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SUFFICIENT CONDITIONS FOR
THE GENERALIZED PROBLEM OF BOLZA

by
vera zeidan

Abstract. This paper presents sufficient conditions for strong local optimality in
the generalized problem of Bolza. These conditions represent a unification, in the
sense that they can be applied to both the calculus of variations and to optimal
control problems, as well as problems with nonsmooth data. Also, this paper brings
to light a new point of view concerning the Jacobi condition in the classical calculus
of variations, showing that it can be considered as a condition which guarantees the
existence of a canonical transformation which transforms the original Hamiltonian
to a locally concave-convex Hamiltonian.

1. Introduction. Consider the generalized problem of Bolza:

Minimize/ £(f, x(f), x(f)) t/r
Ja

t
subject to

x(a)=A,       xib) = B,
where x is an absolutely continuous function from [a, b] to R" with derivative x
(almost everywhere), and where £ is allowed to assume the value +00; i.e., £:
[a,b] XR"XR"-RU{ + oo).

The fact that £ is extended real-valued implies that our generalized problem of
Bolza unifies the calculus of variations and optimal control problems.

The Hamiltonian H is defined by the conjugacy formula

H(t, x, p) = sup{(p, v) — L(t, x, v): dëR").

The existence of a solution for the generalized problem of Bolza was studied by R.
T. Rockafellar in [18] and necessary conditions were developed by F. H. Clarke in
[4,7]. This paper presents sufficient conditions and like the above articles focuses on
the Hamiltonian H defined earlier. Thus, this paper completes the program of
studying the generalized problem of Bolza from the point of view of the Hamilto-
nian.

In the classical calculus of variations a number of procedures are available to
confirm the optimality of an extremal which satisfies the necessary conditions. These
procedures evoke the field of extremals, the Hamilton-Jacobi equation and the
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562 VERA ZEIDAN

Jacobi equation. The situation in optimal control theory is relatively undeveloped,
since these procedures are largely unavailable—except in simplified contexts. For
the generalized problem of Bolza, which is a general form of the calculus of
variations and optimal control problems, the only sufficient condition existing in the
literature requires the Hamiltonian Hit, x, p) to be concave in x and convex in p.

In this paper sufficient conditions are developed for the generalized problem of
Bolza where the Hamiltonian is not necessarily concave-convex. The method we
employ, which we describe presently, can be used to treat problems in which
endpoints constraints and/or functionals enter in a much more general way than
described above. We shall present this extension in §6. Our method requires the use
of a canonical transformation of "Hamiltonian inclusions". This transformation
takes the problem locally, near given arcs (x, p) satisfying the Hamiltonian equa-
tions, into a new problem having a concave-convex Hamiltonian to which the convex
theory can be applied. The existence of such a transformation is guaranteed by
assuming the existence of an auxiliary function satisfying a certain inequality as
opposed to an equation.

In the classical setting, it can be shown that our inequality criterion is in fact
equivalent to a well-known condition involving the Jacobi equation. This equiva-
lence sheds new light on the Jacobi condition, since the latter can now be interpreted
as being essentially a necessary and sufficient condition such that there exists a
certain kind of canonical transformation for which the transformed Hamiltonian is
locally concave-convex. However, there are examples in the classical setting where
our form of the criterion is easier to apply, and of course it applies when others do
not, such as in certain cases of nondifferentiable and/or extended real-valued data.

For certain problems in optimal control theory if we consider the special case
treated by D. Mayne in [11], that is when the control w(i) belongs to the interior of
the control set U, then our conditions reduce to his result in [11, Theorem 3.2].

2. Discussion of the problem and main results. A function x() from [a, b] to R" is
an arc if it is absolutely continuous. The arc x(-) is admissible if it satisfies x(a) = A
and xib) = B. Suppose we are given an admissible arc x from [a, b] to R". We are
interested in finding conditions which guarantee the local optimality of x for the
generalized problem of Bolza. Hence, the study of the problem will focus on some
neighborhoods of the arc x and the arc p such that (x, p) satisfy the "Hamiltonian
inclusions".

For given arcs x, p, and some positive numbers e, 8, we define

Nie, 8) = {it,x, p):t E [a,b], |x - x(i)| < e and \p- pit)\<8)

and

N(e, oo) = {(/, x,w): t E [a,b], |x - x(t)\ < e and w E R").

Consider the generalized Bolza problem:

(P) Minimize7(x) = f Lit, x(t), x(t)) dt
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THE GENERALIZED PROBLEM OF BOLZA 563

subject to
x(a)-A,       x(b) = B,

where x is an arc from [a, b] to R", and where £ is a given function, £:
N(e, oo) -> R U {+ 00} for some given positive number e.

Remark. Because £ can take the value +00, the problem is much more general
than it seems. For more information see [5 and 17].

The Hamiltonian of the problem,

(2.1) Hit, z) = sup{(p, v)~ Lit, x, v): cER"),

where z — (x, p), is then defined on N(e, 00) and it is convex in p.
Let £ be the collection of Lebesgue measurable subsets of [a, b] and <$ the Borel

subsets of R" X R". We denote by Ê X <& the a-algebra of subsets of [a,b]X R" X R"
generated by products of sets in £ and ®.

Suppose we are also given an arc p. The following hypothesis will be made:
(H,) L is £ X % measurable, and there exist an integrable function p(-) on [a, b]

and some positive real number 8 such that, for it, z) E Nie, 8), | Hit, z) | < pit).
Definition. The Hamiltonian H is said to be C1+ near (x, p) if there exist

positive numbers e and 8 such that for each / in [a, b], Hit, •) is C1 with locally
Lipschitz first derivatives on

{z = (x, p): \x - x(t)\< e,\p -p(t)\< 8}.

If the Hamiltonian H is Cl+ then the gradient of H with respect to z, Hz(t, ■), is
locally Lipschitz and hence the generalized Jacobian dzHzit, ■) exists and it is
defined at a point z as being the convex hull of all matrices M of the form

M= lim{DzHzit,z,)},
<'->oo

where z, converges to z and the usual Jacobian DzHzit, z,) exists for each /'.
We will also make the following hypothesis.
(H2) The Hamiltonian H is C1 + near (x, p) with associated (e, 8), and the map

it,z)^dzHzit,z)

is upper semicontinuous on 7V(e, 8), Hzi•, z) is continuous for z near z.
In the autonomous case the hypothesis (H2) reduces to saying that the map

z -> //(z)isC1+ on

(z = (x,p): |x-x(0|<e, \p-pit)\<8}.

Definition. We say that L satisfies the Weierstrass condition at x if there exists a
function f(-) on [a, b] such that, for almost all /, for all v,

Lit, x(t), kit) + v)~ Lit, xit), ait)) > (v, i(0>.

Remark. The Weierstrass condition is also a necessary condition for optimality of
x in the generalized problem of Bolza. For reference see [2 and 5].
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564 VERA ZEIDAN

Definition. The admissible arc x is a strong local minimum for the problem (P) if
there exists a positive real number y such that x minimizes /(x) over all admissible
arcs x satisfying

|x(/)-x(0|<y,    for allí G [a, b].
When Hit, ■) is locally Lipschitz and satisfies some additional technical hypothe-

ses, a necessary condition for optimality of x is that there exist an arc p on [a, b]
such that z = (x, p) satisfies the Hamiltonian inclusions, i.e.,

Jî(t) E d2H(t, f(/))    a.e.,

where/ = [°, ~'0], and / is the « X «-identity matrix [7].
The main result in this paper consists of sufficient conditions obtained by

strengthening the necessary conditions, i.e., the Weierstrass condition and the
Hamiltonian inclusions.

The proof of the following theorem will be postponed to §5.

Theorem 1. Let the arcs x, p be given such that x is admissible. Assume the
hypotheses (H,) andiW2), and

(a) £ satisfies the Weierstrass condition at x for f = p,
(b) the arc z = (x, p) satisfies

J2it) = Hzit,zit))   fortE[a,b],

(c) there exists a C]-matrix function Qi-)from [a, b] to the space of n X n matrices
such that, for all t E [a, b], Qit) is symmetric and satisfies

(2.2)       ô(0 - ö(0y(0ö(0 + 0(0/3(0 + ô(0ô(0 - «(0 > o
( positive definite) for all t G [a, b], and for all matrices

lait)     0(0 \      „      ,      t ^

Then x provides a strong local minimum for (P).

Remark. As we shall see, the hypothesis (H,) implies that the integral 7(x) =
Ja Lit, x(r), x(/)) dt is well defined (possibly + oo) near x.

Remark. If £(r, x, v) is convex in v then the assumption (a) of the theorem is
satisfied. Also, the measurability of H would imply the measurability of £ and
hence, in this case, all the hypotheses could be framed in terms of H.

3. The case of smooth Hamiltonians: H is C2. In this section we assume that
//(•, -, •) is C2 near some given arcs (x, p). When we merely assume that //is C2,
we can nonetheless reduce the condition (c) of Theorem 1 to a condition which, in
the classical case, i.e., when £ is also C2, will be equivalent to a familiar one
involving the Jacobi equation. But, of course, the theorem also applies to functions £
which are less than C2, in fact even nondifferentiable and extended-valued.

In the following proposition we will show that in the case when only //(-,-,•) is
C2, but L can be nonsmooth and extended-valued, the inequality in (2.2) is
equivalent to equality. Also we will prove that condition (c) of the theorem is
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THE GENERALIZED PROBLEM OF BOLZA 565

equivalent to a condition, which, in the case when £(-,-,•) is also C2, will be
exactly the Jacobi condition in Hamiltonian form.

Suppose we are given arcs x and p with x admissible. The notation <#>(/) will mean
that the function <p is evaluated at (/, x(i), pit)), and

32 32 32 32
^-3^37*'   *"_3^*'   ^-3^*'    and   ^-3io7*'

Proposition 1. Assume that the Hamiltonian H, defined in (2.1), is swc/z i/ia/
Hi, -, ■) is C2 near (x, p) a«c/ ///ai H (t) is positive definite for t in [a, b]. Then the
following are equivalent:

(i) the condition (c) of the theorem is satisfied, i.e., there exists a C1-matrix function
Q(-) from [a,b] to the space of n X n-matrices such that Q(t) is symmetric and
satisfies

(3.1) ß(0 - Qit)Hppit)Qit) + Hxpit)Qit) + Qit)Hpxit) - Hxx(t) > 0
for all t E [a, b],

(ii) there exists a C1-matrix function Q(-) on [a, b] such that (2(0 is symmetric and
satisfies

(3.2) 0(0 - Qit)Hppit)Qit) + Hxpit)Qit) + Qit)Hpxit) - A„{t) = 0
for all t E [a, b],

(iii) there exists no nontrivial solution h from [a, b] to R" of the equation

(3.3) ft{Hp-p\t)hit) - H;¡(t)Hpx(t)h(t)) + Hxpit)Hp¡it)hit) m

+Êxx(t)h(t) - Hxpit)Hplit)Hpxit)hit) = 0

such that hia) = 0 and hic) = 0 for some c G (a, b].

Proof. It suffices to prove these implications: (iii) -> (ii), (ii) -» (i), and (i) -* (iii).
Suppose (iii) holds. By [9, Theorem 10.2] (iii) implies that there exists a solution

(t/0(/), V0it)) of the matrix system

Ù(t) = Hpx(t)U(t) + Hpp(t)V(t),

V(t) = -Hxx(t)U(t)-Hxp(t)V(t),

with det(70(/) =£ 0 on [a, b] and t/0rK0 = V0TU0, the symbol (r) stands for the
transpose of the matrix.

Let ô0(0 = -^o(0^o~'(0- Then ß0(-) is C1, and Q0it) is symmetric and solves
(3.2), so that (ii) holds.

The implication (ii) -» (i) is obtained by using the embedding theorem of first
order differential equations in [10].

Suppose (i) holds for some matrix function <2o(0- Define

Z(t) = Q0(t) - Q0(t)Hpp(t)Q0it) + Hxp(t)Q0(t) + Q0it)Hpxit) - Hxx(t).
Then Z(i) > 0 (positive definite) for all t in [a, b].
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566 VERA ZEIDAN

Let U0it) be the solution of the differential equation

Ù(t) = {Hpx(t) - Hpp(t)Q0(t))u(t),       U(a) = I,

where / is the n X «-identity matrix, and let V0it) be

V0it) =-Q0it)U0it)    iortE[a,b\.

Then we have that det U0it) ^ 0 for í in [cz, b], and U0TV0 = V0TU0, and (U0(t), K0(0)
solves the matrix system

Ü(t) = Hpx(t)U(t)+Hpp(t)V(t),

V(t) = - (Z(t) + Hxx(t))U(t) - Hxp(t)V(t),

for t E [a, b]. Thus, by [9, Theorem 10.2] we conclude that there exists no nontrivial
solution hit) on [a, b] solving

j-t[Hpp\t)hit) - H-pp\t)Hpxit)hit)} + Hxp(t)Hp-p\t)h\t) + Hxx(t)h(t)

-ñxp(t)H-¡(t)ñpx(t)h(t) + z(t)h(t) = o,

with «(a) = 0 and «(c) = 0 for some c E (a, b]. But that is equivalent by [9,Theo-
rem 10.3] to saying that: for every interval [a, ß] E [a, b] we have

/(„; a, ß) = jP{[Hp-pl(t)i - H;p\t)Hpx(t)n] ■ r,

+ [-Hxpit)Hp-p\t)r,

- (Hxxit) - Hxpit)Hpp\t)Hpxit) + Z(0)r,] • r,} dt > 0

for every absolutely continuous vector function ■»} such that

Tj(a) = tj(jS) = 0,    and   r¡ is of class £2 on [a, ß],

and
(2) l(-q;a,ß)=0    if and only if T) =0.
But Z(/) is positive definite for each t, so for every interval [a, ß] C [a, b]

/,(r,; a, ß) = /(t,; a, ß) + fßZ(t)r, ■ r, dt
•'a

satisfies the conditions (1) and (2), and hence by [9, Theorem 10.3] condition (iii)
holds.   Q.E.D.

Now, suppose that £(-,-,•) is also C2 for x near x. Then we are in the classical
case. The following corollary will show the connection between our sufficient
conditions and the one given in the literature which involves the Jacobi equation.

The notation </>(i) will mean that the function <J> is evaluated at (/, x(i), *(0)-
Definition. Given an arc x on [a, b]. A point c G (a, b] is said to be conjugate to

a, if there exists a nontrivial solution h = (h,,... ,h„) of the Jacobi equation

(3.4) j-t(Lvv(t)h(t) + Lvx(t)hit)) - £x,(0h(0 - Â,(0h(0 = 0
with h(a) = 0 and h(c) = 0.
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THE GENERALIZED PROBLEM OF BOLZA 567

Definition. The arc x satisfies the Jacobi condition if there exists no conjugate
point of a in (a, b].

The Weierstrass function is defined by

E(t, x,v,w) = L(t, x,w) — L(t, x,v) — (w — v) • £„(/, x, v).

Corollary. Suppose we are given arcs x, p such that x is admissible. Assume
(1) £(•, -, •) is C2 for x near x, and Hi-, -, ■) is C2 forix, p) nearix, p),
(2) the arc z = (x, p) satisfies

71(0 = Hz(t, z(t))   for all t E [a, b],
where J = [°,~'0] and I is the n X n-identity matrix,

(3) the strengthened Legendre condition

Lvcit, x(t),x(t)) >0    ipositivedefinite),

(4) for (x, v) near (x, x) and for all w in R"

£(i, x, v, w) > 0.

Then the conditions (i), (ii) and (iii) of Proposition 1 are equivalent to:
(iv) the arc x satisfies the Jacobi condition.

Proof. The hypotheses (1), (2), (3) and (4) allow us to write the Jacobi equation
(3.4) in terms of the Hamiltonian. Now (3.4) turns out to be the equation (3.3), and
hence condition (iv) is equivalent to condition (iii). The hypothesis (3) implies that
H At) > 0, so apply Proposition 1 to complete the proof.    Q.E.D.

Remark. For the verification of the Jacobi condition, condition (i) of Proposition
1 suggests a method which can be more convenient (see Example 1), and which does
not appear to have been noted in the calculus of variations.

4. Concave-convex Hamiltonians. A criterion for local concavity. In studying the
generalized problem of Bolza sufficient conditions were obtained in [15,16 and 19]
when the Hamiltonian is concave in x and convex in p. The main technique of the
present paper is based on using canonical transformations [8] to transform the
original Hamiltonian Hit, x, p), which is not necessarily concave-convex, even
locally in x, to a new Hamiltonian H*it, X, P) such that H* is locally concave in X
around an arc X and convex in £.

For the new Hamiltonian H* we need our own version of the sufficiency theorem
obtained for concave-convex Hamiltonians.

We are given arcs X, P from [a, b] to R". For given positive numbers a* and 8*
we define

N*ia*,8*) = {it,X,P):tE [a, b],\X - X(t)\<a*, \P - P(t)\<8*},

and

N*i<x*, oo) = {(t,X,P):te [a, b], \X - X(t)\ <a*,PE R").

Let H*it, Z) be a given function defined in A*(a*, oo) for some given positive
number a*.
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Definition. H*it, -, Pit)) is said to be locally concave around the arc X if there
exists a positive number y* such that, for any t E [a, b], and Xx, X2 satisfying

\XX -X(t)\<y*,    \X2-X(t)\<y*,

and for any X, 0 < À «£ 1, we have

H*(t, XXX + (1 - \)X2, P(t)) s* XH*(t, Xx,P(t)) + (1 - \)H*(t, X2, P(t)).

Let us now define

L*(t, X, V) = sup{<£, V)- H*it, X, P): P E R")

as a function on A*(a*, oo), and consider the problem

(P*) minimize J*iX) = (bL*(t, X(t), X(t)) dt
Ja

subject to

X(a)=A*,       X(b) = B*,
where A* and £* are given constants in R".

Proposition 2. Assume that X is admissible, and
(1) H* is £ X <S measurable, and there exist an integrable function p*(-) on [a, b]

and a positive number 8* such that, for all it, Z) E N*i<x*, 8*)

\H*(t,Z)\<p*(t),
(2) H*it, ■) is locally Lipschitz on the set

{Z = (X, P): \X - X(t)\< a*,\P - P(t)\< 8*},
(3) the arc Z = (X, P) satisfies

JZ(t)EdzH*(t,Z(t))    a.e.,

where dzH* is the generalized gradient of //*(?, ■),
(4) H*it, -, Pit)) is locally concave around X, and H*it, X, ■) is convex for it, X)

in the set

{it, X):tE[a,b],\X- Xit)\<a*).

Then /*( X) is defined ( possibly + oo) for X near X, and X provides a strong local
minimum for (P*).

Proof. Condition (1) implies that L* is £ X 65 measurable and that, for | X —
Xit)\<a*

L*(t,X,V)>(P(t),V)-p*(t).

Then, /*( X) is defined (possibly + oo) for all arcs X in the set

[X:[a,b]-+R",\X(t)-X(t)\<a*}.
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THE GENERALIZED PROBLEM OF BOLZA 569

We have that //*(?, -, £(0) is locally concave on a y-neighborhood of X, where
y* < a*, then define the following function

(4.1)      Hit,X,P)
H*it, X, P)    if \X - i(0| < y* and £ = P(t),
+ 00 if \X - X(t)\< y* and P¥=P(t),

-oo if \X-X(t)\>y*

from [a, b] X R" X R" to [-oo, + oo}.
The hypothesis (4) implies that H is concave in X and convex in £. Consider the

function

(4.2) L(t, X,V) = sap{(P,V)-H(t, X, P):PER"}

i + oo iî\X-X(t)\>y*,
\ (Pit), V)- H*(t, X, Pit))    if |A" - X(t)\ < y*.

Condition (1) implies that /„*£(/, Xit), Xit))dt is finite for all arcs X such that
| Xit) - X{t) \< y*, for all / G [a, b].

Let us now define the problem

(?) minimizeM''£(i, Xit), Xit)) dt: Xia) =A*,Xib) = £*].

From hypothesis (3) and the definition of H it follows that

JZ(t) G dH(t, ¿it))    a.e.
Also we have that H is a proper and closed function, then by [14, Theorem 37.5] we
conclude that

{P(t),Ht))£dL(t,X(t),X(t))    a.e.
So, the convexity of Lit, ■, ■ ) on R" X R" will then imply that, for any admissible arc
X

(4.3) f{L(t, Xit), Xit)) - L(t, X(t), X(t))} dt

>(h({P(t), Ht)),{x(t) - x(t), x(t) - i(0)> dt = o.
Ja

Thus, the arc X solves (P).
On the other hand, hypothesis (3), the convexity of H*it, X, ■) when X is near X,

and the definition of £ lead to the following equalities:
(4.4)

L*(t, X(t), Xit)) = L(t, Xit), X(t)) = P(t) ■ X(t) - H*(t, X(t), Pit)).
Also, for any arc X such that | Xit) - Xit) |< y* for all t E [a, b] we have

(4.5) L(t, Xit), Xit)) « £*(/, Xit), X(t)).
Therefore, X provides a strong local minimum for (P*).    Q.E.D.

The following result establishes a criterion for local concavity.
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Proposition 3. Suppose that for some positive number y* and for all t in [a, b] the
function H*it, -, £(/)) is C1+ on Ntiy*) = {A G R": \X- X(t) |< y*}. Assume in
addition that Hxxit, X, Pit)) « 0 whenever Hxx exists on [it, X, Pit)): t E [a, b],
| X - X(t)\<y*}. Then H*it, -, Pit)) is locally concave around X.

Proof. Consider t0 in [a, b], X0 in Nt([y*), and d in R"; d z 0. Then we can find
real numbers £,, £2 such that

X0 + rdENloiy*)    forr G (£,,£,),

and

X0 + id É Nloiy*)    forr « (T„ T2).

Define g(i-) = H*it0, X0 + id, £(i0)) as a function from (£,, £2) to R. Since
H*(t0, -, £(i0)) is C1+ on N,fy*) then g(-) is C1+ on (£,, £2), and hence by the
chain rule in [6] we obtain

gir) = Hxit0,X0 + rd,Pit0))-d

and

dg(r) E d ■ dxH*(t0, X0 + rd, P(t0))d,

where 3g is the generalized gradient of g and dxHx is the generalized Jacobian of
Hx. But from the hypothesis on Hxx we get that, for all t G (£,, £2), for all
v E dxHxit0, X0 + id, Pit0)), d ■ vd < 0. Thus, g(r) is nonincreasing, and hence
g(-) is concave on (£,, £2). Since the argument is valid for any choice of t0 in [a, b],
X0 in N, (y*), and d in R", we conclude that H*it, -, Pit)) is locally concave around
X.   Q.E°.D.

5. Proof of Theorem 1. The proof will follow these steps: Condition (c) of the
theorem will allow us to find a canonical transformation transforming the original
problem (P) to a new problem (P*) which has a locally concave-convex Hamiltonian
H* around the transformed arc X of the given arc x. Then, we will apply the
sufficiency theory of the previous section to the new problem. Conditions (a) and (b)
will imply the optimality of x for the original problem, knowing that the arc X solves
the transformed problem (P*).

Suppose we are given C1 -functions h(-), £(•, ■) and a positive number a; a < e,
such that

h: [a,b] ^R",       F: {(t,x):tE [a, b], \x - x(t)\< a) - R",
and £(/, •) is invertible with inverse git, ■) = F~\t, ■). Consider the canonical
transformation whose generating function has the form

(5.1) *(t,X,p)=-(p-h(t))-g(t,X).
This transformation transforms the original variables (x, p) and the original Hamil-
tonian H to new variables iX, P) and a new Hamiltonian H* in the following way:

,     , \x = -*p(t,X,p) = g(t,X),
(5.2)

[P = -*xit, X, p) = igxit, x))TiP - hit)),
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THE GENERALIZED PROBLEM OF BOLZA 571

where AT denotes the transpose of the matrix A,

(5.3) H*it, X, P) = Hit, x, p) + h\t) ■ git, X) - g,it, X)-(p- hit))
and

(5.4) P- dX- H*(t, X, P) = p • dx - H(t, x, p) - d(h(t) • git, X)).
Let X, £ be the transformed arcs of the given arcs x, p. Then X, £ are defined as

X(t) = F(t,x(t))   and   P(t) = Fxr\t, *(/))(/(') ~ *('))■

Since the transformation is defined for it, x, p) E N(a, oo), then there exists a
positive number a* such that the original variables it, x, p) E Nia, oo) whenever the
transformed variables it, X, P) E N*(a*, oo).

From the definition of H we have that Hit, x, ■) is convex. Then the equations
(5.2) and (5.3) imply that £P(i, X, ■) is convex.

Let us define

(5.5) L*it, X, V) = sup{<£, V)- H*(t, X, £): £ G R"},

then £* is defined on A*(a*, oo).
Now consider the transformed problem

(P*) minimize/*(A) = (*£*(<, X(t), X(t)) dtA
subject to

X(a) = F(a,A),       X(b) = F(b,B).

The following lemma shows the connection between the original problem (P) and
the transformed problem (P*).

Lemma 1. Assume the hypothesis (H,) and
(i) £ satisfies the Weierstrass condition,

(ii) Hit, -, ■) is locally Lipschitz near (x, p), and z = (x, p) satisfies the Hamilto-
nian inclusions

J'z{t) G3z£f(i,z(0)    a.e.

Then J*i X) is well defined for X near X, and if X provides a strong local minimum
for (P*), x provides a strong local minimum for (P).

Proof. The hypothesis (H,) implies that L* is £ X <ä> measurable and that there
exist a positive number 8* and an integrable function p*(-) on [a, b] such that the
new Hamiltonian H* defined in (5.3) satisfies

\H*it, X,P)\< p*(t)    for (/, X, P) E N*(a*, 8*).
Then, from (5.5) it follows that

L*it, X, V) ><£(/), V)-p*it),
and hence /*( X) is well defined (possibly + oo) for X near X.
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Consider an admissible arc X for the problem (P*) such that | Xit) — Xit) |< a*
for all t E [a, b]. Then x(i) = git, Xit)) is an admissible arc for (P), and | xit) —
xit) \< a for all t E [a, b]. Now by using equations (5.5), (5.3) and (2.1) we obtain

L*(t, X(t), X(t)) = sup{(£, Xit))- H*(T, Xit), £): £ G R")

= sup inf {(£, Xit))- (hit) + (gx(t, X(t)))T~'p) ■ v
p    v

+ L(t, g(t, Xit)), v) + g,(t, Xit)) -(gx(t, X(t)))T"p)

-h(t) ■ g(t, X(t))

<M sup [(P, X(t))-{h(t) +(gx(t, X(t)))T"p) ■ v
V p

+ L(t, g(t, Xit)), v) + g,(t, Xit)) -(gx(t, X(t)))T"p}

-hit) ■ git, Xit))
= inf£(tO,

where

K(v)
+ <x>    iîv*gl(t,X(t))+gx(t,X(t))X(t),

L(t, g(t, Xit)), v) - hit) ■ v - h(t) ■ g(t, Xit))
iîv = gt(t,X(t))+gx(t,X(t))X(t).

But we have x(i) = git, Xit)), and x(i) = g,(i, Xit)) + gxit, Xit))Xit), then we
conclude that

L*(t, Xit), Xit)) < Lit, xit), xit)) - j-t(h(t) ■ xit)),

and hence

(5.6) ¡bL*(t, Xit), X(t)) dt < fhL(t, xit), x(t)) dt + h(a) ■ A - h(b) ■ B.
A A

On the other hand, we know from [12] that canonical transformations conserve
the "Hamiltonian inclusions", then condition (ii) implies that the transformed arc
Z = iX,P) satisfies

JZ(t)EdzH*(t,Z(t))    a.e.
Thus, the convexity of H*it, X, ■) and equation (5.5) imply that

L*(t, Xit), Xit)) = (Pit), X(t))-H*(t, X(t), Pit)).
Also conditions (i), (ii), and equation (2.1) imply that

L(t, xit), ¿it)) = (p(t), x(0>- H(t, x(t), p(t)).
By using the equalities above in equation (5.4) we obtain

(5.7) fbL*(t, Xit), Xit)) dt = fhL(t, xit), x(0) dt + h(a) ■ A - h(b) ■ B.
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Since X provides a strong local minimum for (P*), we conclude from (5.6) and (5.7)
that x provides a strong local minimum for (P).    Q.E.D.

To prove the theorem it is sufficient, by Lemma 1, to prove that the transformed
arc X provides a strong local minimum for (P*). Proposition 2 will be used to prove
the optimality of X. In fact, given the hypotheses of the theorem all the conditions of
Proposition 2 are satisfied except the local concavity of H*it, -, Pit)) around X.
Using hypothesis (c) of the theorem we are going to find particular functions «(•)
and £(•, •) such that the corresponding canonical transformation in (5.1) guarantees
the local concavity of H*it, -, Pit)) around X, and then Proposition 2 will complete
the proof.

Consider the C1-matrix function Qit) given in the condition (c). Then we can find
a C'-function £ from [a, b] to R", a positive number a, and a function £(/, x) from
{(î, x): t E [a, b],\x - x(0 |< «} to R" such that the following hold:

(1) £(-, x) is C\ F,it, ■) is C2, Fit, ■) is C3 and invertible, £x(-, x) is C\ Fxx(-,x)
is C1 for/' = 1,...,«.

(2) Fx,it, xit)) = Flxit, xit)), Fxxlit, xit)) = Ftxxit, xit)) for / = 1,...,«, and
Fx(t, x(t)) = I.

(3) For git, X) = F'\t, x), and for Xit) = Fit, xit)), the functions g and £
satisfy

(5.8) Q(t) = Dx((gx(t,X))TP(t))\x= X(0'

where Dx denotes the Jacobian operator with respect to X.
The construction of the functions f and £ is possible. First notice that condition

(b) of the theorem implies that x is C1. Let « > 1, and let qxit) be the first column
of Qit) = iqxit) ■ ■ ■ q„it)). Define dit, x) = <(x - xit)), qxit))+ 1. Then we can
find a positive number a such that dit, x) ¥" 0 on the set {(t, x): t E [a, b],
\x - x(0|< «}•

Define the functions £ and

\ A

as

P(t)

\ 0
£,(/, x) = i<(* - x(0), e(0(* - *(0)>+*i.

Fit, x) — x¡   for /' = 2,3,...,«.
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It is clear that £ and £(■, x) are C1, Fit, ■ ) is C3, £,(/, •) is C2. Also we have

Fxit,x) = I +

(x-x(0fo(0
0        •••        0

0 0

and det £,(?, x) = dit, x). Then £(i, •) is invertible for | x — x(t) |< a, Fx(-, x) is
C\ Fxit, xit)) = I,

Fxtit,x) = Flx(t,x)

lix-xit))TQit)-xit)TQit)
0        ■•■        0

0        •••        0
and

FxxM,x) = Ftxx(t,x) =

qJit)
0       •••      0

I

0 0
So conditions (1) and (2) hold.

Let Xit) = Fit, xit)), and git, X) = F~\t, x). It is easy to see that gx(t, Xit)) =
£

-*Vgxit,X)3X X=XU) 3x £x(r,x)
X = *(0

-qJit)
0        •••        0

0 0

So (5.8) holds.
For the case « = 1 the construction of £ and £ is simpler. In fact, take

£(0 = -0(0. and Fit. x) a function on [a, b]X £ such that Fxit, xit)) = 1,
£v(i, x) =£ 0, and £„(/, x(?V) = 1. Then, the function g(t, X) = £"'(i, x) satisfies

gxx(t, Xit)) = -Fxx(t, x(0) = -1    and   gxx{t, X(t))F(t) = Q(t).
Having found functions £ and £ satisfying conditions (1), (2) and (3) define

hit) = pit) — Pit). Condition (b) of the theorem implies thatp is C1, and hence h is
C1. Consider the canonical transformation of the form (5.1) corresponding to the
functions «(•) and £(•, •) already constructed. For this transformation (5.2) implies
that

P(t) = (gx(t,X(t)))T(p(t)-h(t))=P(t).

The following result will be used to prove that the transformed Hamiltonian
H*it, ■, Pit)) is locally concave around X.
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Lemma 2. // the condition (c) of the theorem holds then there exists a positive number
ß such that for all t E [a, b] and for \x - x(t)\< ß, \p - pit)\< ß, \E- I\< ß,
I W + Qit)\< ßand\S + Q(t)\< ß we have

(£r, W')DzHzit, x,p)(^} + S < 0    inegative semidefinite)

whenever DzHzit, x, p) exists.

Proof. Suppose the result is false. Then for every positive integer k such that
k > max(e, 8), where (e, 8) is given in (H2), there exist (tk, xk, pk) E [a, b] X R" X
R", rk E R" and « X «-matrices Ek,Wk, Sk satisfying

(tk,xk,Pk)EN(\,{),    \Ek-l\<\,    \Wk + Q(tk)\<h

|^ + ß(/*)|- lk*ll= i>
DzHzitk,xk,pk) exists, and

(ETk,WkT)DzHz(tk,xk,pk) W, + st rk > 0.

When k -> +oo, then tk-+tE [a, b], xk -* xit), pk -^ pit), Ek -» I, Wk -» -Qit),
Sk -* -Qit), and rk -» r with ||r|| = 1. On the other hand the hypothesis (H2)
implies that there exists a positive constant M such that

\dzHz(t,z)\<M   for it, z) E A(e, 8).

Thus DzHz(tk, xk, pk) converges to some matrix t>. But the map (/, z) -» d,Hzit, z)
is upper semicontinuous, then v E dzHzit, xit), pit)).

At the limit the above inequality becomes

r>0,(/,-ö(0)» _ß(i)]-ö(0

which contradicts the condition (c) of the theorem.   Q.E.D.
To complete the proof of the theorem it remains to establish the local concavity of

H*it, -, Pit)) around X. For, it suffices by Proposition 3 to prove that there exists a
positive number y* such that Hxxit, X, £(/))< 0 whenever Hxx exists on
[it, X, Pit)): t E[a,b],\X - Xit)\<y*}.

The hypothesis (H2) and equation (5.3) imply that there exist postive numbers
a*, 8* such that H*(t, -, ■) is Cl+ near (X, £), i.e., Hxx(t, X, P) exists almost
everywhere on A*(a*, 8*), and then Hxx can be computed from (5.3).

We define the matrix function G(/, X) = igxit, X))T . For a given vector £ in
R", DxiGP) denotes the derivative with respect to X of the vector function
Git, X)P. Let Ait, X) be any matrix function and v a vector in R". We define the
matrix

iDxAit,X))v
dAjt,X) dAJt, X)

dX, aX.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



576 VERA ZEIDAN

When Hxx exists on A/*(a*, 8*) it is then given by the following expression.

(5.9)    H*xxit, X, P) = (igx)T,iDxiGP))T)DzHz^D^Gp)^

+ (Dx(Dx(GP))T)(Hp - g,) + (Dx(gx)T)(Hx + h)

- (Dx(GP)fglx - (Dx(glx)T)(GP) - (gtx)TDx(GP),
where g, h, H are evaluated at (f, X), f,(i, g(i, X), hit) + Git, X)£) respectively.

Since there exists a one-to-one correspondence between the original variables
(x, p) and their transformed variables iX, P), then Hxx in (5.9) can be written as a
function £(/, x, p) of the original variables by using equations (5.2).

Define £(/, x) = gxit, X), Wit, x, p) = DxiG(t, X)P), and S(t, x, p) is the last
five terms in (5.9). We have £(/, xit)) = gxit, Xit)) = I. Also, since £ = £ and
gx(t, X(t)) = I, then equation (5.8) implies that W(t, x(t), p(t)) = -(?(0- On the
other hand by using hypothesis (b) of the theorem and equation (5.8) and that
x(t) = g(t, X(t)), gx(t, X(t)) = I, we obtain

[dx(Dx(GP))T](Hp - g,) |*=*(,),p=p(0 = QU)(Dxgx(t, X)) \x=X(I)X(t)

+ ((Dxgx(t,X))\x=X{l)X(t))TQ(t)

- (Dx(Dx((gx(t,X))rp))) \x=x(thP=ß(l)X(t).

Since hit) = pit) - Pit) and id/dt)igxit, Xit))) = 0, then

Sit, xit), pit)) = - [Dxigxit, X))T) \x=X(l)Pit)

-(Dx(gXl(t,X))T)\x=i{l)P(t)

- (Dx(Dx((gx(t, X))TP))) \x=xo),P=P\t)Xit).

By computing Q\t) from equation (5.8) we conclude that Sit, xit), pit)) = -Qit).
The continuity of the functions £(i, x), Wit, x, p), Sit, x, p), and Lemma 2

imply that £(/, x, p) < 0 for (x, p) near (x, p) and hence there exists a positive
number y* such that Hxxit, X, Pit)) «£ 0 when it exists on {it, X, Pit)): tE
[a, b],\X- Xit)\<y*}.    Q.E.D.

6. General boundary constraints and objective functions. Consider the generalized
problem of Bolza with general boundary constraints

(P,) minimize£,(x) = l(x(a), x(b)) + ( L(t, x(t), x(t)) dt
A

where x is an arc from [a, b] to R", and where £ is as before;

L: N(e,oo) - R U { + oo},

and

/: R" X R" - R U { + oo}.
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The problem (P,) is a more general form of the Bolza problem (P) of the earlier
sections, where we considered x(a), x(ft) as being fixed. Specifically, the previous
case is the one in which

,   .  .     ,  ..       Í0 ifx(a) =A andx(è) = B,
/(*(«),*(*)) = |+oo     xix{a)^Aox.x{b)^B.

This section presents sufficient conditions for the problem (P,) based on the
technique used for the problem (P) with some modifications resulting from the fact
that (P,) has a more general form. In fact, these conditions, as we shall see, are the
ones given in Theorem 1 and a new condition involving, of course, the function /. In
the case of fixed boundary values, i.e., when the problem (P,) reduces to (P), this
condition is automatically satisfied.

Definition. An arc x from [a, b] to R" is said to be admissible for (P,) if we have
/(x(a), x(b)) < +00.

Theorem 2. Suppose we are given arcs x, p from [a, b] to R" with x admissible.
Assume that all the hypotheses of Theorem 1 are satisfied and in addition assume

id) for c E R", d G R", with \c\< e,\d\< e,we have

(6.1) /(x(a) + c, xib) + d) - /(x(a), ii»)

>(Pia),c)-(pib),d)+Hd,Qib)d)-2-(c,Q(a)c).

Then x provides a strong local minimum for (P,).

Proof of Theorem 2. The proof is similar to the proof of Theorem 1 with some
modifications. So, consider the canonical transformation, described in §5 and given
by (5.1). Define the transformed problem of (P,) to be

(Pf)    minimizeJ*{X) = (h(b), g(b, X(b)))~ (h(a), g(a, X(a)))

+ l(g(a, X(a)), g(b, X(b))) + fhL*(t, X(t), X(t)) dt,
J a

where £* is given by (5.5).
The following lemma will play here the role played by Lemma 1 for the case of

given boundary values.

Lemma 3. Assume all the hypotheses of Lemma 1. Then J*iX) is well defined near
X, and if X is a strong local minimum for (P*), x is a strong local minimum for (P, ).

Proof. The proof is similar to the proof of Lemma 1, where (5.6) is now

fhL*(t, Xit), Xit)) dt < (hL{t, xit), xit)) dt
A Ja

+ (h(a), g(a, X(a)))- (h(b), g(b, X(b))),
and hence

(6.2) Jt(X)<Jx(x).
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On the other hand equation (5.7) becomes

(hL*(t, X(t), X(t)) dt = jhL(t, x(t), kit)) dt
J a a

+ (h(a), g(a, X(a)))- (h(b), g(b, X(b))),

so that
(6.3) J*(X)=Jxix).

By using (6.2) and (6.3) and the fact that X is a strong local minimum for (P,*), we
then conclude the result.   Q.E.D.

The proof of Theorem 2 will then be completed if we prove that the transformed
arc * provides a strong local minimum for (P*). For, let <2(-) be the matrix function
satisfying condition (c) of Theorem 1. As in §5, choose functions £ and £ satisfying
conditions (1), (2) and (3) of §5, and

(4) (F{t, x), P(t))= -Hix - x(t)),Q(t)(x - x(t)))+ (P(t), x).
This choice of £ and P is possible. In fact, the functions

'{■(x-xit),    Q(t)(x-x(t)))+xx'

Pit)

i -1 \
0

0

F(t,x)

\
satisfy the conditions required. Then define, as in §5,

(6.4) hit) = Pit) -Pit).
Now, consider the canonical transformation of the form (5.1), where g(t, •) =
£'(?. '). and h is given in (6.4). For this transformation equation (5.2) implies that
the arcs x, p are transformed to the arcs X, P, given by

X(t) = Fit, x(t))    and    P(t) = p(t) - h(t) = £(/).
From §5 we have that H*it, X, £), defined in (5.3), is convex in £ and locally

concave in X around the transformed arc X. Let H, L be the functions defined by
(4.1) and (4.2) respectively, and define

f+oo if I*, - X(a)\>y*,or \X2 - 1(6)1 >y*,
1*{XX,X2)     otherwise,

(6.5)    ¡(XX,X2)

where /*(*„ X2) = (h(b), g(b, X2))~ (h(a), g(a, *,)>+ l(g(a, Xx), g(b, X2))
Consider then the problem

rb
(P,) minimizeU(X(a), X(b)) +/'¿(?. X(t), X(t)) dt

Let X be any arc from [a. b] to R". From (4.3) we derive

(6.6)     ("{Lit, X(t), X(t)) - L(t, X(t), X(t))} dt
a

>jh({P(t), P(t))\x(t) - x(t), x(t) - x(t))) dt
J a

= (P(b), X(b) - X(b))- (P(a), X(a) - X(a)).
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If | X(a) - X(a) |> y* or | X(b) - X(b)\>y*, then (6.5) gives

î(Xia),Xib))-î{Xia),Xib))
> (Pia), X{a) - X{a))- (P{b), X{b) ~ X{b)).

But, if | X(a) - Xia)\< Y* and | X(b) - X(b)\< Y*, (6.5) implies that, for x(t) =
git, X(t)) we have

¡(X(a), Xib)) - l(X(a), Xib)) = (h(b), xib) - xib))- <«(a), x(a) - x(a))

+ l(x(a),x(b)) - l(x(a),x(b)).

By using (6.1), condition (4), and the fact that P = P = p — «we obtain

¡(X(a), Xib)) - I(X(a), X(b)) > (P(a), F(a, x(a)))- (P(b), F(b, x(b)))
-(P(a),x(a))+(P(b),x(b)).

But, conditon (4) gives that (£(0. *(0)= (-^(0. FiU x(t))), and hence, since
£ = £ we conclude

(6.7)    ï(X(a),X(b))-ï(X(a),X(b))

> (P(a), X(a) - X(a))- (P(b), X(b) - X(b)).
Thus, for any arc X from [a, b] to R" the function / satisfies (6.7). Adding the
inequalities (6.6) and (6.7) we obtain that X solves (P,).

We also have that (4.4) holds, and (4.5) is satisfied for all arcs X such that
| Xit) — Xit)\*z y*. Thus, it follows that X provides a strong local minimum for
(P*).    Q.E.D.

7. Application to an optimal control problem. Suppose we are given a subset U of
Rm, an arc x from [a, b] to R", two constants A, B, a positive number e and
functions g, / such that

g: {{x, u): \x - x{t)\< e, u E U) -> R,

and

/: {xGR":|x-x(0|<0 - M„Xm,

where MnXm is the space of « X m-matrices.
Consider the autonomous control problem:

g(x(t), u(t)) dt
a

over all measurable functions u: [a, b] -» Rm and absolutely continuous functions x:
[a, b] -> R" satisfying the constraints

(7.1) x(t) = f(x(t))u(t)   a.e,
(7.2) u(t) E U   a.e,

(7.3) x(a)=A,       x(b) = B.

Suppose that x is an arc satisfying | x(i) — x(t) |< e for all / G [a, b], and « is a
measurable function from [a, b] to Rm. If (x, u) satisfies (7.1), (7.2) and (7.3) we say
that (x, u) is admissible.
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Definition. An admissible function (x, û) is a strong local minimum for (C) if
there exists a positive real number y such that (x, û) minimizes /(x, u) over all
admissible functions (x, u) satisfying

\x(t) - x(t)\<y   for ail/ G [a, b].

The Hamiltonian //(x, p) of the problem (C) is defined on {(x, p): \x — x(i) |<
e, p E R"} by

(7.4) H(x, p) = sup{(p, fix)u)-gix, u): uEU).
If the supremum in (7.4) is attained for each (x, p) at a unique point u in U, then

we write the solution w(x, p) as a function of (x, p).

Theorem 3. Assume that x satisfies (7.3), cz«6?
(1) U is a nonempty convex compact polyhedron in Rm,
(2) g and f are C2, g(x, •) is strictly convex for x near x, and there exists an arc p

such that, for íiit) = m(x(í), PÍO) we have guuixit), ¿î(0) >0fort E [a, b],
(3) the arc z = (x, p) satisfies

/l(0 = //.(z(0)    fortE[a,b],
(4) the condition (c) of Theorem 1 w satisfied for H given in (7.4).
Then the function (x, «) « admissible and provides a strong local minimum for the

problem (C).

Proof. The compactness of U, the hypothesis (2), and [1, Theorem 2.1] imply that
for each (x, p) the supremum in (7.4) is attained at a unique point w(x, p), the
function u( •, • ) is continuous, and H(-, •) is C1 with gradient given by

(7.5) /£(z) = ((£/(x))M(x, p))Tp - gxix, uix, p), /(x)w(x, p)).

Since x satisfies (7.3) and since condition (3) holds, then (x, û) is admissible for
the problem (C).

The proof of optimality of the function (x, û) is based on converting the optimal
control problem (C) to a generalized Bolza problem (Pc), and then applying
Theorem 1.

Define the function

(7.6) L{x,v) = inf{g(x, u): v = f{x)u and u E U).

Then £ is an extended real-valued function on {(x, v): \ x — x(i) \< e,v E R").
The Hamiltonian H corresponding to the function £ is exactly the Hamiltonian H

defined in (7.4). In fact, equations (2.1) and (7.6) give

Hix, P) = sup{(p, o>- £(x, v): v E R")

= sup{(p, v)- inf{g(x, u): v =/(x)m, u E U): v E R"}

= sup{(p, f(x)u)- g(x, u): uEU)

= H(x,p).
Define the generalized Bolza problem corresponding to the problem (C) by

fb
(Pc) minimize    L(x(t),x(t))dt
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subject to

xia)=A,       x(6) = £,

where £ is the function defined in (7.6).
Since U is compact, and /, g are C2, then by [17, Lemma 6 and Theorem 6] we

conclude that £ defined in (7.6) is measurable, and

min(Pc) = min(C).

Thus, to prove that (x, «) is a strong local minimum for (C) it suffices to prove that
x is a strong local minimum for the problem (Pc).

The compactness of U, and the measurability of £ imply that the hypothesis (H, )
holds. The hypothesis (H2) in this case reduces to saying that //(•) is C'+ near
z = (x, p). Assume for the moment that H is C'+ (we will prove it later). The arc x
is admissible for the generalized Bolza problem (Pc), since it satisfies (7.3). Also the
convexity of g(x, •) imply the convexity of L(x, ■) defined in (7.6). So, to apply
Theorem 1 to the problem (Pc), we only need to show that //(•) is C'+ near
z — ix, p), and hence the proof of Theorem 3 will be completed.

We will use the following notation:

Naiz) = (z GR'X R": \z - 2{t)\ < a for / G [a,b]).

From hypothesis (2) we have that

guu{xit),û{t))>0    îortE[a,b].

Since we also have that the functions x, p, and «(•, •) are continuous, and [a, b] is
compact, it follows that there exists a positive number a such that for z = (x, p) E
Nai¿) we have

guu(x,w(z))>0.

Let A,(z),.. . ,Am(z) be the eigenvalues of the matrix function g„„(x, w(z)). Define
À(z) = min,A,(z). Since g„„(x, m(z)) is positive definite we conclude that for
z G Nai¿), and for« G R",

«•gu„(x,M(z))«>A(z)||«||2.

By using the continuity of A,(), and then of A(-), it follows that there exist positive
numbers y and p such that for z G Nyi¿), and for « G R",

(7.7) «■guu(x,M(z))«^p||«||2.

Since U is a compact polyhedron,/, g are C2, and (7.7) holds then by [13,Theorem
4.2 and Corollary 4.3] we have the following.

There exists a positive constant À such that, for each y0 E Nyiz) there exists a
neighborhood Niy0) ofy0 with

(7.8) \u(z)-u(y0)\<X\z-y{)\    forzEN(y0).

This proves that w( • ) is uniformly point-Lipschitz. The point-Lipschitz property is
quite different from the Lipschitz property. However, as we shall see, the uniformly
point-Lipschitz condition will imply that «('•) is Lipschitz.
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So, it remains to show that for v, w E 7Y (z) we have

\u{v) — m(w)|<A|u — w\.

For, let v, w E Ny(z), and let d = (w — v)/\ w — v \ . Define

[v,w] = (z = v + td: 0 «i <\v - w\).

So, [v, w] E Nyiz). Then, for each y0 E [v, w] we can find a neighborhood Niy0)
such that, for z E Niy0), (7.8) holds. Since [v, w] is compact then there exist
elements z0 = v, z,,... ,zr+, = w in [v, w], and neighborhoods JV(z0),... ,A(zr+1) of
z0,. ..,zr+x such that U;A(¡./V(zI) D [u, w], and for eachj> G N(z¡) we have

|«(j)-«(z,.)|<Xb-z;.|.

Choose elements v0,vx,...,vr in [u, w] such that, for i = 0,...,r, u, G/^(z,) n
Ni zi+, ). Thus, we have

|w(u) - u{w)\<\u{v) - m(ü0)|+|m(i30) - «(u,)|+ •■• +\uivr) - u{w)\

^X(\v-v0\+\v0-vx\+ ■■■ +\vr- w\)

= X\v — w\.

Therefore, //(■) is C1+ on Ny(z).   Q.E.D.
Remark. For the class of optimal control problems considered in this section we

already showed that H is C]+ . However, for a large class of problems (see Example
2), H is not necessarily C2. This fact demonstrates the utility of considering H to be
CI+ which is less restrictive than C2.

Remark. In the special case when «(?) G int U, the polyhedral condition on U,
which was needed to prove that //(•) is C1+ , could be omitted, since //(•) would be
C2. This special case, in which it is required that the control û take values in the
interior of U, has also been considered by Mayne [11, Theorem 3.2].

8. Examples. This section consists of two numerical examples.
Example 1. Consider the classical variational problem

(P) minimize r/8x2(0 - *2(0 + dt
A    \ x2(0 /

subject to

x(0) = l,       x(f) = /2.

The Hamiltonian of the problem is

£f(x,p)=^- + x2- —

So, //(•,•) and £(-,- ) are C2 for x ¥= 0, and

(8.1) Lvvix,v) = 2>0.
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The Hamiltonian equations of the problem are

(8.2)
-P(t) = Hx(z(t)) = 2x(0 +

x3(0

k(t) = Hp(z(t))

Hence, by solving (8.2), we obtain

2   '

(8.3)

x(0 = y/2 sin 2t + 1

2\¡2 cos 2/Pit)
/2 sin2i + 1

with x admissible for (P).
To be able to apply the classical sufficient conditions using the Jacobi condition

we need to solve the Jacobi equation (3.4). In fact the Jacobi equation for this
problem is

(8.4) hit) +    1
(Af sin2i + l]

0.

It does not seem simple to find a solution for (8.4). So, we cannot check whether or
not we have conjugate point of 0 in (0, f ], and hence, we are not able to use the
sufficiency theorem existing in the literature and involving the Jacobi equation to
check the optimality of x.

But, we are going to show that condition (c) of Theorem 1 is easily satisfied and
then the optimality of x will be obtained.

For this problem, equation (3.1) is

(8.5) ô(0-^ô2(0-2 +
(/2 sin2i + l)

>0.

Take for Qi ■ ) the following function

Qoit) = t.
Since for t E [0, f ] we have y¡2 sin2/ + 1 < 2, then (8.5) is satisfied by Q0i-). So
condition (c) holds. By using (8.1) and (8.2), we conclude from Theorem 1 that x,
given in (8.3), provides a strong local minimum for (P).

Remark. For Example 1 condition (c) of Theorem 1 is equivalent, by the
Corollary of §3, to the Jacobi condition. However, as we have seen, while the Jacobi
condition was hard to check, condition (c) was possible to verify.

Example 2. Consider the optimal control problem

(C) minimize 2u\ + 2u\ 24 di
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subject to

x(0 = *(0(",(0 + «2(0).
(u,(0,«2(0) e U= [-1,0] X[-1,0]    forrG [0,1],

x(0) = x(l) = 1.
From (7.4) the Hamiltonian H of this problem is

(8.6)      //(x, p) = sup  px{ux + u2) — 2u\ — 2u\ + — :(«,, u2) E U \

'p2x2/4 + x3/24 ifpx G [-4,0],
x3/24 ifpx 3=0,
-2px - 4 + x3/24    ifpx < -4.

So, //(•,■) is C ' with gradient Hz given by

(8.7) Hz{x, p)

(p2x/2 + x2/8,px2/2)     forpx E [-4,0],

(x2/8,0) for px 3=0,

(-2p+ x2/8,-2x) forpx^-4.

Takex(i) = l,p(0 = (1 - 0/8. Then we have that for z = (x, p)
Jî{t) = Hz{zit))    for re [0,1].

We also have that g„„(x, u) = [¿ °4] > 0, and U = [-1,0] X [-1,0] is a convex
compact polyhedron.

From (8.6), it follows that «(/) = w(x,(/), pit)) = (0,0). Equation (8.7) implies
that

Hxx{xit), pit)) = 1,    Hxp(x(t), p(t)) = Hpx(x(t), Pit)) ^ 0,

and

H   (-(i\   *(tW={®    for/^1,
tipp\xyt),pyt))     \ does not exist   for/=l.

Then //(•) is not C2 near z = (x, p). But, since U is a compact polyhedron and
g„u > 0, then from the proof of Theorem 3 we have that Hi) is C]+ near z.

To apply Theorem 3 it remains to check condition (4) which is condition (c) of
Theorem 1.

From [6, §15] we have the generalized Jacobian inclusion

dzHz(z) EA{z)
dxHx(z)    dpHx(z)

dxHp(z)    dpHp(z)

So, to check condition (c) for the elements of dzHz(z(t)) it suffices to check it for the
elements of the bigger set /l(z(/)).
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± o
From (8.7) it follows that 3^(1(1)) = [0, {], and hence

Aizit)) =

where

0     3 pHp{zit))   '

.      /  / xx      f° for/ft i
a,tf,(i(0) = {[o,ii   forf=1.

Take QQ(t) = t. Then for $') EA(î(t)) we have Ôo(0 " YÔo(0 + Ôo(0/3 +
SQoiO - « = I - y?2- But, we have y G [0, {]. Then

1 _ „í2 ~> 1
4 yí2s4>0    for/G [0,1].

Thus, condition (4) of Theorem 3 holds, and hence (x, û) provides a strong local
minimum for (C).

Remark. In Example 2 the control function û = 0 is on the boundary of the
control set. So, the sufficiency theorem of [11] cannot be applied to our problem.

Remark. Using §5 with some minor changes, it is not hard to show that Theorem
1, and hence Theorems 2 and 3, remain valid if the function Q of condition (c) is
only Lipschitz. In this case, the matrix function Q(t) is replaced in (2.2) by the
generalized Jacobian 3(2(0 0l the function Qit).
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