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SUFFICIENT CONDITIONS FOR STARLIKENESS

V. Ravichandran and Kanika Sharma

Abstract. We obtain the conditions on β so that 1+βzp′(z) ≺ 1+4z/3+
2z2/3 implies p(z) ≺ (2+ z)/(2− z), 1+ (1−α)z, (1+ (1−2α)z)/(1− z),
(0 ≤ α < 1), exp(z) or

√
1 + z. Similar results are obtained by considering

the expressions 1+βzp′(z)/p(z), 1+βzp′(z)/p2(z) and p(z)+βzp′(z)/p(z).
These results are applied to obtain sufficient conditions for normalized
analytic function f to belong to various subclasses of starlike functions, or
to satisfy the condition | log(zf ′(z)/f(z))| < 1 or |(zf ′(z)/f(z))2 −1| < 1
or zf ′(z)/f(z) lying in the region bounded by the cardioid (9x2 + 9y2 −
18x + 5)2 − 16(9x2 + 9y2 − 6x + 1) = 0.

1. Introduction

Let A denote the class of analytic functions in the unit disc D = {z ∈ C :
|z| < 1} of the form f(z) = z +

∑

∞

k=2 akz
k. An analytic function p(z) =

1 + cz + · · · is a function with a positive real part if Re p(z) > 0. The class
of all such functions is denoted by P . For two functions f and g analytic in
D, f is subordinate to g, denoted by f ≺ g, if there is an analytic function w
in D with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). In particular,
if the function g is univalent in D, then f ≺ g is equivalent to f(0) = g(0)
and f(D) ⊂ g(D). Noticing that several subclasses of univalent functions are
characterized by the quantities zf ′(z)/f(z) or 1+zf ′′(z)/f ′(z) lying in a region
in the right-half plane, Ma and Minda [6] gave a unified presentation of various
subclasses of convex and starlike functions. They considered analytic functions
ϕ with positive real part in D that map the unit disc D onto regions starlike
with respect to 1, symmetric with respect to the real axis and normalized by
the conditions ϕ(0) = 1 and ϕ′(0) > 0. Ma and Minda [6] introduced the
following classes:

S∗(ϕ) :=

{

f ∈ A :
zf ′(z)

f(z)
≺ ϕ(z)

}
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and

C(ϕ) :=
{

f ∈ A : 1 +
zf ′′(z)

f ′(z)
≺ ϕ(z)

}

.

For special choices of ϕ, S∗(ϕ) reduces to well-known subclasses of starlike
functions. For example, when −1 ≤ B < A ≤ 1, S∗[A,B] := S∗((1 +Az)/(1 +
Bz)) is the class of Janowski starlike function [4, 10] and S∗[1− 2α,−1] is the
class S∗(α) of starlike functions of order α, introduced by Robertson [12] and
S∗ := S∗(0) is the class of starlike functions. Similarly, S∗

L := S∗(
√
1 + z) is the

subclass of S∗ introduced by Sokól and Stankiewicz [18], consisting of functions
f ∈ A such that zf ′(z)/f(z) lies in the region bounded by the right-half of the
lemniscate of Bernoulli given by |w2 − 1| < 1. More results regarding these
classes can be found in [1, 3, 5, 11, 13, 16, 17]. Recently, Sharma et al. [14]
introduced and studied the properties of the class

S∗(1 + (4/3)z + (2/3)z2) = S∗

C .

Precisely, f ∈ S∗

C provided zf ′(z)/f(z) lies in the region bounded by the car-
dioid (9x2+9y2−18x+5)2−16(9x2+9y2−6x+1) = 0. The class S∗

e := S∗(ez),
introduced recently by Mendiratta et al. [7], consists of functions f ∈ A satis-
fying the condition | log(zf ′(z)/f(z))| < 1.

Let p be an analytic function defined on D with p(0) = 1. Recently Ali et al.
[2] determined the condition on β for p(z) ≺

√
1 + z when 1 + βzp′(z)/pn(z)

with n = 0, 1, 2 or (1 − β)p(z) + βp2(z) + βzp′(z) is subordinated to
√
1 + z.

Motivated by the works in [1, 2, 3, 9, 15, 17], in Section 2, we determine
the sharp conditions on β so that p(z) ≺ (2 + z)/(2 − z) or 1 + (1 − α)z or
(1 + (1 − 2α)z)/(1 − z), (0 ≤ α < 1) when 1 + βzp′(z) ≺ 1 + 4z/3 + 2z2/3.
Conditions on β so that 1 + βzp′(z)/p(z) ≺ 1 + 4z/3 + 2z2/3 implies p(z) ≺
(1+z)/(1−z) or 1+z are also discussed. Conditions on β are derived so that the
subordination 1+βzp′(z)/p2(z) ≺ 1+4z/3+2z2/3 implies p(z) ≺ (1+z)/(1−z)
or (2 + z)/(2 − z) or 1 + z. We also determine the conditions on β so that
p(z) ≺ (1+z)/(1−z) or 1+4z/3+2z2/3, when p(z)+βzp′(z)/p(z) ≺ 1+4z/3+
2z2/3. Section 3 of the paper investigates the sharp conditions on β so that
1+βzp′(z)/pn(z) ≺ 1+4z/3+2z2/3 (n = 0, 1, 2) implies p(z) ≺ ez. Similarly, in
Section 4, we consider differential implications with the superordinate function
ez replaced by the superordinate function

√
1 + z. In addition to this, condition

on β is determined so that p(z) ≺
√
1 + z when p(z)+βzp′(z)/p(z) ≺ 1+4z/3+

2z2/3. In Section 5, we give applications of our results which will yield sufficient
conditions for f ∈ A to belong to the various subclasses of starlike functions.

The following results will be required in our investigation.

Lemma 1.1 ([8, Corollary 3.4h, p. 135]). Let q be univalent in D, and let ϕ
be analytic in a domain D containing q(D). Let zq′(z)ϕ(q(z)) be starlike. If p
is analytic in D, p(0) = q(0) and satisfies zp′(z)ϕ(p(z)) ≺ zq′(z)ϕ(q(z)), then
p ≺ q and q is the best dominant.

The following is a more general version of the above lemma.
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Lemma 1.2 ([8, Theorem 3.4i, p. 134]). Let q be univalent in D and let ϕ and

ν be analytic in a domain D containing q(D) with ϕ(w) 6= 0 when w ∈ q(D).
Set Q(z) := zq′(z)ϕ(q(z)), h(z) := ν(q(z)) + Q(z). Suppose that (i) either h
is convex or Q(z) is starlike univalent in D and (ii) Re(zh′(z)/Q(z)) > 0 for

z ∈ D. If p is analytic in D, p(0) = q(0) and satisfies

(1) ν(p(z)) + zp′(z)ϕ(p(z)) ≺ ν(q(z)) + zq′(z)ϕ(q(z)),

then p ≺ q and q is the best dominant.

Lemma 1.3 ([8, Corollary 3.4a, p. 120]). Let q be analytic in D and φ be

analytic in a domain D containing q(D) and suppose (i) Reφ(q(z)) > 0 and

either (ii) q is convex, or (iii) Q(z) = zq′(z)φ(q(z)) is starlike. If p is analytic

in D, p(0) = q(0), p(D) ⊂ D and p(z) + zp′(z)φ(p(z)) ≺ q(z), then p ≺ q.

2. Results associated with starlikeness

Let p be an analytic function in D with p(0) = 1. In the first result, condi-
tions on β are obtained so that the subordination

1 + βzp′(z) ≺ 1 +
4z

3
+

2z2

3

implies p(z) ≺ (2 + z)/(2 − z) or 1 + (1 − α)z or (1 + (1 − 2α)z)/(1 − z),
(0 ≤ α < 1).

Theorem 2.1. Let β0 ≈ 1.90987 be the root of the equation 9 + 47β + 90β2 −
216β3 + 81β4 = 0. Let p be an analytic function defined on D with p(0) = 1
satisfying

1 + βzp′(z) ≺ 1 +
4z

3
+

2z2

3
,

then the following sharp results hold:

(a) If β ≤ −4.5 or β ≥ β0, then p(z) ≺ (2 + z)/(2− z).
(b) If |β| ≥ 2/(1− α), (0 ≤ α < 1), then p(z) ≺ 1 + (1 − α)z.
(c) If β ≤ −4/(1 − α) or β ≥ 4/3(1 − α), (0 ≤ α < 1), then p(z) ≺

(1 + (1− 2α)z)/(1− z).

Proof. Define the function q : D → C by q(z) = (1 + Az)/(1 + Bz), (−1 ≤
B < A ≤ 1) with q(0) = 1. Let us define ϕ(w) = β and Q(z) = zq′(z)ϕ(q(z)).
Since q is the convex univalent function, Q is starlike in D. It follows from
Lemma 1.1, that the subordination

1 + βzp′(z) ≺ 1 + βzq′(z)

implies p(z) ≺ q(z). The theorem is proved by computing β so that

(2) 1 +
4z

3
+

2z2

3
≺ 1 + βzq′(z) = 1 +

β(A−B)z

(1 +Bz)2
:= h(z).

Set ψ(z) = 1+4z/3+2z2/3. Clearly, ψ(D) =
{

w ∈ C : | − 2 +
√
6w − 2| < 2

}

.

The subordination ψ(z) ≺ h(z) holds if ∂h(D) ⊂ C \ ψ(D). Thus, by using
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the definition of h as given in (2), the subordination ψ(z) ≺ h(z) holds if for
t ∈ [−π, π], we have

(3)

∣

∣

∣

∣

∣

(
√

4 +
6β(A−B)eit

(1 +Beit)2
− 2

)
∣

∣

∣

∣

∣

≥ 2.

Set

(4) w = u+ iv = 4 + (6β(A−B)eit)/(1 +Beit)2.

Then, condition (3) holds if |√w − 2| ≥ 2 which is same as |w| ≥ 4Re(
√
w).

On further simplification, we get

(5) (u2 + v2 − 8u)2 − 64(u2 + v2) ≥ 0.

(a) Take A = 1/2, B = −1/2 in (4). Then

u = 4 +
24β(5 cos t− 4)

(5 − 4 cos t)2
, v =

72β sin t

(5− 4 cos t)2
.

So, (5) reduces to

−768

(5− 4 cos t)4
(1921− 3712β + 2376β2 − 432β4 − 80(37− 69β + 36β2) cos t

+ 16(83− 132β + 36β2) cos 2t− 320 cos 3t+ 320β cos 3t+ 32 cos 4t) ≥ 0.

We need to find the values of β for which f(x) ≥ 0 in the interval−1 ≤ x ≤ 1,
where x = cos t and

f(x) = −(1921− 3712β + 2376β2 − 432β4 − 80(37− 69β + 36β2)x

+ 16(83− 132β + 36β2)(2x2 − 1)− 320(4x3 − 3x)

+ 320β(4x3 − 3x) + 32(8x4 − 8x2 + 1)).

A calculation shows that

f ′(x) = −16(−5 + 4x)(25 + 16x2 − 57β + 36β2 + 20x(−2 + 3β)) = 0

if x = x1 = 5/4 or x = x2 = (10 − 15β − 3
√

−8β + 9β2)/8 or x = x3 =

(10 − 15β + 3
√

−8β + 9β2)/8. Note that −1 ≤ x2, x3 ≤ 1 if and only if
β > 8/9. These observations lead to two cases:

Case 1: β > 8/9. In this case, f ′′(x2) < 0 and f ′′(x3) > 0. Thus f(x)
attains its minimum value at x = x3, it follows that f(x) ≥ 0 for −1 ≤ x ≤ 1
if and only if

f(x3) =
27β2

2

(

24 + 153β2 + 40
√

−8β + 9β2 − 3β(68 + 15
√

−8β + 9β2)
)

≥ 0,

which is possible if β ≥ β0. Hence p(z) ≺ q(z) if β ≥ β0 ≈ 1.90987.
Case 2: β ≤ 8/9. In this case, f ′(1) ≥ 0, f ′(−1) ≥ 0 and f ′(x) has no zero

in ]− 1, 1[. Hence by Intermediate Value Theorem, f ′(x) ≥ 0 for −1 ≤ x ≤ 1.
Thus, f(x) ≥ 0 for −1 ≤ x ≤ 1 if and only if

f(−1) = 27(−3 + 2β)3(9 + 2β) ≥ 0,
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which is possible if β ≤ −4.5. Hence p(z) ≺ q(z) if β ≤ −4.5. This completes
the proof for part (a).

(b) Take A = 1− α, B = 0, (0 ≤ α < 1) in (4). Then

u = 4 + 6β(1− α) cos t, v = 6β(1− α) sin t.

So, (5) takes the following form

g(t) := 48(27β4(1− α)4 − 72β2(1− α)2 − 16− 64β(1− α) cos t) ≥ 0.

We need to find all possible values of β for which g(t) is non negative for
t ∈ [−π, π]. Clearly, g(t) attains its minimum value at t = 0 if β > 0 and
t = ±π if β < 0. If β > 0, then g(t) ≥ 0 if and only if

g(0) = 48(−2 + β(1− α))(2 + 3β(1− α))3 ≥ 0

which is true if β ≥ 2/(1− α). Next if β < 0, then g(t) ≥ 0 if and only if

g(π) = 48(2 + β(1 − α))(−2 + 3β(1− α))3 ≥ 0

which is possible if β ≤ −2/(1− α). Hence p(z) ≺ q(z) if |β| ≥ 2/(1− α).
(c) Take A = 1− 2α, B = −1, (0 ≤ α < 1) in (4). Then, we get

u = 4− 3β(1− α)

sin2 t/2
, v = 0.

So, (5) reduces to

(u2 − 8u)2 − 64u2 ≥ 0,

which on further simplification becomes u(u− 16) ≥ 0 which implies that

(−4 sin2 t/2 + 3β(1− α))(β(1 − α) + 4 sin2 t/2) ≥ 0

which is possible if β ≥ 4/3(1 − α) or β ≤ −4/(1 − α). This completes the
proof for (c). �

Next result depicts the conditions on β so that the subordination

1 + β
zp′(z)

p(z)
≺ 1 +

4z

3
+

2z2

3

implies p(z) ≺ (1+z)/(1−z) or 1+z where p is an analytic function in D with
p(0) = 1.

Theorem 2.2. Let p be an analytic function defined on D with p(0) = 1
satisfying

1 + β
zp′(z)

p(z)
≺ 1 +

4z

3
+

2z2

3
,

then the following sharp results hold:

(a) If |β| ≥
√

(4
√
3 + 8)/(3

√
3) ≃ 1.6947, then p(z) ≺ (1 + z)/(1− z).

(b) If β ≥ 4 or β ≤ −2, then p(z) ≺ 1 + z.
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Proof. Let the function q : D → C be defined by q(z) = (1 + Az)/(1 + Bz),
(−1 ≤ B < A ≤ 1) with q(0) = 1. Let us define ϕ(w) = β/w and Q(z) =
zq′(z)ϕ(q(z)) = β(A−B)z/((1 +Az)(1 +Bz)). A computation shows that

zQ′(z)

Q(z)
=

1−ABz2

(1 +Az)(1 +Bz)
.

Thus with z = reit, r ∈ (0, 1), t ∈ [−π, π], yields

Re

(

1−ABz2

(1 +Az)(1 +Bz)

)

=
(1−ABr2)(1 + (A+B)r cos t+ABr2)

|1 +Areit|2|1 +Breit|2 .

Since 1 + ABr2 + (A + B)r cos t ≥ (1 − Ar)(1 − Br) > 0 for A + B ≥ 0 and
similarly, 1 + ABr2 + (A + B)r cos t ≥ (1 + Ar)(1 + Br) > 0 for A + B ≤ 0,
it follows that Q(z) is starlike in D. An application of Lemma 1.1 reveals that
the subordination

1 + β
zp′(z)

p(z)
≺ 1 + β

zq′(z)

q(z)

implies p(z) ≺ q(z). Now our result is established if we prove

(6) 1 +
4z

3
+

2z2

3
≺ 1 + β

zq′(z)

q(z)
= 1 +

β(A−B)z

(1 +Az)(1 +Bz)
:= h(z).

Let ψ(z) = 1 + 4z/3 + 2z2/3. Then ψ(D) =
{

w ∈ C : | − 2 +
√
6w − 2| < 2

}

.

The subordination ψ(z) ≺ h(z) holds if ∂h(D) ⊂ C \ ψ(D). Thus, by using
the definition of h as given in (6), the subordination ψ(z) ≺ h(z) holds if for
t ∈ [−π, π], we have

∣

∣

∣

∣

∣

(
√

4 +
6β(A−B)eit

(1 +Aeit)(1 +Beit)
− 2

)∣

∣

∣

∣

∣

≥ 2.

Set

(7) w = u+ iv = 4 + (6β(A− B)eit)/((1 +Aeit)(1 +Beit)).

Then, proceeding as in Theorem 2.1, we have to deduce (5).
(a) Take A = 1, B = −1 in (7). Then u = 4 and v = 6β/ sin t. Substituting

u and v in (5), we get
(

36β2

sin2 t
− 16

)2

− 64

(

16 +
36β2

sin2 t

)

≥ 0.

Our problem is now to find all possible values of β for which p(x) ≥ 0 for
x ∈ [−1, 1] where x = sin t and p(x) = −16x4 − 72x2β2 + 27β4. Clearly,

p(x) ≥ −16− 72β2 + 27β4 ≥ 0 if |β| ≥
√

(4
√
3 + 8)/(3

√
3) ≃ 1.6947.

(b) Take A = 1, B = 0 in (7). Then, u = 4 + 3β and v = 3β tan t/2. So, (5)
becomes

−3 sec4
t

2
(3(32+64β+48β2−9β4)+16(8+16β+9β2) cos t+32(1+2β) cos2t) ≥ 0.
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Now our problem is to find all values of β for which g(x) is non negative in the
whole interval −1 ≤ x ≤ 1 where x = cos t and

g(x) = −3(3(32+64β+48β2−9β4)+16(8+16β+9β2)x+32(1+2β)(2x2−1)).

A calculation shows that g′(x) = 0 if x = x0 = (−8 − 16β − 9β2)/(8(1 + 2β))
and g′′(x) = −384(1 + 2β). Let us first assume that β < −1/2. In this case,
g′′(x0) > 0. Thus, min g(x) = g(x0) = 162β4(2 + β)/(1 + 2β). Hence, g(x)
is non negative if and only if g(x0) is non negative which is possible only if
β ≤ −2. Let us next assume that β ≥ −1/2. In this case, we get g′′(x) ≤ 0
so that g′(x) ≤ g′(−1) = −432β2 ≤ 0 and hence g(x) is decreasing function.
Therefore, g(x) ≥ 0 if and only if g(1) = 3(−4 + β)(4 + 3β)3 ≥ 0 which can
happen only when β ≥ 4. Hence we get our required result. �

In the next result, the conditions on β are derived so that the subordination

1 + β
zp′(z)

p2(z)
≺ 1 +

4z

3
+

2z2

3

implies p(z) ≺ (1 + z)/(1− z) or (2+ z)/(2− z) or 1+ z where p is an analytic
function in D with p(0) = 1.

Theorem 2.3. Let β0 ≈ −1.90987 be the smallest real root of 9−47β+90β2+
216β3 + 81β4 = 0. Let p be an analytic function defined on D with p(0) = 1
satisfying

1 + β
zp′(z)

p2(z)
≺ 1 +

4z

3
+

2z2

3
,

then the following sharp results hold:

(a) If β ≥ 4 or β ≤ −4/3, then p(z) ≺ (1 + z)/(1− z).
(b) If β ≥ 9/2 or β ≤ β0, then p(z) ≺ (2 + z)/(2− z).
(c) If β ≥ 8 or β ≤ −8/3, then p(z) ≺ 1 + z.

Proof. Define the function q : D → C by q(z) = (1+Az)/(1+Bz), (−1 ≤ B <
A ≤ 1) and consider the function Q(z) = βzq′(z)/q2(z) = β(A−B)z/(1+Az)2.
Consider

zQ′(z)

Q(z)
=

1−Az

1 +Az
.

Let z = reit,−π ≤ t ≤ π, 0 < r < 1. Then

Re

(

1−Az

1 +Az

)

=
1−A2r2

|1 +Areit|2 > 0.

Hence, Q is starlike in D. Now it is easy to see that the subordination

1 + β
zp′(z)

p2(z)
≺ 1 + β

zq′(z)

q2(z)

implies p(z) ≺ q(z) by Lemma 1.1. So our result will be proved if we can prove

(8) ψ(z) := 1 +
4z

3
+

2z2

3
≺ 1 + β

zq′(z)

q2(z)
= 1 +

β(A−B)z

(1 +Az)2
:= h(z).
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So, we only need to show that for t ∈ [−π, π], the following condition holds
∣

∣

∣

∣

∣

(
√

4 +
6β(A−B)eit

(1 +Aeit)2
− 2

)
∣

∣

∣

∣

∣

≥ 2.

Let

(9) w = u+ iv = 4 +
6β(A−B)eit

(1 +Aeit)2
.

Then, proceeding as in Theorem 2.1, we have to get (5).
(a) Take A = 1, B = −1 in (9). Then, u = 4+3β sec2 t/2 and v = 0. So, (5)

reduces to u(u − 16) ≥ 0. Now, it is easy to see that our target is to find
conditions on β such that f(x) ≥ 0 for −1 ≤ x ≤ 1, where

x = cos
t

2
, f(x) = (4x2 + 3β)(β − 4x2).

Clearly, f(x) ≥ 0 if β ≤ −4/3 or β ≥ 4.
(b) Take A = 1/2, B = −1/2 in (9). Then,

u = 4

{

33 + 24β + 10(4 + 3β) cos t+ 8 cos 2t

(5 + 4 cos t)2

}

, v =
72β sin t

(5 + 4 cos t)2
.

So, (5) reduces to

768

(5 + 4 cos t)4
(−1921 + 8β(−464− 297β + 54β3)− 80(37 + 69β + 36β2) cos t

− 16(83 + 12β(11 + 3β)) cos 2t− 320(1 + β) cos 3t− 32 cos 4t) ≥ 0.

We need to find the values of β for which g(x) ≥ 0 in the interval −1 ≤ x ≤ 1,
where x = cos t and

g(x) = −(5 + 4x)4 − 16(5 + 4x)2(4 + 5x)β − 72(5 + 4x)2β2 + 432β4.

A calculation shows that

g′(x) = −16(5 + 4x)((5 + 4x)2 + 3(19 + 20x)β + 36β2) = 0

if x = x1 = −5/4 or x = x2 = (−10 − 15β − 3
√

8β + 9β2)/8 or x = x3 =

(−10− 15β+3
√

8β + 9β2)/8. Note that x2, x3 are real numbers if and only if
β > 0 or β < −8/9. These observations lead to three cases:

Case 1: β < −8/9. In this case, g′′(x2) > 0 and g′′(x3) < 0. Thus, g(x)
attains its minimum value at x = x2, it follows that g(x) ≥ 0 for −1 ≤ x ≤ 1
if and only if

g(x2) =
27β2

2

(

24 + 40
√

8β + 9β2 + 3β(68 + 51β + 15
√

8β + 9β2)
)

≥ 0,

which is possible if β ≤ −1.90987.
Case 2: β ≥ 0. In this case, we get g′′(x) ≤ 0 so that g′(x) ≤ g′(−1) =

−16(1 − 3β + 36β2) ≤ 0 and hence g(x) is a decreasing function. Therefore,
g(x) ≥ 0 if and only if g(1) = 27(−9+2β)(3+2β)3 ≥ 0 which can happen only
when β ≥ 9/2.
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Case 3: −8/9 < β < 0. In this case, f ′(1) < 0, f ′(−1) < 0 and f ′(x)
has no zero in ] − 1, 1[. Hence by Intermediate Value Theorem, f ′(x) < 0 for
−1 ≤ x ≤ 1. Thus f(x) ≥ 0 for −1 ≤ x ≤ 1 if and only if

f(1) = 27(3 + 2β)3(−9 + 2β) ≥ 0,

which is possible if β ≤ −3/2 or β ≥ 9/2. But this is not possible as −8/9 <
β < 0. Hence, p(z) ≺ q(z) if β ≥ 9/2 or β ≤ −1.90987.

(c) Take A = 1, B = 0 in (9). Then,

u = 4 +
3β

2 cos2 t/2
, v = 0.

So, (5) reduces to p(x) ≥ 0, x ∈ [−1, 1], where

x = cos t, p(x) = (−4 + β − 4x)(4 + 3β + 4x)3.

Clearly, p′(x) < 0. So, p(x) ≥ 0 if and only if p(1) = (−8 + β)(8 + 3β)3 ≥ 0
which is true if β ≥ 8 or β ≤ −8/3. Hence proved. �

In the following theorem, we find the conditions on β so that p(z) ≺ 1 +
4z/3 + 2z2/3, whenever

p(z) + β
zp′(z)

p(z)
≺ 1 +

4z

3
+

2z2

3
.

Theorem 2.4. Let p be an analytic function defined on D with p(0) = 1
satisfying

p(z) + β
zp′(z)

p(z)
≺ 1 +

4z

3
+

2z2

3
, β > 0.

Then p(z) ≺ 1 + 4z/3 + 2z2/3.

Proof. Define the function q : D → C by q(z) = 1+4z/3+2z2/3 with q(0) = 1.
Let us define φ(w) = β/w (β > 0). Consider

Reφ(q(z)) = βRe

(

1

q(z)

)

> 0.

Next, define the function Q as

Q(z) := zq′(z)φ(q(z)) =
βzq′(z)

q(z)
=

4βz(1 + z)

3 + 4z + 2z2
.

From definition of Q, we have

zQ′(z)

Q(z)
=

3 + 6z + 2z2

3 + 7z + 6z2 + 2z3
=: K(z).

For t ∈ [−π, π], we have

Re(K(eit)) =
1

2
+

5 + 4 cos t

29 + 40 cos t+ 12 cos 2t
.
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Now, we will find minimum value of f(x) for −1 ≤ x ≤ 1, where

x = cos t, f(x) =
5 + 4x

29 + 40x+ 12(2x2 − 1)
.

A calculation shows that f ′(x) = 0 if x = x1 = −(5 +
√
3)/4 or x = x2 =

(−5 +
√
3)/4. Note that x1 < −1 and f ′′(x2) < 0. Also note that f(−1) = 1

and f(1) = 1/9. So, f(x), −1 ≤ x ≤ 1 attains its minimum value at x = 1.
Hence, Re(K(eit)) ≥ 11/18 > 0, this shows that Q is starlike in D. The result
now follows from Lemma 1.3. �

We close this section by obtaining the conditions on β so that p(z) ≺ (1 +
z)/(1− z), whenever

p(z) + β
zp′(z)

p(z)
≺ 1 +

4z

3
+

2z2

3
.

Theorem 2.5. Let p be an analytic function defined on D with p(0) = 1
satisfying

p(z) + β
zp′(z)

p(z)
≺ 1 +

4z

3
+

2z2

3
for β ≥ 0.

Then p(z) ≺ (1 + z)/(1− z).

Proof. For β = 0, result hold obviously. Let us assume that β > 0. Define
the function q : D → C by q(z) = (1 + z)/(1 − z). Also define ν(w) = w and
ϕ(w) = β/w. Clearly, the functions ν and ϕ are analytic in C and ϕ(w) 6= 0.
Consider the functions Q and h defined as follows:

Q(z) := zq′(z)ϕ(q(z)) =
βzq′(z)

q(z)
=

2βz

1− z2
and

h(z) := ν(q(z)) +Q(z) = q(z) +Q(z).

Since the mapping z/(1− z2) maps D onto the entire plane minus the two half
lines 1/2 ≤ y < ∞ and −∞ < y ≤ −1/2, Q(z) is starlike univalent in D. A
computation shows that

zh′(z)

Q(z)
=
q(z)

β
+
zQ′(z)

Q(z)
=

1

β

(

1 + z

1− z

)

+
1 + z2

1− z2
.

Since, the mapping zh′(z)/Q(z) maps D onto the plane Rew > 0, all the
conditions of Lemma 1.2 are fulfilled and hence it follows that p(z) ≺ q(z). In
order to complete the proof, we need to show that

ψ(z) := 1 +
4z

3
+

2z2

3
≺ q(z) + β

zq′(z)

q(z)
=

1 + z

1− z
+

2βz

1− z2
:= h(z).

So, we only need to show that for −π ≤ t ≤ π, the following condition holds
∣

∣

∣

∣

∣

(
√

−2 +
12βeit

(1 − e2it)
+

6(1 + eit)

1− eit
− 2

)∣

∣

∣

∣

∣

≥ 2.
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Set

w = u+ iv = −2 +
12βeit

(1− e2it)
+

6(1 + eit)

1− eit

so that

u = −2 and v =
6(1 + β + cos t)

sin t
.

Then, substituting the values of u and v in (5), we get

144

(sin t)4
(4 + 3β(2 + β) + 6(1 + β) cos t+ 2 cos 2t)

2 ≥ 0

which is possible for any β. Hence, p(z) ≺ q(z) if β ≥ 0. �

3. Results associated with the function e
z

In this section, we compute the sharp conditions on β so that p(z) ≺ ez,
whenever

1 + βzp′(z) or 1 + β
zp′(z)

p(z)
or 1 + β

zp′(z)

p2(z)
≺ 1 +

4z

3
+

2z2

3
,

where p is an analytic function defined on D with p(0) = 1.

Theorem 3.1. Let p be an analytic function defined on D and p(0) = 1. Let

β ≥ 2e/3 or β ≤ −2e. If the function p satisfies the subordination

1 + βzp′(z) ≺ 1 +
4z

3
+

2z2

3
,

then p also satisfies the subordination p(z) ≺ ez. The result is sharp.

Proof. Let q be the convex univalent function defined by q(z) = ez. Then
clearly, βzq′(z) is starlike in D. If the subordination

1 + βzp′(z) ≺ 1 + βzq′(z)

is satisfied, then p(z) ≺ q(z) by Lemma 1.1. It suffices to show that

(10) 1 +
4z

3
+

2z2

3
≺ 1 + βzq′(z) = 1 + βzez := h(z).

Set ψ(z) = 1+4z/3+2z2/3. Clearly, ψ(D) =
{

w ∈ C : | − 2 +
√
6w − 2| < 2

}

.

The subordination ψ(z) ≺ h(z) holds if ∂h(D) ⊂ C \ ψ(D). Thus, by using
the definition of h as given in (10), the subordination ψ(z) ≺ h(z) holds if for
t ∈ [−π, π], we have

(11)

∣

∣

∣

∣

√

4 + 6βeiteeit − 2

∣

∣

∣

∣

≥ 2.

Set w = u+ iv = 4+ 6βeitee
it

. Then, we only need to show that |√w− 2| ≥ 2
which is same as |w| ≥ 4Re(

√
w). On further simplification, we get

(12) (u2 + v2 − 8u)2 − 64(u2 + v2) ≥ 0.
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Clearly, u = 4+6βecos t cos(t+sin t) and v = 6βecos t sin(t+sin t). Our problem
is now to find all possible values of β for which f(t) ≥ 0 for t ∈ [−π, π], where

f(t) = −16− 72β2e2 cos t + 27β4e4 cos t − 64βecos t cos(t+ sin t).

Since f(t) is an even function of t. It suffices to find the condition on β for
which f(t) ≥ 0 for t ∈ [0, π]. Note that

f(0) = (−2 + eβ)(2 + 3eβ)3 and f(π) =
−(2e− 3β)3(2e+ β)

e4
.

So, f(0) ≥ 0 and f(π) ≥ 0 if β ≤ −2e or β ≥ 2e/3. If β ≤ −2e or β ≥ 2e/3,
then f is a decreasing function of t and since f(π) ≥ 0, we conclude that
f(t) ≥ 0 for t ∈ [0, π] if β ≤ −2e or β ≥ 2e/3. �

Theorem 3.2. If p is an analytic function defined on D with p(0) = 1 satisfying

the subordination

1 + β
zp′(z)

p(z)
≺ 1 +

4z

3
+

2z2

3
for |β| ≥ 2

then p also satisfies the subordination p(z) ≺ ez. The result is sharp.

Proof. Let the function q : D → C be defined by q(z) = ez. Let us define
ϕ(w) = β/w and Q(z) = zq′(z)ϕ(q(z)) = βz. Clearly, Q(z) is starlike in D.
An application of Lemma 1.1 reveals that the subordination

1 + β
zp′(z)

p(z)
≺ 1 + β

zq′(z)

q(z)

implies p(z) ≺ q(z). Now, our result is established if we prove

ψ(z) := 1 +
4z

3
+

2z2

3
≺ 1 + β

zq′(z)

q(z)
= 1 + βz := h(z).

Since the subordination ψ(z) ≺ h(z) holds if ∂h(D) ⊂ C \ ψ(D), we only need
to show that for t ∈ [−π, π],

∣

∣

∣

√

4 + 6βeit − 2
∣

∣

∣
≥ 2.

Set w = u + iv = 4 + 6βeit so that u = 4 + 6β cos t and v = 6β sin t. Then,
proceeding as in Theorem 3.1, we need to show that (12) holds. After substi-
tuting the values of u and v in (12), we need to find the values of β for which
g(t) ≥ 0 for t ∈ [−π, π], where

g(t) = −16− 72β2 + 27β4 − 64β cos t.

Note that g(t) is an even function of t. So, we only need to consider g(t) for
t ∈ [0, π]. Also note that g′(t) = 64β sin t. Let us first assume that β > 0.
In this case, g(t) is an increasing function. Therefore, g(t) ≥ 0 if and only if
g(0) = (−2+ β)(2 + 3β)3 ≥ 0 which can happen only when β ≥ 2. Let us next
assume that β < 0. In this case, g(t) being decreasing function, is non negative
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if and only if g(π) = (2 + β)(−2 + 3β)3 is non negative which is possible if
β ≤ −2. Hence, p(z) ≺ q(z) if |β| ≥ 2. �

Theorem 3.3. Let p be an analytic function defined on D and p(0) = 1. Let

β ≥ 2e or β ≤ −2e/3. If the function p satisfies the subordination

1 + β
zp′(z)

p2(z)
≺ 1 +

4z

3
+

2z2

3
,

then p(z) ≺ ez. The result is sharp.

Proof. Define the function q : D → C by q(z) = ez and consider the function
Q(z) = βzq′(z)/q2(z) = βze−z. For z = x+ iy ∈ D, we have

Re

(

zQ′(z)

Q(z)

)

= Re(1− z) = 1− x > 0.

Hence, Q is starlike in D. Now, it is easy to see that by Lemma 1.1, the
subordination

1 + β
zp′(z)

p2(z)
≺ 1 + β

zq′(z)

q2(z)

implies p(z) ≺ q(z). So, our result will be proved if we can prove

ψ(z) := 1 +
4z

3
+

2z2

3
≺ 1 + β

zq′(z)

q2(z)
= 1 + βze−z := h(z).

Thus, we only need to show that ∂h(D) ⊂ C\ψ(D) which is equivalent to show
that for t ∈ [−π, π],

∣

∣

∣

∣

√

4 + 6βeite−eit − 2

∣

∣

∣

∣

≥ 2.

Set w = u+iv = 4+6βeitee
i(t+π)

. Then, proceeding as in Theorem 3.1, we need
to prove (12). Clearly, u = 4+ 6βe− cos t cos(t− sin t) and v = 6βe− cos t sin(t−
sin t). Our problem reduces to find all possible values of β for which k(t) is non
negative in [−π, π], where

k(t) = −16− 72β2e−2 cos t + 27β4e−4 cos t − 64βe− cos t cos(t− sin t).

Observe that k(−t) = k(t) for t ∈ [−π, π]. Thus, it is sufficient to find the
values of β for which k(t) is non negative in [0, π]. Note that

k(0) =
(−2e+ β)(2e + 3β)3

e4
and k(π) = (2 + eβ)(−2 + 3eβ)3.

Clearly, k(0) and k(π) both are non negative if β ≤ −2e/3 or β ≥ 2e. Also,
if β ≤ −2e/3 or β ≥ 2e, then k is an increasing function of t and k(0) is non
negative. Hence, k(t) ≥ 0 for t ∈ [0, π] if β ≤ −2e/3 or β ≥ 2e. �
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4. Results associated with the lemniscate of Bernoulli

In this section, we compute the conditions on β so that p(z) ≺
√
1 + z,

whenever

1 + β
zp′(z)

pk(z)
(k = 0, 1, 2) or p(z) + β

zp′(z)

p(z)
≺ 1 +

4z

3
+

2z2

3
,

where p is an analytic function defined on D with p(0) = 1.

Theorem 4.1. Let β ≥ 4
√
2. Let p be an analytic function defined on D with

p(0) = 1 satisfying

1 + βzp′(z) ≺ 1 +
4z

3
+

2z2

3
,

then p(z) ≺
√
1 + z. The result obtained is sharp.

Proof. Define the function q : D → C by q(z) =
√
1 + z with q(0) = 1. Since

q(D) = {w : |w2 − 1| < 1} is the right half of the lemniscate of Bernoulli, q(D)
is a convex set and hence q is convex and zq′(z) is starlike in D. It follows from
Lemma 1.1, that the subordination

1 + βzp′(z) ≺ 1 + βzq′(z)

implies p(z) ≺ q(z). Now, our result is established if we prove the following:

ψ(z) := 1 +
4z

3
+

2z2

3
≺ 1 + βzq′(z) = 1 +

βz

2
√
1 + z

:= h(z).

Now, proceeding as in earlier sections, it is enough to show that ∂h(D) ⊂
C \ ψ(D) which is equivalent to show that for t ∈ [−π, π],

∣

∣

∣

∣

∣

√

4 +
3βeit√
1 + eit

− 2

∣

∣

∣

∣

∣

≥ 2.

Taking w = u+ iv = 4 + 3βeit/(
√
1 + eit). Then, we only need to show that

(13) (u2 + v2 − 8u)2 − 64(u2 + v2) ≥ 0.

A calculation shows that

u = 4 +
3β cos(3t/4)
√

2 cos t/2
and v =

3β sin(3t/4)
√

2 cos t/2
.

Using these values in (13), our problem reduces to find all possible values of β
for which f(t) ≥ 0 for t ∈ [−π, π], where

f(t) = −3

4

(

512− 27β4 + 512 cos t

+ 64β
(

9β cos(t/2) + 16
√
2 cos3/2(t/2) cos(3t/4)

)

)

.
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Note that f(t) = f(−t) for any t, so it is sufficient to consider the interval
0 ≤ t ≤ π. Also note that f ′(t) ≥ 0 for β > 0, so f(t) attains minimum value
at t = 0. Clearly,

f(0) =
−3

4
(1024 + 1024

√
2β + 576β2 − 27β4) ≥ 0 for β ≥ 4

√
2.

Thus, f(t) ≥ 0 if β ≥ 4
√
2. This completes the proof. �

Theorem 4.2. Let β ≤ −4 or β ≥ 8. Let p be an analytic function defined on

D with p(0) = 1 satisfying

1 + β
zp′(z)

p(z)
≺ 1 +

4z

3
+

2z2

3
,

then p(z) ≺
√
1 + z. The result obtained is sharp.

Proof. Let the function q : D → C be defined by q(z) =
√
1 + z with q(0) = 1.

Let us define ϕ(w) = β/w and Q(z) = zq′(z)ϕ(q(z)) = βz/2(1+z) which maps
D onto Rew < β/4. So, Q(z) is starlike in D. An application of Lemma 1.1
reveals that the subordination

1 + β
zp′(z)

p(z)
≺ 1 + β

zq′(z)

q(z)

implies p(z) ≺ q(z). Now, our result is established if we prove

(14) ψ(z) := 1 +
4z

3
+

2z2

3
≺ 1 + β

zq′(z)

q(z)
= 1 +

βz

2(1 + z)
:= h(z).

Hence, we only need to show that ∂h(D) ⊂ C \ ψ(D) which is same as to show
that for t ∈ [−π, π],

∣

∣

∣

∣

∣

√

4 +
3βeit

1 + eit
− 2

∣

∣

∣

∣

∣

≥ 2.

Set w = u+ iv = 4+ 3βeit/(1 + eit). Then, proceeding as in Theorem 4.1, our
target is to prove (13). Clearly,

u = 4 +
3β

2
and v =

3β

2
tan

t

2
.

On substituting u and v in (13), we get

1

16

(

−64 + 9β2 + 9β2

(

1− x2

x2

))2

− 16

(

(8 + 3β)2 + 9β2

(

1− x2

x2

))

≥ 0,

where x = cos t/2. So, our problem reduces to find the values of β for which
G(x) ≥ 0 for x ∈ [0, 1], where

G(x) = −12288(1+ β)x4 − 3456β2x2 + 81β4.

A calculation shows that

G′(x) = −768(9xβ2 + 64x3(1 + β))
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and hence G′(0) = G′(±3β/(8
√
−1− β)) = 0. Let us first assume that β ≥ −1.

Then, G(x) is a decreasing function of x ∈ [0, 1]. Consequently, we have G(x) ≥
0 for x ∈ [0, 1] provided G(1) = 3(−8 + β)(8 + 3β)3 ≥ 0, which is equivalent
to β ≥ 8. Next, assume that β < −1. In this case, G′′(−3β/(8

√
−1− β)) =

13824β2 > 0. Thus G(x) attains its minimum value at x = −3β/(8
√−1− β),

it follows that G(x) ≥ 0 for 0 ≤ x ≤ 1 if and only if

G(−3β/(8
√

−1− β)) =
81β4(4 + β)

1 + β
≥ 0,

provided β ≤ −4. Hence, p(z) ≺ q(z) for β ≤ −4 or β ≥ 8. �

Theorem 4.3. Let p be an analytic function defined on D and p(0) = 1. If the
function p satisfies the subordination

1 + β
zp′(z)

p2(z)
≺ 1 +

4z

3
+

2z2

3
, for β ≥ 8

√
2

then p(z) ≺
√
1 + z. The result is sharp.

Proof. Define the function q : D → C by q(z) =
√
1 + z and consider the

function Q(z) = βzq′(z)/q2(z) = βz/2(1 + z)3/2. Clearly,

zQ′(z)

Q(z)
= 1− 3z

2(1 + z)

which maps D onto plane Rew > 1/4. Hence, Q is starlike in D. An application
of Lemma 1.1 reveals that the subordination

1 + β
zp′(z)

p2(z)
≺ 1 + β

zq′(z)

q2(z)

implies p(z) ≺ q(z). So, our result will be proved if we can prove

ψ(z) := 1 +
4z

3
+

2z2

3
≺ 1 + β

zq′(z)

q2(z)
= 1 + β

z

2(1 + z)3/2
:= h(z).

So, we only need to show that ∂h(D) ⊂ C \ ψ(D) which is equivalent to show
that for t ∈ [−π, π],

∣

∣

∣

∣

∣

√

4 +
3βeit

(1 + eit)3/2
− 2

∣

∣

∣

∣

∣

≥ 2.

Set w = u+ iv = 4+(3βeit)/(1+ eit)3/2. Then, proceeding as in Theorem 4.1,
we have to find β so that (13) holds. Clearly,

u = 4 + 3β
cos t/4

(2 cos t/2)3/2
, v = 3β

sin t/4

(2 cos t/2)3/2
.

Our problem reduces to find all possible values of β for which k(t) is non
negative in [−π, π], where

k(t) =
3

64

{

−16384− 8192
√
2β cos

t

4
sec3/2

t

2
− 2304β2 sec3

t

2
+ 27β4 sec6

t

2

}

.
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Observe that k(−t) = k(t) for t ∈ [−π, π]. Thus, it is sufficient to find the

values of β for which k(t) is non negative in [0, π]. For β ≥ 8
√
2, k is an

increasing function of t and k(0) = −768− 384
√
2β − 108β2 + 81β4/64 is non

negative. Hence, k(t) ≥ 0, t ∈ [0, π] for β ≥ 8
√
2. �

Theorem 4.4. Let p be an analytic function defined on D with p(0) = 1
satisfying

p(z) + β
zp′(z)

p(z)
≺ 1 +

4z

3
+

2z2

3
for β ≥ 12

then p(z) ≺
√
1 + z.

Proof. Define the function q : D → C by q(z) =
√
1 + z. Consider the subordi-

nation

p(z) + β
zp′(z)

p(z)
≺ q(z) + β

zq′(z)

q(z)
.

Thus, in view of Lemma 1.2, the above subordination can be written as (1) by
defining the functions ν and ϕ as

ν(w) = w and ϕ(w) = β/w, (β 6= 0).

Clearly, the functions ν and ϕ are analytic in C and ϕ(w) 6= 0. Let the functions
Q(z) and h(z) be defined as follows:

Q(z) := zq′(z)ϕ(q(z)) =
βzq′(z)

q(z)
=

βz

2(1 + z)
and

h(z) := ν(q(z)) +Q(z) =
√
1 + z +

βz

2(1 + z)
.

Since the mapping Q(z) maps D onto the plane Rew < β/4, Q(z) is starlike
univalent in D. A computation shows that

zh′(z)

Q(z)
=

√
1 + z

β
+

1

1 + z
.

Now, the mapping 1/(1+ z) maps D onto plane Rew > 1/2 and Re(
√
1 + z) >

0, z ∈ D. Therefore, Re(zh′(z)/Q(z)) > 0, z ∈ D if β > 0. Thus, all the
conditions of Lemma 1.2 are satisfied and hence, it follows that p(z) ≺ q(z). In
order to complete the proof, we need to prove that

ψ(z) := 1 +
4z

3
+

2z2

3
≺ q(z) + β

zq′(z)

q(z)
=

√
1 + z +

βz

2(1 + z)
= h(z).

So, we only need to show that ∂h(D) ⊂ C \ ψ(D) which is equivalent to show
that for t ∈ [−π, π],

∣

∣

∣

∣

∣

√

−2 + 6
√

1 + eit +
3βeit

1 + eit
− 2

∣

∣

∣

∣

∣

≥ 2.
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Thus, we have to show that
∣

∣

∣

∣

−2 + 6
√

1 + eit +
3βeit

1 + eit

∣

∣

∣

∣

≥ 16.

Now,
∣

∣

∣

∣

−2 + 6
√

1 + eit +
3βeit

1 + eit

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

6eit/4
√

2 cos
t

2
+

3βeit/2

2 cos t
2

− 2

∣

∣

∣

∣

∣

≥ Re

(

6eit/4
√

2 cos
t

2
+

3βeit/2

2 cos t
2

− 2

)

= 6 cos
t

4

√

2 cos
t

2
+

3β

2
− 2

≥ 3β

2
− 2 ≥ 16 for β ≥ 12.

Hence, p(z) ≺ q(z) and this completes the proof. �

5. Applications

In this section we give sufficient conditions for functions f ∈ A to belong to
the various subclasses of starlike functions.

Theorem 5.1. Let f ∈ A and β0 =
√

(4
√
3 + 8)/(3

√
3) ≃ 1.6947. Then

following are the sufficient conditions for f ∈ S∗.

(1) The function f satisfies the subordination

1 + β

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
(|β| ≥ β0).

(2) The function f satisfies the subordination

1− β + β
1 + zf ′′(z)

f ′(z)

zf ′(z)
f(z)

≺ 1 +
4z

3
+

2z2

3
(β ≤ −4/3 or β ≥ 4).

(3) The function f satisfies the subordination

zf ′(z)

f(z)
+ β

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
(β ≥ 0).

Proof. Let the function p : D → C be defined by p(z) = zf ′(z)/f(z). Then p is
analytic in D with p(0) = 1. A calculation shows that

zp′(z)

p(z)
= 1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
.

The results follow respectively from Theorems 2.2(a), 2.3(a) and 2.5. �

Theorem 5.2. Let f ∈ A and β0 =
√

(4
√
3 + 8)/(3

√
3) ≃ 1.6947. Then

following are the sufficient conditions for z2f ′(z)/f2(z) ∈ P.
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(1) The function f satisfies the subordination

1 + β

(

(zf(z))′′

f ′(z)
− 2zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
(|β| ≥ β0).

(2) The function f satisfies the subordination

z2f ′(z)

f2(z)
+ β

(

(zf(z))′′

f ′(z)
− 2zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
(β ≥ 0).

Proof. The two parts of the theorem follows by taking p(z) = z2f ′(z)/f2(z) in
Theorems 2.2(a) and 2.5 respectively. �

Theorem 5.3. Let f ∈ A and 0 ≤ α < 1.

(1) Let β ≤ −4/(1− α) or β ≥ 4/3(1− α). If the function f satisfies the

subordination

1 + β
zf ′(z)

f(z)

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
,

then f ∈ S∗(α).
(2) Let β ≤ −9/2 or β ≥ β0, where β0 is given by Theorem 2.1. If the

function f satisfies the subordination

1 + β
zf ′(z)

f(z)

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
,

then f ∈ S∗[1/2,−1/2].
(3) Let β ≤ β0 or β ≥ 9/2, where β0 is given by Theorem 2.3. If the

function f satisfies the subordination

1− β + β
1 + zf ′′(z)

f ′(z)

zf ′(z)
f(z)

≺ 1 +
4z

3
+

2z2

3
,

then f ∈ S∗[1/2,−1/2].
(4) Let |β| ≥ 2/(1− α). If the function f satisfies the subordination

1 + β
zf ′(z)

f(z)

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
,

then f ∈ S∗[1− α, 0]
(5) Let β ≤ −2 or β ≥ 4. If the function f satisfies the subordination

1 + β

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
,

then f ∈ S∗[1, 0].
(6) Let β ≤ −8/3 or β ≥ 8. If the function f satisfies the subordination

1− β + β
1 + zf ′′(z)

f ′(z)

zf ′(z)
f(z)

≺ 1 +
4z

3
+

2z2

3
,

then f ∈ S∗[1, 0].
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Proof. The parts of the theorem are obtained by taking p(z) = zf ′(z)/f(z) in
Theorems 2.1(c), 2.1(a), 2.3(b), 2.1(b), 2.2(b) and 2.3(c) respectively. �

Theorem 5.4. Let f ∈ A and 0 ≤ α < 1.

(1) If f satisfies 1 + βzf ′′(z) ≺ 1 + 4z/3 + 2z2/3 (β ≤ −4/(1 − α) or

β ≥ 4/3(1− α)), then f ′ ≺ (1 + (1− 2α)z)/(1− z).
(2) If f satisfies 1 + βzf ′′(z) ≺ 1 + 4z/3 + 2z2/3 (β ≤ −9/2 or β ≥ β0,

where β0 is given by Theorem 2.1), then f ′ ≺ (2 + z)/(2− z).
(3) If f satisfies 1 + βzf ′′(z) ≺ 1 + 4z/3 + 2z2/3 (|β| ≥ 2/(1 − α)), then

f ′ ≺ 1 + (1− α)z.
(4) If f satisfies

1 + β

(

(zf(z))′′

f ′(z)
− 2zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
(β ≤ −2 or β ≥ 4),

then
z2f ′(z)

f2(z)
≺ 1 + z.

Proof. The first three parts follows from Theorems 2.1(c), 2.1(a) and 2.1(b)
respectively by taking p(z) = f ′(z). Next, applying Theorem 2.2(b) to the
function p(z) = z2f ′(z)/f2(z) yields the last part of the theorem. �

Next theorem is an application of Theorem 2.4.

Theorem 5.5. Let f ∈ A and β > 0.

(1) If f satisfies the subordination

zf ′(z)

f(z)
+ β

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
,

then f ∈ S∗

C .

(2) If f satisfies

z2f ′(z)

f2(z)
+ β

(

(zf(z))′′

f ′(z)
− 2zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
,

then
z2f ′(z)

f2(z)
≺ 1 +

4z

3
+

2z2

3
.

The three parts of the next theorem are application of Theorems 3.1, 3.2
and 3.3 respectively.

Theorem 5.6. Let f ∈ A. Then following are the sufficient conditions for

f ∈ S∗

e .

(1) Let β ≤ −2e or β ≥ 2e/3. The function f satisfies the subordination

1 + β
zf ′(z)

f(z)

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
.
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(2) Let |β| ≥ 2. The function f satisfies the subordination

1 + β

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
.

(3) Let β ≤ −2e/3 or β ≥ 2e. The function f satisfies the subordination

1− β + β
1 + zf ′′(z)

f ′(z)

zf ′(z)
f(z)

≺ 1 +
4z

3
+

2z2

3
.

The two parts of the next theorem are application of Theorems 3.1 and 3.2
respectively.

Theorem 5.7. Let f ∈ A.

(1) If f satisfies 1 + βzf ′′(z) ≺ 1 + 4z/3 + 2z2/3 (β ≤ −2e or β ≥ 2e/3),
then f ′ ≺ ez.

(2) If f satisfies

1 + β

(

(zf(z))′′

f ′(z)
− 2zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
(|β| ≥ 2),

then
z2f ′(z)

f2(z)
≺ ez.

The remaining results are application of Section 4.

Theorem 5.8. Let f ∈ A. Then following are the sufficient conditions for

f ∈ S∗

L.

(1) The function f satisfies the subordination

1 + β
zf ′(z)

f(z)

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
(β ≥ 4

√
2).

(2) The function f satisfies the subordination

1 + β

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
(β ≤ −4 or β ≥ 8).

(3) The function f satisfies the subordination

1− β + β
1 + zf ′′(z)

f ′(z)

zf ′(z)
f(z)

≺ 1 +
4z

3
+

2z2

3
(β ≥ 8

√
2).

(4) The function f satisfies the subordination

zf ′(z)

f(z)
+ β

(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
(β ≥ 12).

Theorem 5.9. Let f ∈ A.

(1) If the function f satisfies 1 + βzf ′′(z) ≺ 1 + 4z/3 + 2z2/3, β ≥ 4
√
2,

then f ′ ≺
√
1 + z.
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(2) If the function f satisfies

1 + β

(

(zf(z))′′

f ′(z)
− 2zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
(β ≤ −4 or β ≥ 8),

then
z2f ′(z)

f2(z)
≺

√
1 + z.

(3) If the function f satisfies

z2f ′(z)

f2(z)
+ β

(

(zf(z))′′

f ′(z)
− 2zf ′(z)

f(z)

)

≺ 1 +
4z

3
+

2z2

3
(β ≥ 12),

then
z2f ′(z)

f2(z)
≺

√
1 + z.
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