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Abstract— Unfalsified Control is a direct data-driven, plant-
model-free controller design method, which recursively falsifies
controllers that fail to meet the required performance specifi-
cation, making them ineligible to actually control the plant. In
this paper it is shown that sufficient conditions for stability can
be derived for Unfalsified Control with an ellipsoidal Unfalsified
set, Ellipsoidal Unfalsified Control (EUC). These conditions
are: feasibility of the adaptive control problem, discarding of
demonstrable destabilizing controllers and a finite number of
controller switches. The latter is guaranteed by imposing a
maximum volume ratio between two consecutive ellipsoidal
Unfalsified sets and a minimum stepsize on the controller
adjustments.

I. INTRODUCTION

There are numerous motives to support data-driven control
design, e.g., a priori definition of controller complexity,
adaptation to specific disturbances, elimination of model
mismatch/assumptions. A data-driven control design method
focuses on finding a controller, using merely input-output
data of the system. Since these methods do not require a
plant model, the assumptions and conservatism introduced
in the plant modeling step are omitted.
An emerging data-driven control design method is
Unfalsified Control [9]. This data-driven, plant-model-free
control approach recursively falsifies control parameter
sets that fail to satisfy a performance specification, given
measured data and a specified control law. Unfalsified
Control theory was later employed in, e.g., [2], [3], [5], [8],
[11].

Although in early works the parameter space was gridded
(resulting in a finite, but often large, set of candidate
controllers), this restriction was lifted by applying a
quadratic performance specification to a control law, where
the control parameters appear affine [2], [3]. As a result,
a continuous region of unfalsified control parameter sets
can be regarded, hence, with infinitely many controllers. In
Ellipsoidal Unfalsified Control [3], the continuous region
of controllers is described by an ellipsoid, resulting in
simple algebraic equations to describe the entire set (An
introduction to Ellipsoidal Unfalsified Control will be
provided in Section III).

A crucial element for any control design method is
the notion of stability. Especially for a plant-model-free
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control design method, no a priori statements can be made
whether a specific controller is stabilizing the closed loop
system. In [10] it was shown that for adaptive control
systems, sufficient conditions for stability can be derived.
The conditions imply that the adaptive control problem is
feasible, the cost functional is cost-detectable (i.e., the cost
goes to infinity if the controller is unstable) and that the
number of controller switches is finite. The latter condition
is satisfied by imposing a monotone non-decreasing cost
functional which is bounded from above and some minimum
improvement in the cost functional between two consecutive
controller switches. Furthermore, if a continuous set of
controllers is regarded, some neighborhood around a
controller with similar performance is required (hence,
which is falsified simultaneously).

In this paper, the stability results of [4] are extended, to
cover a less restrictive controller selection and a proposed
general candidate controller class. Sufficient conditions to
guarantee the stability of the adaptive control system are
given. The conditions can be summarized as: 1) feasibility of
the adaptive control problem, 2) discarding of demonstrably
destabilizing controllers, and 3) a maximum number of
controller switches.
In this paper, it is shown that conditions 2) and 3) are
fulfilled for Ellipsoidal Unfalsified Control. Hence, with the
basic assumption of feasibility, the Ellipsoidal Unfalsified
Control adaptive system is guaranteed to be stable.

II. PRELIMINARIES

As in [1], an adaptive controller is defined as a controller
with adjustable parameters and a mechanism for adjusting
the parameters. An adaptive control system is a control
system with an adaptive controller. The candidate controller
set is the set composed by time-invariant controllers with
any of the possible parameters [12]. The adaptive control
problem is feasible, if the goals for the adaptive control
system (e.g., stabilization, performance) are satisfied by a
region E of controllers in the (continuously distributed)
candidate controller set. Region E has a volume of at least
e > 0, but is unknown a priori.
As in [6], a controller is considered Stably Causally-Left-
Invertible (SCLI), if the mapping from the measurement data
to the corresponding fictitious reference signal (see Section
III-C) is causal and stable [6, Definition 9], i.e., if the
fictitious reference signal is uniquely determined by past and
present measurement data and if this mapping is stable.

Proceedings of the 45th IEEE Conference on Decision & Control
Manchester Grand Hyatt Hotel
San Diego, CA, USA, December 13-15, 2006

WeA13.3

1-4244-0171-2/06/$20.00 ©2006 IEEE. 453



III. ELLIPSOIDAL UNFALSIFIED CONTROL

In this research, the Ellipsoidal Unfalsified Control (EUC)
approach is considered, as developed in [3]. In this section,
an overview of this data-driven, plant-model-free controller
design method is given.

A. Data Acquisition

The only “plant information” required by EUC is mea-
surement data. The EUC algorithm is applied each time new
measurement data becomes available.

B. Candidate Controllers

A “cloud” of candidate controllers is selected, the candi-
date controller set. When measurement data is available, can-
didate controllers might get falsified and the approximation
of the set of currently unfalsified controllers, the Unfalsified
set, is used as candidate controller set.

Definition 1: The True Unfalsified set is the set of con-
trollers, which are currently unfalsified by all available
measurement data.

Definition 2: The Unfalsified set is the approximation of
the True Unfalsified set.

The need for gridding of the candidate controllers is
overcome by describing the Unfalsified set with a continuous
region. In Ellipsoidal Unfalsified Control, the Unfalsified set
is defined by an ellipsoid, see [2], which allows for the
evaluation of the entire set with simple algebraic equations.
The Unfalsified set at time tk−1 is described by the ellipsoid

E(tk−1) = (1)

{θ | (
θ − θc(tk−1)

)T Σ−1(tk−1)
(
θ − θc(tk−1)

) ≤ 1},
with θ ∈ R

p the controller parameters, θc(tk−1) ∈ R
p the

center of the ellipsoid and Σ(tk−1) ∈ R
p×p the matrix,

which describes the shape of the ellipsoid.

C. Fictitious Reference

The fictitious reference is a fictitious signal, used to eval-
uate the performance of a controller. For a given controller,
the fictitious reference is constructed by analyzing which
reference would have resulted in exactly the measured input
and output of the plant, if that controller would have been
implemented.

Adaptation mech.

K(θ̌(tk), r(tk), y(tk), z−1) Plant
r(tk)

u(tk)

y(tk)

Fig. 1: General setup of closed loop feedback system with
adaptation of controller parameters

As an example, consider the general closed loop adaptive
feedback system as given in Fig. 1. Here, r(tk) is the (actual)

reference, u(tk) is the plant input and y(tk) is the plant
output. The currently implemented controller parameters are
denoted with θ̌(tk) and z−1 is the discrete time shift operator
(z−1 ∗ tk = tk−1, with ∗ a discrete-time convolution).
Assume that plant input u(tk) can be written as

u(tk) = Kr(θ̌(tk), z−1)∗r(tk)+Ky(θ̌(tk), y(tk), z−1). (2)

Then, for a given u(tk) and y(tk), the controller parameter
dependent fictitious reference rfict(θ, tk) is given by

rfict(θ, tk) = Kr(θ, z−1)−1 ∗ (
u(tk) − Ky(θ, y(tk), z−1)

)
.

(3)
As can be seen from (2) and (3), for θ = θ̌(tk), rfict(θ, tk)
exactly results in the actual reference r(tk), provided that
Kr(θ) is Stably Causally-Left-Invertible. Of course, the
restriction that Kr(θ, z−1) is invertible limits the selection
of candidate controllers. However, still a large class of
controllers is available.

Let the controller structure be chosen such, that rfict(θ, tk)
is affine in the controller parameters θ. Furthermore, let
rfict(θ, tk) depend on u(tk), y(tk) and filtered versions
thereof. Additionally, let rfict(θ, tk) depend on nonlinear
functions of y(tk). Then, a general notation of rfict(θ, tk)
is given by

rfict(θ, tk) =

⎡
⎢⎢⎣

u(tk)
Λu(z−1) ∗ u(tk−1)
Λy(z−1) ∗ y(tk)

f(u(tk−1), y(tk), z−1)

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

θ1

θ2

θ3

θ4

⎤
⎥⎥⎦ (4)

= w(u(tk), y(tk), z−1)T θ, (5)

where Λu(z−1) and Λy(z−1) are vectors of stable linear
filters and f(u(tk−1), y(tk), z−1) is a vector with nonlinear
functions. For θ̌1 �= 0, (4) uniquely defines the control input
u(tk).
The concept of a fictitious reference enables the evaluation
of controllers, even if they were not in the loop at the time
of the measurement, as is shown next.

D. Unfalsification

Given a desired performance specification, and exploiting
the fictitious reference, a region can be constructed of
controller parameters which are unfalsified by current
measurement data.

Let the performance specification be defined as a time-
dependent maximum allowed tracking error ∆(tk), as in [3].
Then the region of controller parameters, which is unfalsified
by current measurement data at time tk, is given by

U(tk) = {θ | −∆(tk) ≤ (6)

Gm(z−1) ∗ rfict(θ, tk) − y(tk) ≤ ∆(tk)}
= {θ | −1 ≤ (7)

Gm(z−1) ∗ w(u(tk), y(tk), z−1)
∆(tk)

T

θ − y(tk)
∆(tk)

≤ 1},
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with Gm(z−1) the desired closed loop dynamics. From (7)
it is clear to see, that U(tk) defines two parallel half-spaces
in the controller parameter space θ.

E. Update Unfalsified set

The region of controllers, that is unfalsified by all
available measurement data (hence, including all past and
present measurement data), is given by the intersection of
the candidate controllers E(tk−1) from section III-B (the
controllers that are unfalsified by past measurement data)
and the controllers U(tk) from section III-D (the controllers
that are unfalsified by the present measurement data).

To maintain an ellipsoidal Unfalsified set, the intersection
E(tk−1) ∩ U(tk) is approximated by a minimum-volume
outer-bounding ellipsoid E(tk). Since U(tk) defines two
parallel half-spaces, this approximation can be computed
analytically, as was shown in [7]. To compute E(tk), define
the variables

yk =
y(tk)
∆(tk)

(8)

φk =
Gm(z−1) ∗ w(u(tk), y(tk), z−1)

∆(tk)
(9)

g = φT
k Σ(tk−1)φk (10)

a+ = max
(yk − φT

k θc(tk−1) − 1√
g

,−1
)

(11)

a− = max
(−yk + φT

k θc(tk−1) − 1√
g

,−1
)
. (12)

If a+a− ≥ 1/p (Recall from (1) that p is the number
of controller parameters), E(tk−1) is the minimum-volume
outer-bounding ellipsoid of the intersection, hence, E(tk) =
E(tk−1). Consequently, Σ(tk) = Σ(tk−1) and θc(tk) =
θc(tk−1), with Σ(tk) and θc(tk) as in (1).
For a+a− < 1/p, if a+ �= a−, E(tk) is defined by

Σ(tk) = δ

(
Σ(tk−1) − σ

g
Σ(tk−1)φkφT

k Σ(tk−1)
)

(13)

θc(tk) = θc(tk−1) +
σ(a+ − a−)

2
√

g
Σ(tk−1)φk, (14)

with

δ =
p2

p2 − 1

(
1 − a2

+ + a2
− − ρ/p

2

)
(15)

σ =
1

p + 1
·[

p +
2

(a+ − a−)2
(
1 − a+a− − ρ

2

)]
(16)

ρ =
√

4(1 − a2
+)(1 − a2−) + p2(a2

+ − a2−)2. (17)

If a+ = a− = a, σ in (16) becomes unbounded and,
therefore, is defined by

lim
a+→a−

σ =
1 − pa2

1 − a2
. (18)

F. Controller Selection

A controller, that is unfalsified by the available measure-
ment data, is to be selected to be inserted in the loop. Or in
other words, one controller inside E(tk−1) ∩ U(tk) is to be
implemented.
Consider the controller selection algorithm

θ̌(tk) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ̌(tk−1) if − 1 ≤ γ ≤ 1
α−1−γc

γ−γc
θ̌(tk−1)+(

1 − α−1−γc

γ−γc

)
θc(tk) if γ < −1

α 1−γc

γ−γc
θ̌(tk−1)+(
1 − α 1−γc

γ−γc

)
θc(tk) if γ > 1

,

(19)
with θ̌(tk−1) the currently implemented controller parame-
ters (as in (2)), and

γ = φT
k θ̌(tk−1) − yk (20)

γc = φT
k θc(tk) − yk. (21)

For |γ| > 1, θ̌(tk−1) /∈ U(tk) and, hence, θ̌(tk−1) is falsified
by current measurement data.
The parameter α ∈ [0, 1] determines the stepsize of the
switching algorithm. Choosing α = 0 corresponds to switch-
ing to the center of E(tk), which is the point furthest from the
bound of the Unfalsified set, but which might be considered
as aggressive switching. To decrease aggressiveness, up to
α = 1 might be chosen, which corresponds to a point on the
boundary of U(tk). In Fig. 2, the difference between α = 0
and α = 1 is schematically depicted.

�
�
�
�
�
�
�
�� U(tk)

�����������

�

θ̌(tk−1)

�θ̌(tk) |α=1

�
θc(tk)
θ̌(tk) |α=0

�
�
�
�
�
�
�
��U(tk)

Fig. 2: Example of cautious (α = 1) versus aggressive (α =
0) switching

IV. STABILITY OF EUC

In the previous section, the Ellipsoidal Unfalsified Control
algorithm was introduced. In this section, the stability of
an adaptive control system with the EUC algorithm is
addressed. It is shown that, with some extensions, the
stability of the adaptive control system can be guaranteed.
At the end of this section, the results are summarized in a
theorem.

Ellipsoidal Unfalsified Control only considers the external,
or input-output, behavior of a plant, in contrast to the
internal, or state-space, behavior. This naturally leads to the
stability concept of bounded-input bounded-output stability.

Definition 3 (BIBO stability): A system G with input v(t)
and output w(t) is bounded-input bounded-output (BIBO)
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stable, if, for every v(t) ∈ {|v(t)| ≤ αs < ∞, ∀t}, it holds
that w(t) ∈ {|w(t)| ≤ βs < ∞, ∀t} for some constants αs

and βs. Otherwise, the system is said to be unstable.
In [10] and [12], conditions are given for an adaptive

control system to be stable. In short, these boil down to the
next lemma

Lemma 1: Sufficient plant-model-free conditions to guar-
antee stability of an adaptive control system are:

1) The adaptive control problem is feasible
2) It is detected when a controller is destabilizing the

adaptive control system, without assumptions on the
plant. Controllers, that are demonstrably destabilizing
from measurement data, are ineligible for implemen-
tation / discarded from the candidate set

3) The maximum number of controller switches is lim-
ited.

In the remainder of this section, the 3 conditions from
Lemma 1 will be elaborated upon for Ellipsoidal Unfalsified
Control. It should be noted that all considerations regard
BIBO stability.

A. Feasibility

Condition 1 is fulfilled by assumption. The controller
structure is chosen rich enough, such that it is likely that
this assumption will be fulfilled. No information is available
(to the authors knowledge) that predicts the feasibility of
an adaptive control system, if no extensive plant-model is
available.

B. Discarding of demonstrably destabilizing controllers

Condition 2 is enforced by considering only SCLI
controllers, that, in combination with the performance
specification, discard demonstrably destabilizing controllers.

1) SCLI: Consider the general notation of the EUC
controller structure, as given in (4). Observe that, for
|u(tk)|, |y(tk)|, |f(u(tk−1), y(tk), z−1)| ≤ αs < ∞ ∀tk,
Λu(z−1), Λy(z−1) stable, and |θ̌i| < ∞ ∀tk, i = {1, 2, 3, 4},
θ̌1 �= 0, then |rfict(θ, tk)| ≤ βs < ∞ ∀tk for some αs, βs.
From this observation, it can be concluded that the fictitious
reference signal is uniquely determined by past and present
measurement data and that this mapping is stable. Therefore,
the EUC controller structure (4) is Stably Causally-Left-
Invertible.

2) l∞ performance specification: Consider the perfor-
mance specification, as given in (6). For unfalsified con-
trollers, it follows that

|y(t) − Gm(z−1) ∗ rfict(θ, tk)| ≤ ∆(tk). (22)

From Section IV-B.1 it is concluded that |rfict(θ, tk)| ≤
βs ∀tk for some βs < ∞. Then, for a stable reference
model Gm(z−1), it holds that |Gm(z−1) ∗ rfict(θ, tk)| < ∞.
Furthermore, since ∆(tk) < ∞ ∀tk, for an unfalsified

controller K it holds that

|y(tk)| − |Gm(z−1)∗rfict(θ, tk)|
≤ |y(t) − Gm(z−1) ∗ rfict(θ, tk)|
≤ ∆(tk) ⇒

|y(tk)| ≤ |Gm(z−1) ∗ rfict(θ, tk)| + ∆(tk) < ∞. (23)

From (23) it can be concluded, that |y(t) − Gm(z−1) ∗
rfict(θ, tk)| ≤ ∆(tk) is a sufficient condition to not falsify
the stability of controller K. Hence, for the controllers in
the (True) Unfalsified set, it can be concluded that the BIBO
stability is unfalsified by measurement data and that the
EUC controller structure (4) and performance specification
(6) discard controllers, that are demonstrably destabilizing
from measurement data.

C. Limited number of switches

Ellipsoidal Unfalsified Control uses an ellipsoidal de-
scription of the Unfalsified set, which is continuous in the
controller parameter space. Hence, an infinite number of
candidate controllers is considered. The proof that condition
3 of lemma 1 is fulfilled for EUC is split in 2 parts: first
it is shown that, with a minor constraint, a finite number
of ellipsoidal Unfalsified sets can be guaranteed. Then it is
shown that, again with a minor constraint, a finite number of
controller switches per ellipsoid can be guaranteed. Hence,
by combining these 2 parts, a finite number of overall
controller switches can be guaranteed.

1) Limited number of ellipsoids: Note, that the volume of
the ellipsoidal Unfalsified set is monotonically decreasing.
Furthermore, the volume is lower bounded by e, the volume
of the region E by assumption of feasibility, see Section
II. Here, it is shown that a maximum volume ratio between
two consecutive ellipsoids implies a maximum number of
ellipsoids.

Decrease of volume
To address the decrease in volume of two consecutive
ellipsoids, consider the volume ratio

Lemma 2: [4, Lemma 3] The volume ratio δV (tk) be-
tween two consecutive ellipsoids for a+ �= a− is given by

δV (tk) =
√

δp(1 − σ). (24)
Corollary 1: [4, Corollary 1] The volume ratio δV (tk)

between two consecutive ellipsoids is given by

δV (tk) =

√
δp

(
1 − 1 − pa2

1 − a2

)
(25)

for a+ = a− = a.

From Lemma 2 it can be concluded that the volume of the
ellipsoids decreases when δp(1 − σ) < 1.

Conditions for a finite number of ellipsoids
The volume ratio between two consecutive ellipsoids is
given in (24) and (25). Consider a maximum volume ratio
δV ≤ ν for some positive ν < 1. From (24), it can be seen
that a sufficient condition to ensure δV ≤ ν between two
consecutive ellipsoids is to require that a+a− ≤ ε(ν)/p for
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some ε(ν) < 1. The value of ε(ν) can be derived from (24).
It is observed, that for ε(ν) close to 1,

arg max
a+a−=ε(ν)/p

δV (tk) =
{ {a+ = −1, a− = −ε(ν)/p}

{a− = −1, a+ = −ε(ν)/p}
(26)

for a fixed p.
If ε(ν)/p < a+a− ≤ 1/p, the additionally falsified region is
neglected and the Unfalsified set is not changed.

To express the maximum number of ellipsoidal Unfalsified
sets, consider the volume V (t0) of the initial Unfalsified
set, which is the largest possible volume of the Unfalsified
set. The volume of the nth ellipsoid is upperbounded by
V (t0)νn. Next, consider the smallest possible volume e of
the Unfalsified set, which is given by the volume of region
E. Then the maximum number of ellipsoids ne is limited by

νne =
e

V (t0)
⇒

ne =
log(e/V (t0))

log(ν)
. (27)

2) Limited number of switches per ellipsoid: To limit
the number of controller switches, first observe that several
controllers can be chosen consecutively within the same el-
lipsoid, as a function of the location of U(tk). However, this
can only continue while a+a− > ε(ν)/p, for otherwise the
ellipsoid is to be updated. Next, observe that for controller se-
lection algorithm (19), all consecutive controllers for a given
ellipsoid are on the same line segment [θ̌(tk−1), θc(tk)]. By
enforcing a minimum stepsize on the controller adjustments,
this line segment can be divided in a maximum number
of adjustments. Therefore, consider the additional constraint
α ≤ εα on parameter adjustment parameter α from (19), for
some εα < 1:

0 ≤ α ≤ εα < 1. (28)

Then the maximum number of controller switches per ellip-
soid ncspe is given by

ε
ncspe
α = ε(ν)/p ⇒

ncspe =
log(ε(ν)/p)

log(εα)
. (29)

Remark: The maximum numbers of ellipsoidal Unfal-
sified sets and controller switches per ellipsoid, as derived
above, are not concerned with an accurate prediction of the
actual attainable number of controller switches. They merely
serve as a demonstration of the upperbound on the number
of controller switches.

D. Summary and remarks

From Lemma 1 and section IV-A through IV-C, the
following theorem can be deduced:

Theorem 1 (Stability EUC): An Ellipsoidal Unfalsified
Control System is BIBO stable, if

1) the adaptive control problem is feasible
2) the SCLI candidate controllers of (4) are considered,

in combination with the l∞ performance specification
(6)

3) the maximum number of controller switches is limited,
by imposing an ε(ν) < 1 on the update of the ellipsoid
and an εα < 1 on the controller update

Proof: In Section IV-B it is shown, that demonstrably
destabilizing controllers are discarded, when considering
the EUC controller structure (4) and the l∞ performance
specification (6). From the feasibility of the adaptive control
problem, it follows that there exists at all times a region ⊇ E
of candidate controllers, which is unfalsified. As the number
of controller switches is limited by imposing ε(ν) < 1 and
εα < 1, switching will eventually stop, resulting in a fixed
controller that is unfalsified ∀t, hence, that is stable ∀t.

Since the preceding is true for any bounded r(t), it can
be concluded that the stability of the Ellipsoidal Unfalsified
Control system is unfalsified for all bounded r(t), and, hence,
that the Ellipsoidal Unfalsified Control system is stable.

V. SIMULATION

In simulations, the effect of Ellipsoidal Unfalsified Control
has been evaluated. Consider a fourth order plant, as is given
by {

d
dtx = Ax + Bu

y = Cx
(30)

with

A =

⎡
⎢⎢⎣

0 1 0 0
−c/J1 −d/J1 c/J1 d/J1

0 0 0 1
c/J2 d/J2 −c/J2 −d/J2

⎤
⎥⎥⎦ (31)

B =
[
0 1/J1 0 0

]T
(32)

C =
[
0 0 1 0

]
. (33)

The parameter-values are chosen as J1 = 1.56 · 10−4, J2 =
1.95·10−4, d = 0.9·10−3 and c = 8.64. The plant is sampled
at 1 kHz with a zero order hold and an output disturbance
with noise power 10−8 is present.
The controller structure w(u(tk), y(tk), z−1) is chosen as

w(u(tk), y(tk), z−1) =

⎡
⎢⎢⎢⎢⎢⎣

u(tk)
10−3 1+z−1

1−z−1 u(tk)
y(tk)

10−3 1+z−1

1−z−1 y(tk)
y2(tk)

⎤
⎥⎥⎥⎥⎥⎦ . (34)

The last element of w(u(tk), y(tk), z−1) is chosen, to un-
derline that EUC is not limited to linear controllers. The
maximum volume ratio is constrained by setting ε(ν) =
0.99 < 1. This corresponds to ν = 0.999989, which is close
to, but still smaller than, 1.
The reference to track is given by

r(tk) = sign(sin(0.5π(tk)) (35)

and reference model

Gm(z−1) =
2 · 10−4(z−1 + z−2)

1 − 1.96z−1 + 0.9604z−2
. (36)
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The performance bound ∆(tk) is given by

∆(tk) = 0.02 + e−tk . (37)

Here, the lower bound on ∆(tk) is included, to guarantee
feasibility in the presence of a bounded output disturbance.
The algorithm is initialized with

Σ(0) = 104
I5×5 (38)

θ̌(0) = θc(0) =
[
100 0 1 0 0

]T
. (39)

The initial value θ̌(0) corresponds to a P-controller with
gain 0.01 (θ̌3/θ̌1) (which, in fact, is destabilizing the system
due to the phase lag caused by the zero order hold).
The stepsize of the controller parameter update is set to
α = 0 (center of new ellipsoid, see (19)).

In Fig. 3, the tracking error Gm(z−1) ∗ r(tk) − y(tk)
of the EUC adaptive system is shown. Within 10 seconds
the EUC algorithm has found a controller parameter set
which is unfalsified for ∆ = 0.02. In Fig. 4, controller
parameters θ̌(tk) are shown as a function of time, together
with the center of the ellipsoidal Unfalsified set θc(tk). If the
tracking error of Fig. 3 is within the performance bounds,
the controller parameters are unchanged. The center θc(tk)
on the other hand changes almost continuously.
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Fig. 3: Tracking error of plant (30) with EUC with control
structure (34).
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Fig. 4: Plot of the controller parameters θ̌(tk) (black) as a
function of time, together with the center of the ellipsoidal
Unfalsified set θc(tk) (grey).

VI. CONCLUSION

Ellipsoidal Unfalsified Control is a data-driven, plant-
model-free control design method. A key issue in control
design is the notion of stability. Although no a priori state-
ments of the stability of a specific controller can be made
for a data-driven control design method, it is shown that
sufficient conditions exists to guarantee stability of the EUC
adaptive control system.
In this paper, it is shown that sufficient conditions for
Ellipsoidal Unfalsified Control to be stable are 1) feasibility
of the adaptive control problem, 2) Stably Causally-Left-
Invertible candidate controllers, that, in combination with the
�∞ performance specification, discard demonstrable desta-
bilizing controllers and 3) a limited maximum number of
controller switches. The latter is accomplished, by imposing
a minimum decrease on the volume of the Unfalsified set
between two consecutive ellipsoids and a minimum stepsize
on the controller adjustments.
In a simulation example with a fourth order system, the
effectiveness of the proposed method is shown.
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