=
In practice, there are two major obstacles in the applinatid 1+ 2: - - -» IV}, With z; taking values ind; for ;. We write

of BP to concrete problems: (i) if BP converges, it is not = (¥1:-- -, @n) € X := [[,c), &;. We are interested in the

clear whether the results are a good approximation of tfESS Of probability measures ol that can be written as a
product offactors (also calledpotential3:
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functior? ¢! : T,.; X; — (0,00). Z is a normalizing constant
ensuring that) _, P(x) = 1. The class of probability
measures described by (1) contains Markov Random Fields
as well as Bayesian Networks. We will use uppercase letters
for indices of factors [, J, K, ... € F) and lowercase letters
for indices of variablesi(j, k,... € V).

The factor graphthat corresponds to the probability distri-
bution (1) is a bipartite graph with vertex sgtu F. In the
factor graph (see also Fig. 1), eachriable nodei € V is
connected with all the factork € F that contain the variable,
i.e., the neighbors of are the factor noded’; := {I € F:i € Fig. 1. Partof the factor graph illustrating the BP updatesy2) and (3).
I}. Similarly, eachfactor nodel € F is connected with all The factor ”Odega‘LIJ ' f\lf a{};&jra"j"[asjric,tang'gls’ the variable nodes
the variable nodes € V that it contains and we will simply Zééﬁt’{ronf t]r)1ea Smcgrscs‘;f,'esﬂtﬁatt ha@é be*e,ﬂ (’jra\,}vri neac\ﬁ gdge’ﬂa;ésg
denote the neighbors of by I = {i € V : i € I}. For message flowing in the opposite direction.
each variable nodec V, we define the set of its neighboring
variable nodes byi := (|JN;) \ {i}, i.e., di is the set of

indices of those variables that interact directly with Note that the beliefs are invariant under rescaling of the
messages
B. Loopy Belief Propagation pl (@) = ol (), i () = i ()

Loopy Belief Propagation is an algorithm that calculategy positive constantsy, which shows that the precise way
approximations to the marginal$>(z1)} re» and{P(z;)}icv  of normalization in (2) and (3) is irrelevant. For numerical
of the probability measure (1). The calculation is done bytapility however, some way of normalization (not necessar
message-passing on the factor graph: each node passes {R8§-sense) is desired to ensure that the messages stay in some
sages to its neighbors. One usually discriminates between t.ompact domain.
types of messages: messages™(z;) from factors to vari- |y 'the following, we will formulate everything in terms of
ables and messagps$~/(x;) from variables to factors (where o messages!—(z;) from factors to variables; the update

i € I € F). Both messages are positive functions&p or, equations are then obtained by substituting (2) in (3):
equivalently, vectors iR (with positive components). The

messages that are sent by a node depend on the incoming’ ~"(z;) = C'*Y "¢'(z;) [[ [ »' () 4
messages; the new messages, designated, laye given in Try JEI\i JEN;\I
terms of the incoming messages by the followBB update . , . .

g ges by B up with C'—" such that)_ . a'~"(x;) = 1. We consider

rules’ . :
here BP with gparallel update scheme, which means that all
() o H w9 (24) (2) message updates (4) are done in parallel.
JEN NI
ﬂ“i(%:) x Z¢I(Il) H ;ﬂ'”(:cj). (3) Ill. SPECIAL CASE BINARY VARIABLES WITH PAIRWISE

Tryi JEI\i INTERACTIONS

. ; . In this section we investigate the simple special case of
Usually, one normalizes the messages in thesense (i.e., . ) . ) . e
4 g b ( cPmary variables (i.e.|X;| = 2 for all i € V), and in addition

such thaty . wu(x;) = 1). If all messages have converge . : :
to some fixed Lpointu one calculates the approximatewe assume that all potentials consist of at most two vargable
marginals orbeliefs o (“pairwise interactions”). Although this is a special cadd¢he

more general theory to be presented later on, we start wiih th

bi(z;) = C" H pl7 () = P(xy) simple case because it illustrates most of the underlyirgdd
IeN; without getting involved with the additional technicadii of
; the general case.
b _ CI I i—1 J) &~ P g \ - .
1(zg) P () guo@ (z;) (x1), We will assume that all variables atel-valued, i.e..X; =

{-1,41} for all i € V. We take the factor index set as
where theC”’s and C'’s are normalization constants, choserF = F, U F, with 7; = V (the “local evidence”) and
such that the approximate marginals are normalized:in 7, C {{i,j} : i,j € V,i # j} (the “pair-potentials”). The
sense. A fixed point always exists if all factors are strictlgrobability measure (1) can then be written as
positive [8]. However, the existence of a fixed point does not
necessarily imply convergence towards the fixed point, and 1 Z iz + Z 0.2,

fixed points may be unstable. P(z) = = exp

= (5)

{i,j}eF2 i€F1

2In subsection IV-E we will loosen this assumption and allow ffactors for some choice of the parameters; (“couplings”) ando;
) 7

containing zeros. " . ” . ; .
3We abuse notation slightly by writing \ « instead ofX \ {z} for sets (“local fields”), with ¢*(z;) = exp(b;z;) for i € F; and

X. w{i’j}(xi,x]—) = eXp(Jijxixj) for {27]} S .7:2.
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Note from (4) that the messages sent from single-varialllecased is induced by a nornj|-|| , we will call a contraction
factorsF; to variables are constant. Thus the question whethaith respect taf a ||-|| -contraction. If( X, d) is complete, we
messages converge can be decided by studying only ttan apply the following theorem, due to Banach:
messages sent from pair-potentighs to variables. It turns  Theorem 1 (Contracting Mapping Principle):et
out to be advantageous to use the following “natural” paranf- : X — X be a contraction of a complete metric
eterization of the messages space(X,d). Then f has a unique fixed point,, € X and

i P P for any 2 € X, the sequence, f(z), f%(z),... obtained by
tanh v o= pl0 I (g = 1) = plI (@5 = <), (6) iterating f converges tQr... Thé r)ate (of) convergence is at
wherevi~7 ¢ R is now interpreted as a message sent froteast linear, sincel(f(z),z.) < Kd(z, 24 ) for all z € X.
variable i to variablej (instead of a message sent from the  Proof: Can be found in many textbooks on analysis.
factor {i,j} to variable j). Note that in the pairwise case,Note that linear convergence means that the error decreases
the product overj € I\ i in (4) becomes trivial. Some exponentially, indeed(x,,z.,) < CK" for someC.
additional elementary algebraic manipulations show that t Let (V, ||-|| ) be a normed space. The norm inducesairix

BP update equations (4) become particularly simple in thiyrm (also callecbperator norm) on linear mappings! : V' —
parameterization and can be written as: V, defined as follows:

tanh 77 = tanh(Jy;) tanh [ 6;+ SO 71| (7) 1Al += - sup [l Av]]
tedi\j Hvll<1

where 9i = {t € V : {i,t} € F} are the variables that The ¢,-norm onR" induces the following matrix norm:
interact with¢ via a pair-potential.

Defining the set of ordered pai® := {i — j : {i,j} € N
F»}, we see that the parallel BP update is a mapping Al =, maXN}Z | Ay 9)
RP — RP; (7) specifies the componentf(v)) "~ := i=1
7*77 in terms of the components of. Our goal is now to where 4,; == (Ae;); with ¢; the jtb canonical basis vector,

derive sufficient conditions under which the mappifigs a The /..-norm onRY mduces the following matrix norm:
contraction. For this we need some elementary but powerful

mathematical theorems.
Al = e Z| (10)
A. Normed Spaces, Contractions And Bounds

In this subsection we introduce some (standard) notationin the following consequence of the well-known Mean
and remind the reader of some elementary but importaviilue Theorem, the matrix norm of the derivative (“Jacobjian
properties of vector norms, matrix norms, contractions anfd(v) atv € V of a differentiable mapping : V' — V is used
the Mean Value Theorem in arbitrary normed vector spaces,bound the distance of theimages of two vectors:
which are the main mathematical ingredients for our bagit to  Lemma 1:Let (V, ||-|| ) be a normed space arfd: V — V
Lemma 2. The reader familiar with these topics can skip thigdifferentiable mapping. Then, far,y € V:
subsection and proceed directly to Lemma 2 in section IlI-B.

Let (V, ||-]|) be a normed finite-dimensional real vector I1f(y) = f@)] < |ly—=| - sup ||f ()]
space. Examples of norms that will be important later on are Z€[z.y]

N g
the £;-norm onR ™, defined by where we wrotdz, y] for the segmen{iz + (1 — \)y : A €

[0,1]} joining x andy.
lzll, = Z |z Proof: See [20, Thm. 8.5.4]. O

and the/,.-norm onR?", defined by
B. The Basic Tool

[#]lo = max |z - . . .
ie{l,...,N} Combining Theorem 1 and Lemma 1 immediately yields
A norm on a vector spack induces a metric ol by the Our basic tool:
definition d(v, w) := ||v — w]|| . The resulting metric space is Lemma 2:Let (V, [|-||) be a normed space/, : V. — V'
complete? differentiable and suppose that
Let (X,d) be a metric space. A mapping: X — X is ,
called acontraction with respect td if there exist®) < K < 1 sup £ () <1

such that

Then f is a ||-||-contraction by Lemma 1. Hence, for any
d(f(2), f(y)) < Kd(w,y) forallz,y € X. (8) v € V, the sequence, f(v), f2(v),... converges to a unique
4Completeness is a topological property which we will notHertdiscuss, fixed pointv,, € V with a convergence rate that is at least

but we need this to apply Theorem 1. linear by Theorem 1. O
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C. Sufficient Conditions For BP To Be A Contraction Proof: Similar to the proof of Corollary 1, now using

We apply Lemma 2 to the case at hand: the parallel ) instead of (10):
update mappingf : RP? — RP, written out in components

in (7). Different choices of the vector norm oR” will £ @)y < rglg?Ztanh |ij] diaLoi; (k)
yield different sufficient conditions for whether iteradirf will i=J
converge to a unique fixed point. We will study two examples: = max max Z tanh |J;;] .
the ¢, norm and the/,, norm. eV keO ok
The derivative off is easily calculated from (7) and is given -
by

i It is easy to see that condition (16) is implied by (15), but
(f’(z/ ) - o = Aijr1Bi;(v) (11) hot conversely; thus in this case the-norm yields a tighter
imjk—t  OUFTl ’ bound than the/..-norm.

wheré
_ 2 . t—1
Bi;(v) = L~ tanh (eltZteai\j v sgnJ;; (12) D. Beyond Norms: The Spectral Radius
1 — tanh*(7* =7 (v))
Instead of pursuing a search for the optimal norm, we will
Ai—>j,k—>l := tanh ‘J”| 6i,l18i\j(k)~ (13) P 9 P

derive a criterion for convergence based on the spectralsad
Note that we have absorbed altdependence in the factorof the matrix (13). The key idea is to look at several itenagio
B,_.j(v); the reason for this will become apparent later oraf BP at once. This will yield a significantly stronger cornolit
The factor A;_; ,—; is nonnegative and independent of for convergence of BP to a unique fixed point.

and captures the structure of the graphical model. Note thator a square matrixi, we denote byr(A) its spectrumi.e.,

sup,cy |Bi—;(v)| = 1, implying that the set of eigenvalues ol. By p(A) we denote itsspectral
9pi—i radius, which is defined ag(A) := sup |0(A4)|, i.e., the largest
’W < Aijk—l (14) modulus of eigenvalues of.%
v Lemma 3:Let f : X — X be a mappingd a metric on
everywhere orv/. X and suppose that" is a d-contraction for someV € N.
1) Example: the,,-norm: The {,,-norm onR” yields the Then f has a unique fixed point., and for anyz € X, the
following condition: sequence;, f(z), f?(x), ... obtained by iterating’ converges
Corollary 1: For binary variables with pairwise interac-g 5 .
tions: if Proof: Take anyz € X. Consider theN sequences
max ((|3i ~ 1) max tanh |Jij> <1, (15) ok;[tililned. by iterating/ ™, starting respectively i, f(z), ...,
icV JEOD f (I’)

BP is an/,.-contraction and converges to a unique fixed point, N oN

irrespective of the initial messages. el N1
Proof: Using (10), (13) and (14): f(@), f77 (@), [7 T (@), -
o)

170l = max

T k—l

< Iznfjx Z tanh | J;;] 0i1aa ; (k)

Y @), A N @), £ @),

al/k*’l
= Each sequence convergesatg since fV is a d-contraction

with fixed pointz.. But then the sequence f(z), f?(x), ...
R Z tanh [Ji;| must converge t@: ... O
REOI\S Theorem 2:Let f : R™ — R™ be differentiable and
= max <(|a,~| _ 1)maxtanh|Jij|) , suppose thatf’(z) = B(xz)A, where A has nonnegative
eV J€di entries andB is diagonal with bounded entrigd;;(z)| <
and now simply apply Lemma 2. (1 L. If p(A) < 1 then for anyx € R™, the sequence
2) Another Example: thé;-norm: Using the/;-norm in-  , f(x), f?(z),... obtained by iterating’ converges to a fixed
stead, we find: point z,, which does not depend on
Corollary 2: For binary variables with pairwise interac- Proof: For a matrixB, we will denote by B| the matrix
tions: with entries|B|,; = |B;;|. For two matricesB,C' we will
maxmax »  tanh|J;;| < 1, (16) write B < C if B;; < Cj; for all entries(i, ). Note that
i€V kedi L if [B| < |CJ, then [[B]|; < |[[C]|,. Also note that|BC| <
BP is an/;-contraction and converges to a unique fixed poin |1C]. Finally, if 0 < A and B < C, then AB < AC and
- : . A< CA.
irrespective of the initial messages.
5For a setX, we define the indicator functiohx of X by 1x(z) = 1 60ne should not confuse the spectratlius p(A) with the spectrahorm

if e X andlx(z) =0if z ¢ X. lAlly = v/ p(AT A) of A, the matrix norm induced by th&-norm.
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Using these observations and the chain rule, we have fm¥ improved in such a way that local evidence is taken into
anyn =1,2,... and anyx € R™: account.
Consider the quantityB,;_.; defined in (12). We have
f’(fil(x))’ bounded this quantity by noting thaip, .y | Bi—; ()| = 1.
Note that for all BP updates (except for the first one), the
‘ argumentv (the incoming messages) is (1), which can
(|B(f“1(x))|x4> < A", be considerably smaller than the complete vector sgace
Thus, after the first BP update, we can use

1 — tanh?(6; + D keoin) vk=1)

=

(") ()] =

1

<
I

—-

|
—

<

K2

hence [|(f")' (), < A",

By the Gelfand spectral radius theorem, sup |Bi_;(v)] = sup BlS.
li AP 1/n A vef(V) vef(V) 1 — tanh (DZ*}J (V))
Jim (LA™, ™ = p(A). 1 — tanh2(hi\7)
= Su -
Chooser > 0 such thafp(A)+¢ < 1. For someN, [|AV||, < vef(v) 1 — tanh?(J;;) tanh?(hi\)

(p(A) + ) < 1. Hence for allz € R™, ||(fN)'(z)||, < 1.
Applying Lemma 2, we conclude thgt" is a¢;-contraction.
Now apply Lemma 3. O V() =0+ Y vFh (17)
Using (11), (12) and (13), this immediately yields: kedi\;
Corollary 3: For binary variables with pairwise interac- )
tions, BP converges to a unique fixed point, irrespective &he functionz — 1_tarh§t(f‘,?f) 7 Is strictly decreasing for
the initial messages, if the spectral radius of tf® x |D|- « > 0 and symmetric around = 0, thus, defining
matrix

where we used (7) and defined tbavity field

NG i\j
A} k-1 := tanh |J;] 0i,1 194\ (k) ha' = z/el}l(f\/) ’h (V)‘ ) (18)

is strictly smaller than 1. 0 we obtain

The calculation of the spectral norm of the (sparse) matrix 20, i\

A can be done using standard numerical techniques in linear Bis(v)] = 1-tanh"(h,”)

sup 1—]

algebra. vef(v) 1 — tanh?(.J;;) tanh? (k")
Any matrix norm of A is actually an upper bound on

the spectral radiug(A), since for any eigenvalue of A

with eigenvectorz we havel|)| ||z]| = |[\z| = ||Az| < (v e FOOY = (= |l s | Twi),s

[IA]] |l=||, hencep(A) < ||A| . This implies that no norm in

Lemma 2 will result in a sharper condition than Corollary 3ence o

hence the title of this section. (N () :ve f(V)} = (W™, hM)
Further, for a given matrixd and some: > 0, there exists )

a vector norm||-|| such that the induced matrix norm ¢f Where we defined

satisfiesp(A) < ||A|| < p(A) +¢; see [21] for a constructive BV g 1 Z ]

proof. Thusfor given A one can approximatg(A) arbitrarily + ’ !

close by induced matrix norms. This immediately gives altesu

on the convergence rate of BP (in casl) < 1): for any e conclude that:’\ is simply the distance between 0 and

e > 0, there exists a norm-induced metric such that the linegyfe interval(hi_\j, hi\j), ie.

rate of contraction of BP with respect to that metric is baohd

Now, from (7) we derive that

kedi\j

from above byp(A) + e. hi\j’ if hir\j <0
One might think that there is a shorter proof of Corollary RV YT

3: it seems quite plausible intuitively that in general, for - - i h_ .>O

continuously differentiablef : R™ — R™, iterating f will 0 otherwise.

. . _ p
converge to a unique fixed point #up,cgn p(f'(7)) < 1. Thus the elemen#;_,; ., (for i € 94,k € 0i\ j) of the

However, this conjecture (which has been open for a long_, . ; :
time) has been shown to be true in two dimensions but falg%jlmx 4 defined in Corollary 3 can be replaced by

in higher dimensions [22]. 1_ tanhQ(hi\j)

1 — tanh?(J;;) tanh2(hi\j)

tanh |JZJ|
E. Improved Bound For Strong Local Evidence

Empirically, it is known that the presence of strong local _ tanh(lJij] — nY) + tanh(|Ji| + h*\j),
fields (i.e., single-variable factors which are far fromfanin) 2
often improves the convergence of BP. However, our resuitdich is generally smaller thatanh |J;;| and thus gives a
so far are completely independent of the parametérscy tighter bound.
that measure the strength of the local evidence. By prongedi This trick can be repeated arbitrarily often: assume that
more carefully than we have done above, the results caryeasil > 0 BP updates have been done already, which means that it
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suffices to take the supremum [d@8;_.;(v)| overv € f™(V). of logarithms of messages —* := log u! ~*. The BP update

Define for alli — j € D and allt =0,1,...,m: equations (4) can be written in terms of the log-messages as:
by =t {hNV () v € (V) (19) N7 ai) =log Y (xn)hN (apy) (26)
mY = sup{hiV (1) 1 v € FLV)), (20) e

where we dropped the normalization and defined
and define the intervals

HY = 1N 7). (21) WV (apg)=exp | D > M) | (@7)
. Y jeI\i JEN;\I
Specifically, fort = 0 we haveh.’ = —oco andhy,” = oo,

which means that Each log-message/—? is a vector in the vector space

YI—=i .— RY; we will use Greek letters as indices for the
components, e.gA =" := M ~i(a) with a € &;. We will
Using (7) and (17), we obtain the following recursive rejat Call everything that concerns individual vector spatds™
for the intervals (where we use interval arithmetic defined jocal and define theylobal vector space/ as the direct sum

HiM = R. (22)

the obvious way): of the local vector spaces:
i\j ; . I—1
MY =6+ Y tanh ! (banh Jig tanh 747) . (23) V= GIBfV :
iele
k€di\;j

N The parallel BP update is the mappiiig V — V, written out

Using this recursion relation, one can calculbfe’ and define in components in (26) and (27).
KV as the distance (in absolute value) of the intedal’ to Note that the invariance of the messag€s® under scal-
: ing amounts to invariance of the log-messagés’® under

Efqy if Eir\lj <0 translation. More formally, defining linear subspaces
N ) iNg e Vg ; ;
hat! = QRN if hiY >0 24 wi=i— e VT A, =\ forall a,a’ € X} (28)
0 otherwise.

and their direct sum
W= Wy,
Ai—)j,k—)l ieleF
tanh(]Ji;| — hiV) + tanh(|J;;| + hiV) the invariance amounts to the observation that

dialan;(k),
2 (25) fO+w)—fN)ew forall AeV, weWw.

Thus by replacing the matrid in Corollary 3 by

SinceA+w and ) are equivalent for our purposes, we want our
measures of distance nto reflect this equivalence. Therefore
we will “divide out” the equivalence relation and work in the
quotient spac® /W, which is the topic of the next subsection.

we obtain stronger results that improverasincreases:
Corollary 4: Letm > 0. For binary variables with pairwise
interactions, BP converges to a unique fixed point, irretbgeec
of the initial messages, if the spectral radius of the x |D|-
matrix defined in (25) (with:’\ defined in equations (21)—

(24)) is strictly smaller than 1. 0 A. Quotient Spaces
Let V be a finite-dimensional vector space. Ut be a
IV. GENERAL CASE linear subspace o¥’. We can consider thguotient space

. o VW i={v+W v e V}, wherev+W = {v4+w:w e W}

In the general case, when the domaitis are arbitrarily pefining addition and scalar multiplication on the quotient
large (but finite), we do not know of a natural parameter@ti gnace in the natural way, the quotient space is again a vector
of the messages that automatically takes care of the imuaafiaspacez We will denote its elements as:= v + W. Note that
of the messageg’—7 under scaling (like (6) does in theihe projectionr : V — V/W : v — 7 is linear.
binary case). Instead of handling the scale invariance by th | o || be any vector norm oi. It induces aquotient
parameterization and using standard norms and metricsydfm on V/W, defined by

seems easier to take a simple parameterization and to change
the norms and metrics in such a way that they are insensitive IIo|| =
to the (irrelevant) extra degrees of freedom arising from th
scale invariance. This is actually the key insight in extegd Which is indeed a norm, as one easily checks. The quo-
the previous results beyond the binary case: once one sees ignt norm in turn induces theguotient metricd (v, v2) :=
to do this, the rest follows in a (more or less) straightfaxva |72 — 71[| on V/W. The metric spac¢V/W, d) is complete
way. o

Another important point is to reparameterize the messag@é:”fij?' J\FN ;“?X,S 31”52 Vee Cyf;nﬁv’s";ggﬁ"’m”f,;’t;pﬁcggggz j VV[I,/))
a natural parameterization for our analysis is now in termsv) + W for A € R,v € V.

inf 2
atly ol (29)
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(since any finite-dimensional normed vector space is com-Each subspac¥’~* has a 1-dimensional subspaxg/ "

plete). defined in (28) and the local norm aw’—* induces a local
Let f: V — V be a (possibly nonlinear) mapping with thequotient norm on the quotient spawé—? /=%, The global
following symmetry: norm (32) onV induces a global quotient norm oW/ WV,

fo+w)— fv) €W forallveV,weW. (30) mlsc;])):s simply the sum of the local quotient norms (c.f.

We can then unambiguously define the quotient mapping Al = Z H/\f—’i L (33)
_ — I—i s
FoVIW = VIW 7 f(v), Let A € V. The derivativef’(A\) of f : V — V atAis a
which vyields the following commutative diagram: linear mappingf’(\) : V — V satisfying f'(\)W C W. It
P projects down to a linear mapping (\) : V/W — V/W.
V — vV The matrix norm off’()\) induced by the quotient norm (33)
l” J” rof=Ton is given by (c.f. (A.58)): }
7 = T (3
viw —L . vyw ‘ H maxz H Viciamil, L, G4

For a linear mappingl : V — V, condition (30) amounts where the local quotlent matrix norm of the “block”
to AW C W, i.e., A should leavelV invariant; we can then (f’(/\))lﬁ T is given by (c.f. (A.59)):
unambiguously define the quotient mappidg: V/W —

— Ty JHJ
V/W .7 +— Av. H(f/()\))fﬁi J*}jHI—ﬂ
If f: V — V is differentiable and satisfies (30), the (35)
symmetry property (30) implies thgt (z)W C W, hence we = S%{J H )i J—jiv Hl_}l :
can definef’(x) : V/W — V/W. The operation of taking ”ﬁi

derivatives is compapble with projecting onto the.quomen The derivative of the (unnormalized) parallel BP updaté (26
space. Indeed, by using the chain rule and the identity =
is easily calculated:

I o m, one finds that the derivative of the induced mapping
f:V/W — V/W atz equals the induced derivative ¢fat N~ ()

- m = In,\1(S)1na(d)
F@ =F() foralzeV. (31) S, L@, 25,81 (1530, WV (2100) (36)
By Lemma 2,f is a contraction with respect to the quotient x zml\i Ol (i, xp )WV ()
norm if ‘ —r,_ To lighten the notation, we will use Greek subscripts indtea
E;gf)w ‘ H of arguments: letv correspond tas;, 3 to x;, ' to y; andy

0 1\ (,;), for example, we ertehf\‘(:cl\Z) ash[,\ Taking

Using (29) and (31), this condition can be written morf-he global quotient norm (34) of (36) yields:

explicitly as: \
/AH: I (1) Broi g (BN
sup sup inf |f'(x) v+ ] <L [FO0] = s 32 s (20 Brrs ()
zeV Hl;ﬁ‘él (37)
where
. J—j
I\t
B. Constructing A Norm Ow Z %ﬁ, hiy \i ( )

Biig—i(B™N(N) = - (38)

Whereas in the binary case, each messdgé was param- IR 1\1( N
eterized by a single real number, the messages are|Aigw s apt I—i
dimensional vectora " (with components\/~* indexed by Note thatB; .; ;_.; depends on via the dependence &f \’

a € ;). In extending the/;-norm that proved to be useful inon A (c.f. (27)). We will for the moment simplify matters by
the binary case to the more general case, we have the freed@®uming thah can be any vector iv, and later discuss the
to choose the “local” part of the generalizégnorm. Here more careful estimate (whevec f™(V)):

we show how to construct such a generalization of the IV ) I\

norm and its properties; for a more detailed account of the bup Bris—;(h ! W) < hf\‘iﬁo Bii,i=i (W), (39)
construction, see Appendix A ) Deflnlng the matrixA by the expression on the r.h.s. and using

The “global"‘vector spac® is the direct sum of the f‘IocaI“ (35) and (29), we obtain:
subspaced’’ . Suppose that for each subspagé?, w ’

i — Niy _
have a local norm|-||,_,. A natural generalization of the Al g—j = }ISSPOBIHi,JHj(h V) =
¢1-norm in the binary case is the following global norm ¥n S > Z
o X Vag v
I =2 I (32 s oswp o Wb i
I—i ' hV>0 H”ﬁvlﬁ;lwew 252, waﬁv I—i
J—j

It is easy to check that this is indeed a normn (40)
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I
for I — i andJ — j such thatj € I\ i and.J € N; \ I. m@—)a :/)7' D]
Surprisingly, it turns out that we can calculate (40) ariealty U
if we take all local norms to b&,, norms. We have also
tried the/, norm and the/; norm as local norms, but were T\{igy =7
unable to calculate expression (40) analytically in thesses. m

Numerical calculations turned out to be difficult because of

the nested suprema. Fig. 2. Part of the factor graph relevant in expressions, (#&) and (47).
Herei,j € T with ¢ # j, andJ € N; \ I.

C. Local/,, Norms

Take for each local nornj-|,_; the (s norm onV!~i = which is defined fori, j € I with i # j and wherey! ;_is
R¥:. The local subspac®/’— is spanned by the vectdr:=  shorthand for)! (z; = o, z; = B,xp iy = 7); see Fig. 2
(1,1,...,1) € € R%. The local quotient norm of a vecterc for an illustration.

V!~ is thus given by Now combining (37), (39) and (45), we finally obtain:
I9ll;—s = Iolloe = inf flo+wl] [P = 7o) <wex ¥ v
1 (41) T IEN\Tiel\j
=— sup |vg— V|-
2 a,a’ €X;

Applying Lemma 2 now yields thaf is a contraction with
For a linear mapping4 : yJ—i _, YI—i that satisfies respect to the quotient norm On/W if the right-hand side is
AW/—i C WI=i the induced quotient matrix norm (35)strictly smaller than 1.

is given by Consider the mapping : V/W — V that maps) to the
. o normalized\ € V), i.e., such that||exp A’ ||, = 1 for all
|A]l;=) = sup |40 components! — i. If we take for f the ¢;-normalized BP
VJH‘] . ] . . .
Hvl\ < update (in the log-domain), the following diagram commutes
f
= sup < Ssup Z aff — /[3 'Ug (42) v v
75?{"1 el I+ Jn s=noTex
== sup Z|Aaﬁ Aag] vow —L— yw

a,a’ €X;
Since bothr andn are continuous, we can translate conver-

Fixing for the moment/ — ¢ and J — j (such thatj € gence results forf back to similar results forf. We have
I'\iandJ € N; \ I) and dropping the superscripts from theyroved:

notation, using (42), we can write (40) as Theorem 3:If

Z Z'y wa,@'\/hﬁ’)’ o ny 'wa’ﬂvhﬁ’)’ Inax Z Z 1, (46)
Zﬁ Z'y Vagylon Zﬁ Z'y Vo gy 3y T IeN\Jiel\s

Interchanging the two suprema, fixing (for the moment)
and o/, deflmngwﬁ =Ygy /Y05, AN hg = hgr Yo gy
noting that we can assume (without loss of generality) that
is normalized in¢; sense, the previous expression (apart from

sup - Ssup
h>0 2 a,a’ €X;

BP converges to a unique fixed point irrespective of thedhiti
messages. O
Now we can also generalize Corollary 3:

Theorem 4:If the spectral radius of the matrix

the 5 sup,, ) simplifies to Arig—i = I (D1naGIN @', ), (47)

P is strictly smaller than 1, BP converges to a unique fixed {poin
sup Z Z By ( ﬁ - 1)‘ (43) irrespective of the initial messages.

Hhﬁo, A By Proof: Similar to the binary pairwise case; see Theorem

10 in Appendix A for details. O
In Appendix B we show that this equals Note that Theorem 3 is a trivial consequence of Theorem
4, since the/y-norm is an upper bound on the spectral radius.

(=) |

2 sup sup tanh log (44) However, to prove the latter, it seems that we have to go
B#B v Vg through all the work (and some more) needed to prove the

We conclude that if we take all local norms to be the former.

norms, thend;_; ;. ; equals
. D. Special Cases
N@',i,j) . . o .
In this subsection we study the implications for two special
hoy Ve (45)
afy Ta'By"

cases, namely factor graphs that contain no cycles and fiee ca
I
lp(x/ﬁv wa[)” ’

of pairwise interactions.

:= sup sup suptanh log
aFta’ B£B v,y
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Assume that each factop! is a nonnegative function
¢! Tlie; X — [0,00). In addition, assume that all factors
involving only a single variable are strictly positive. §hi
can be assumed without loss of generality, since the single-
variable factors that contain one or more zeros can simply
be absorbed into multi-variable factors involving the same
variable. Additionally, for eachl € F consisting of more
than one variable, assume that

Fig. 3. Part of the factor graph in the pairwise case relevan(®8) and
(49). Herek € 9i andj € 07\ k.

1) Trees: Theorem 4 gives us a proof of the WeII-knqwn Vier Vasex o cxn, - W(l‘i,xf\i) > 0. (51)
fact that BP converges on trees (whereas Theorem 3 is not
strong enough to prove that result): These conditions guarantee that strictly positive message

Corollary 5: If the factor graph is a tree, BP converges téémain strictly positive under the update equations (4prees

a unique fixed point irrespective of the initial messages. €asily checks, implying that we can still use the logarittimi
Proof: The spectral radius of (47) is easily shown to bearameterization of the messages and that the derivatble (3
zero in this special case, for any choice of the potentiats. is still well-defined.

2) Pairwise Interactions:We formulate Theorems 3 and The expression for the potential strength (45) can be writte
4 for the special case of pairwise interactions (which corré @ way that is also well-defined if the potential contains
sponds toy taking on only one value), i.e., all factors consist§€ros:
of either_ one or tWO va_lr_iables. For a pair-potentj& = wfjﬁ, N, i, 5)
expression (45) simplifies to (see also Fig. 3)

I I I I
\/waﬁwwa’ﬁ’v’ a \/wa’ﬁwlpaﬁ/v’ (52)

N('(/)ZJ) h 1 ] w(zxjﬁ ;7/5’ (48) ‘= Sup Ssup sup 7 7 I 7
= sup sup tanh | - | log —=— : aral BAB 1 \/ o \/ , »
artal BEH 4 Vg Vg Vo Ve Varp Voupr

Note that this quantity is invariant to “reallocation” ohgie- Which is defmeld fori, j € I with 7 # j and wherey, ;. is
variable factorsy’ or ¢/ to the pairwise factory (i.e., Shorthand for)®(z; = o, 2; = 0, xn\ (i) =7)- _

N(7) = N(igig?)). N(7) can be regarded as a The immediate generalization of Corollary 4 is then as
measure of the strength of the potentid. follows:

The ¢,-norm based condition (46) can be written in the Theorem 5:Under the assumptions on the potentials de-
pairwise case as: scribed above (strict positivity of single-variable fastand

(51) for the other factors): if the spectral radius of the nixat

max max N(@¥) < 1. 49 . .
i€V kedi W) (49) Arig—j =1 (N1pa (N @i 5), (53)

The matrix defined in (47), relevant for the spectral radid&ith N(@!,i,5) defined in (52)) is strictly smaller than 1,
condition, can be replaced by the following| x |D|-matrix BP converges to a unique fixed point irrespective of thedhiti

in the pairwise case: messages. _ -
N Proof: Similar to the strictly positive case. The only
Aijrot = N@7)0;19p (k). (50) slight subtlety occurs in Appendix B where one has to take

a limit of strictly positive factors converging to the desir

For the binary case, we reobtain our earlier results, Singgnheqgative factor and use the continuity of the relevant

N (exp(Jijai;)) = tanh |y expressions with respect to the factor entries to prove that
the bound also holds in this limit. O
E. Factors Containing Zeros 1) Example: Define, fore > 0, the (“ferromagnetic”)

Until now, we have assumed that all factors are strictl‘f/"’“rwIse factory(e) by the following matrix:

positive. In many interesting applications of the Sum-Riaid w(e) = 1 €
Algorithm, this assumption is violated: the factors mayteim = \e 1)

E?Z;;tmljseéhtuo ivglfgsretﬁ??n?r;ei:;?{;dcggév our results “Rdw consider a binary pairwise factor graph, consisting of a
: 9 ) ' . single loop of N binary variables, i.e., the network topology
The easiest way to extend the results is by assuming tha}s—that of a circle. Take for theV — 1 pair interactions

although the factors may contain zeros—the messages &u@wu (for i = 1,2 N — 1) the identity matrices (i.e
guara}ntgeq to remain strictly positive (i.e., the log-rages the above pair factors far = 0) and take for the remaining
remain finite) after each updateEven more general exten- ne 1N} — 4 (e) for somee > 0. Note that the potential

sions with milder conditions may exist, but we believe th tt 1—
. : thiV = 2==< to 1l . Th tral
considerably more work would be required to overcome t% rength'(v(c)) T converges to 1 as| 0. The spectra

. . . &dius of the corresponding matrif;_,; ;—.; can be shown
technical problems that arise due to messages contammg.zeto be equal to ’

1/N
8Additionally, the initial messages are required to be syripbsitive, but p(A) _ l—e
this requirement is easily met and is necessary for obtainiagl P results. 1+e
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which is strictly smaller than 1 if and only &> 0. Hence BP  For the case of binary-1-valued variables, some elementary
converges to a unique fixed pointdf> 0. This result is sharp, algebraic manipulations yield

since fore = 0, BP simply “rotates” the messages around sinh 2| Ji)|

without changing them and hence no convergence occurs Cj; = sup Y
(except, obviously, if the initial messages already cquoesl w0, CO8h 2J55 + cosh 2(0i + 3> pean ; Tk k)

to the fixed point of uniform messages). _ tanh(|Jy;| — Hij) 4 tanh(|J;;| + Hj)
2
V. COMPARISON WITH OTHER WORK with
In.this sect.ior.1 we explore the relations of our results with H;j = inf |0; + Z zrJik| -
previously existing work. Foig rny

2) BP Convergence via Simon’s ConditioBimon’s con-
A. Comparison With Work Of Tatikonda And Jordan dition is a sufficient condition for Dobrushin’s conditiosee
In [14], [15], a connection is made between two seemingRFoposition 8.8 in [23]). This leads to a looser, but morelgas
different topics, namely the Sum-Product Algorithm on therifiable, bound:
one hand and the theory of Gibbs measures [23] on theTheorem 7:For pairwise (positive) factors, BP converges
other hand. The main result of [14] states that BP converg®sa unique fixed point if

uniformly (to a unique fixed point) if the Gibbs measure on 1 ij
the corresponding computation tfeis unique. max ( sup sup log > <1
This is a remarkable and beautiful result; however, the B jeoi 2 a0l 5.6 a’ﬁ/
guestion of convergence of BP is replaced by the question 0

of uniqueness of the Gibbs measure, which is not triviak js not difficult to show that this bound is weaker than (49).

Fortunately, sufficient conditions for the uniqueness & thrrthermore, unlike Dobrushin’s condition and Corollaryit4
Gibbs measure exist; the most well-known @ebrushin's jqe5 not take into account single-variable factors.

conditionand a weaker (but more easily verifiable) condition
known asSimon’s conditionIn combination with the main ) i
result of [14], they yield directly testable sufficient caimhs B- Comparison With Work Of Ihleet al.
for convergence of BP to a unique fixed point. For reference,In the recent and independent work [16] of Ihketral, a
we will state both results in our notation below. For detailsnethodology was used which is very similar to the one used in
see [14], [15] and [23]. Note that the results are valid fa ththis work. In particular, the same locél, quotient metric is
case of positive factors consisting of at most two variables used to derive sufficient conditions for BP to be a contractio
1) BP Convergence via Dobrushin’s ConditiorDefine In the work presented here, the Mean Value Theorem (in the
Dobrushin’s interdependence matras theN x N matrix C  form of Lemma 1) is used in combination with a bound on the
with entries derivative in order to obtain a bound on the convergence rate
K in (8). In contrast, in [16] a direct bound on the distance of
Cij 7= sup sup 7 Z |P(x; | zonj, ;) — Pxi |wa0;,75)|  two outgoing messages is derived in terms of the distance of
oini w55 © g, (54) two different products of incoming messages (equation i{13)
[16]). This bound becomes relatively stronger as the digtan
of the products of incoming messages increases. This has the
%dvantage that it can lead to stronger conclusions about the
effect of finite message perturbations than would be passibl

for j € 0i and 0 otherwise.
Theorem 6:For pairwise (positive) factors, BP converge
to a unique fixed point if

max Cij < 1. with our bound, based on the Mean Value Theorem. However,
i€V ; for the question otonvergencethe relevant limit turns out to
Proof: For a proof sketch see [15]. For the proof obe that ofinfinitesimalmessage perturbations, i.e., it suffices
Dobrushin’s condition see chapter 8 in [23]. O to study the derivative of the BP updates as we have done
We can rewrite the conditional probabilities in terms ofiere.
factors: In the limit of infinitesimal message perturbations, the

i ii i fundamental bound (13) in [16] leads to the following measur

W ()6 (1) Tieon; ¥ (2) . (13)in [16] 9

P(z;|zon , x;) = i _ — . of potential strength:
U 2 V@)Y (i) eon ; ¥ (wik)

()

Note that the complexity of the calculation of this quantity D(") := tanh (; (Sup sup log v ob )) .

is generally exponential in the size of the neighborhood ool ] B

dj, which may prohibit practical application of Dobrushin’sUsing this measure, Ihlet. al derive two different conditions

condition. for convergence of BP. The first one is similar to our (49) and
0 _ o o _ the second condition is equivalent to our spectral radigslte
The computation tree is an “unwrapping” of the factor grapthwespect

to the Sum-Product Algorithm; specifically, the computaticeetstarting at (50),‘except that in bOth .COI’IQitiOI’]B/:(w”) i§ used i_nStead of
variablei € V consists of all paths starting athat never backtrack. D(y"). The latter condition is formulated in [16] in terms of
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the convergence properties of an iterative BP-like alparit
The equivalence of this formulation with a formulation it
terms of the spectral radius of a matrix can be seen frc
the fact that for any square matrik, p(A) < 1 if and only if
lim,, .., A™ = 0. However, our result also gives a contractio
rate, unlike the iterative formulation in [16].

Thus, the results in [16] are similar to ours in the pairwis
case, except for the occurrence Bf%) instead ofN (7).
It is not difficult to see thatV(y¥) < D(v'/) for any pair
factor+%; indeed, for any choice of, 3, v, 6:

o] ot = (svr) (s5v.r)

Thus the convergence results in [16] are similar to, but weal
than the results derived in the present work.

After initial submission of this work, [17] was published
which improves upon [16] by exploiting the freedom of choic

of the single-variable factors (which can be “absorbed’ro a

arbitrary amount by corresponding pair factors). This et

11

2

15-

05

y
i

0
(2]

Fig. 4. Comparison of various BP convergence bounds for thedannected
N = 4 binary Ising model with uniform coupling and uniform local field

an improved measure of potential strength, which turns out(a) Heskes’ condition (b) Simon’s condition (c) spectraliua condition

to be identical to our measur® (/). Thus, for pairwise,
strictly positive potentials, the results in [17] are e@lint

(d) Dobrushin’s condition (e) improved spectral radius dtod for m = 1
(f) improved spectral radius condition fen = 5 (g) uniqueness of Gibbs’
measure condition. See the main text (section VI-A) for mordasaqtion.

to the results (49) and (50) presented here. Our most general

results, Theorems 3, 4 and 5 and Corollary 4, are not pres
in [17].

C. Comparison With Work Of Heskes

ent

of the parameters. First we study the case of a completely
uniform model (i.e., full connectivity, uniform couplingand
uniform local fields). Then we study nonuniform couplings
Ji;, in the absence of local fields. Finally, we take fully random

models in various parameter regimes (weak/strong locadijel

ponditions for th.e uniqueness of the BP fixed point. !S uspsqronglweak ferromagnetic/spin-glass/anti-ferroméigneou-
in [18]. By studying the Bethe free energy and exploiting thﬁlings).

relationship between properties of the Bethe free energly an
the BP algorithm, conclusions are drawn about the uniquen
of the BP fixed point; however, whether uniqueness of t
fixed point also implies convergence of BP seems to be anThe fully connected Ising model consisting of binary
open question. We state the main result of [18] in our natatio=1-valued variables with uniform coupling$ and uniform
below. local field 6 is special in the sense that an exact descrip-

The following measure of potential strength is used in [18}ion of the parameter region for which the Gibbs mea-

;&; Uniform Couplings, Uniform Local Field

ForI e F, let

wr 1= supsup

2

(1og¢l(x1) + (] = 1) log " ()

- Z log " (', xz)>
iel

The potential strength is then definedgs:= 1 — e~ “7.

Theorem 8:BP has a unique fixed point if there exists a
“allocation matrix” X; between factord € F and variables
1 € V such that

1) Xp>0forall I € i€l

2) (1 —O'[)maXZ'GIX]i-i-U[ZiE]XH <lforalIeF;

3) ZIGNi X > |N;j|—1forallieV.

Proof: See Theorem 8.1 in [18].

The (non)existence of such a matrix can be determined us
standard linear programming techniques.

VI. NUMERICAL COMPARISON OF VARIOUS BOUNDS

sure on the computation tree is unique, is available. Using
the results of Tatikonda and Jordan, this yields a strong
bound on the parameter region for which BP converges
to a unique fixed point. Indeed, the corresponding com-
putation tree is a uniform Ising model on a Cayley tree
of degree N — 2, for which (semi-)analytical expressions

for the paramagnetic—ferromagnetic and paramagnetie—ant

I]‘]erromagnetic: phase transition boundaries are known (see

section 12.2 in [23]). Since the Gibbs measure is known
to be unique in the paramagnetic phase, this gives an exact
description of the(J, #) region for which the Gibbs measure
on the computation tree is unique, and hence a bound on BP
convergence on the original model.

In Fig. 4 we have plotted various bounds on BP convergence
in the (J,0) plane for N = 4 (other values ofN yield
'Eﬂgalitatively similar results). The gray area (g) marksioag
where the Gibbs measure on the computation tree is not
unique; in the white area, the Gibbs measure is unique and
hence BP is guaranteed to converge. Note that this bound is

In this subsection, we compare various bounds on binasyly available due to the high symmetry of the model. In [24]

pairwise graphical models, defined in (5), for various chsic

it is shown that parallel BP does not converge in the lower
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toroidal grid (i.e., with periodic boundary conditions) size

09 10 x 10. The couplings were random independent normally
distributed nearest-neighbor couplings ~ N (Jo,0,?), the
local fields weref; = 0. Let (r;,$,) be the polar coordi-
nates corresponding to the Cartesian coordin@lgss ;). For
various anglesy; € [0,7], we have determined the critical
radius r; for each bound. The results have been averaged
over 40 instances of the model and can be found in Fig. 5.
The lines correspond to the mean bounds, the gray areas
are “error bars” of one standard deviation. The inner area
(for which the couplings are small) bounded by each line
means ‘“convergence”, either guaranteed or empirical (thus
the larger the enclosed area, the tighter the bound). From
bottom to top: the thin solid line (a) corresponds with Hesske
result (Theorem 8), the dash-dotted line (b) with Dobru'shin

o5 condition (Theorem 6), the dotted line (c) corresponds with
the /;-norm based condition Corollary 2, the dashed line (d)

Fig. 5. Comparison of various bounds for BP convergence fmidal Ising With the spectral radius condition Corollary 3 and the thick

model of sizel0x 10 with normally distributed couplingd;; ~ N'(Jo,o5%)  solid line (€) with the empirical convergence behavior of BP

and zero local fields. (a) Heskes' condition (b) Dobrushietmdition (C) We conclude from Fig. 5 that the spectral radius condition

£1-norm condition (d) spectral radius condition (e) empiricanvergence

boundary. See the main text (section VI-B) for more explamatio improves upon the;-norm based condition for nonuniform

couplings and that the improvement can be quite substantial

] ] . . For uniform couplings (and zero local fields), both conditio
(anti-ferromagnetic) gray region. In the upper (ferrometn)  coincide and it can be proved that they are sharp [25].
region on the other hand, parallel BP does converge, but it

may be that the fixed point is no longer unique.

The various lines correspond to different sufficient congfe- Fully Random Models
tions for BP convergence; the regions enclosed by two linesFinally, we have considered fully connected binary paiewis
of the same type (i.e., the inner regions for whidhis graphical models with completely random couplings and lo-
small) mark the regions of guaranteed convergence. Theylighcal fields (in various parameter regimes). We drew random
dotted lines (a) correspond with Heskes’ condition, Theo8 couplings and local fields as follows: first, we drew i.i.d.
The dash-dotted lines (b) correspond with Simon’s congjtiorandom parametersy, o s, 6y, 09 from a normal distribution
Theorem 7. The dashed lines (d) correspond with Dobrushiméth mean 0 and variance 1. Then, for each variablee
condition (Theorem 6), which is seen to improve upon Simonfedependently drew a local field parameter~ N (6, 06%),
condition for§ # 0, but is nowhere sharp. The solid linesand for each paifi,j} we independently drew a coupling
(c) correspond with the spectral radius condition Corgliar parametet/;; ~ N (Jo,0,?).
(which coincides with the/;-norm based condition Corollary For the resulting graphical model, we have verified whether
2 in this case and is also equivalent to the result of [16)arious sufficient conditions for BP convergence hold. If
which is independent of but is actually sharp fo§ = 0. condition A holds whereas condition B does not hold, we say
The heavily dotted lines (e) correspond to Corollary 4 witthat A wins from B. We have counted for each ordered pair
m = 1, the +-shaped lines (f) to the same Corollary with(A4, B) of conditions how often A wins from B. The results
m = 5. Both (e) and (f) are seen to coincide with (c) foffor 50000 random models consisting 8f = 4,8 variables)
small 9, but improve for large. can be found in Table I: the number at rody column B is

We conclude that the presence of local fields makes tite number of trials for which bound wins from boundb.
more difficult to obtain sharp bounds on BP convergenc@n the diagonal 4 = B) is the total number of trials for
only Dobrushin’s condition (Theorem 6) and Corollary 4 takeshich bound A predicts convergence. Theorem 6 is due to
into account local fields. Furthermore, in this case, ouultes[15], Corollary 3 was first published (for the binary case) in
Corollary 4 is stronger than the other bounds. Note that thES] and Theorem 8 is due to [18].
calculation of Dobrushin’s condition is exponential in the Our result Corollary 4 (form = 1) outperforms the other
number of variablesV, whereas the time complexity of ourbounds in each trial. For other values §f we obtain similar
bound is polynomial inN. Similar results are obtained forresults.
higher values ofV.

0.7

061

041

VIl. DISCUSSION

B. Nonuniform Couplings, Zero Local Fields In this paper we have derived sufficient conditions for
We have investigated in more detail the influence of thmnvergence of BP to a unique fixed point. Our conditions are
distribution of the couplingd;;, in the absence of local fields, directly applicable to arbitrary graphical models withatite
and have also compared with the empirical convergence beheariables and nonnegative factors. This is in contrast with
ior of BP. We have taken a binary Ising model on a rectanguldre sufficient conditions of Tatikonda and Jordan and with
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TABLE |

COMPARISON OF BOUNDS(50000TRIALS, FORN = 4 AND N = 8) HH +V — R defined by

v|| = vl A.55
N=4 Th.6 Cor.3 Th.8 Cor.4 o] ; vl ( )
Th. 6, [15] (5779) 170 3564 0 , v check
Cor. 3, [16] 10849 (16458) 13905 0 is a norm opV, as o“ne eas,lyly checks. Let : V — V be a
Th. 8, [18] 338 0 (2553) 0 linear mapping with “blocks’4;; : V; — V; defined by
Cor. 4,m = 1, this work | 13820 3141 17046  (19599) ij c VJ : Avj _ Z Aijvj, Ay‘,j'Uj eV
p
N=38 Th.6 Cor3 Th.8 cor4 forallyj. _ _
Th. 6, [15] (668) 39 597 0 Theorem 9:_The matrix norm ofA induced by the vector
Cor. 3, [16] 507  (1136) 1065 o  horm ||[| is given by:
Th. 8, [18] 0 0 (71) 0 Al = L A.56
Cor. 4,m = 1, this work 972 504 1569  (1640) 1] mjaxz 145113 (A-56)
K3
where 4
the results of Ihler, Fisher and Willsky, which were only |Aill] = sup [ Ay, .
formulated for pairwise, positive factors. We have showsesa H”;ﬁv-gl
. X zll; <
Whe(;_et:_our results are stronger than previously known sefftci Proof: Let vy € Vj, such that|jv|, = 1. Then
conditions.

Our numerical experiments lead us to conjecture that Corol-
lary 4 is stronger than the other bounds. We have no proof for Z Aigv|| = Z 1Airvell;
this conjecture at the moment, apart from the obvious faat th ’ i ‘ )
Corollary 3 is weaker than Corollary 4. To prove that Conmglla <Y Ay < mfxz [ As1l7 -
4 is stronger than Theorem 6 seems subtle, since it is géneral i i
not the case thagt(A) < ||C||, ., although it seems that theNow letv € V such that||v|| = 1. Thenv can be written as
weaker relation||C||, <1 = p(A4) < 1 does hold in the convex combination =Y, |lvx|, U, Where
general. The relation with the condition in Theorem 8 is not )
evident as well. o {ﬁ:ﬂ if v # 0

Vi = k

[ Avg || =

In the binary pairwise case, it turned out to be possible 0 if v, =0.
to derive sufficient conditions that take into account Iocﬂence'
evidence (Corollary 4). In the general case, such an im- '
provement is possible in principle but seems to be more
involved. The resulting optimization problem (essenyid#3)
with additional assumptions oh) looks difficult in general. )
If the variables’ cardinalities and connectivities are Bma < mjaxz [ Asl7 -
the resulting optimization problem can be solved, but wgiti i
down a general solution does not appear to be trivial. Tlieis evident that this value is also achieved for some V
question of finding an efficient solution in the general case with |v| = 1. O
left for future investigation. An illustrative example is obtained by consideriig= RY
The work reported here raises new questions, some tofbe the direct sum oV copies ofR with the absolute value
which have been (partially) answered elsewhere after iialin as norm; then the norm (A.55) dR” is simply the/;-norm
submission of this paper. The influence of damping the Bihd the induced matrix norm (A.56) reduces to (9).
update equations has been considered for the binary pairwisSuppose that eack; has a linear subspadd’;. We can
case in [25], where it was shown that damping has the masinsider the quotient spacs/T; with quotient norms|||, .
effect for anti-ferromagnetic interactions. Furthermdtehas The direct sumW := @, W; is itself a subspace oV,
been proved in [25] that the bounds for BP convergenggelding a quotient space/IV. Forv € V we haver = ), 7;
derived in the present work are sharp in the case of binaayd hence//W = @, (V;/W;). The quotient norm o/ W
variables with (anti-)ferromagnetic pairwise interaogoand is simply the sum of the quotient norms on thg/ W;:
zero local fields, as suggested by Fig. 5. An extension of the

[[Av]| =

> llowll, As

k

<D okl [1AT]
k

results towards sequential update schemes has been given inll7ll == inf ‘[jv+wl = wlglfyz [[vi + will;
[26]. Likewise, in [24] it is shown that Dobrushin’s condii : (A.57)
is also valid for sequential BP. = Zz:wllela/ Jvi +will; = zl: 7zl -
APPENDIXA Let A:V — V be a linear mapping such thatiV’ C W.
GENERALIZING THE {1-NORM Then A induces a lineard : V/W — V/W; since A;;W; C
Let (V;, |||/, ) be afinite collection of normed vector space$V;, each block4,; : V; — V; induces a linear;; : V;/W; —

and letV = @, V; be the direct sum of th&;’s. The function V;/W;, andA can be regarded as consisting of the bloﬁﬁ
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Corollary 6: The matrix norm ofA : V/W — V/W
induced by the quotient nornj-|| on V/W is:

Al = max 37 [[4511 (A58)
where
[l = s Al aso)
lzll, <1

Proof: We can directly apply the previous Theorem to

the quotient spaces to obtain (A.58); because

ZeVy/W;: |z|l; <1} ={zeV;: |lzf|; <1},
we have:
[45]] = sw  [[A57], = sw [[Age]
TEV; /W; Vj
Izl <1 llzll; <1

For a linearA : V' — V such thatAW C W, we define
the matrix| A| with entries|A|,; := ||4;;]|] . Let A, B be two
such linear mappings; then

4Bl = |(4B);

HZAkakj
<0 Al Bl
k

J

< Z HAichkj .
k

= Z'Alik ‘B‘kj
k

hence|AB| < |A||B|. Note that |||A]|, =
generalize Theorem 2:

| 4]| . We can

Theorem 10:Let f : V — V be differentiable and suppose

that it satisfies (30). Suppose further thi{v)| < A for some
matrix 4;; (which does not depend ar) with p(A) < 1. Then
for anyv € V/W, the sequence, f(@),f(@), ... obtained
by iterating f converges to a unique fixed point,.

Proof: Using the chain rule, we have for any =
1,2,... and anyv € V:
|y ()|
= | e ()
1 1
< = [[A™]; -
By the Gelfand Spectral Radius Theorefa}”||, /" — p(A)
for n — oo. Choosee > 0 such thatp(A) + ¢ < 1. For some
N, [|A¥]|, < (p(A) + )N < 1. Hence )(7N)/(17)H <1 for

allv € V/W. By Lemma Z,YN
to the quotient norm oV /1. Now apply Lemma 3. O

is a contraction with respect

IEEE TRANSACTIONS ON INFORMATION THEORY

APPENDIXB
PROOF THAT (43) EQUALS (44)

Let dm be a matrix of positive numbers. Let

Hi={h:hgy >0, hgy =1}

By
1)‘

Define the functiory : H — R by
log wm .
’l/)ﬁ/ ’

B
Theorem 11:
Proof: First note that we can assume without loss of
generality that ally;  are different, because of continuity.
Define

qzjﬁv
h _ "y
z'y: ” <Zﬁ Zv Vs hoy

sup g(h) = 2 sup sup tanh
heH B#B v,

b= l%f 7/~)5»ya by = S;lwp J’B’v’
X :[1;—’1;-{-]7 :X\{zﬁﬁ’yﬁ’f)/}

For ¥ € X, define

Hoi={heM: Y thg,hsy =T},
By
which is evidently a closed convex set. The function

()

obtained by restricting to H\p is convex. Hence it achieves
its maximum on an extremal point of its domain.
Define

Ho = {hEH:#{(@V) :hgy >0} :2}

as thoseh € ‘H with exactly two nonzero components. For
h € Hy, definey_(h) := inf{1),, : hg, # 0} andy, (h) :=
sup{d?m : hgy # 0}. Because of continuity, we can restrict
ourselves to the&s € X, in which case the extremal points of
Hy are preciselyH;, = Hy NHy (i.e., the extremal points
have exactly two nonzero components).

Now

gy : My —R: hHZ

= sup sup gy(h)
veX heHy

= sup sup gw(h)
VEX' heHs,

sup g(h)
heH

= sup sup guw(h)

heHz §_(h)<T<P, (h)
= sup g(h).
he€H>
For thoseh € Hy with components with differents, we
can use the Lemma below. ThHe € H, with components
with equal 3 are suboptimal, since the two contributions in
the sum overy in g(h) have opposite sign. Hence
sup g(h) = 2 sup sup tanh log 1%7 .
heHs B#B’ vy’ 4 by
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