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We obtain upper bounds on the spectral gap of Markov chains constructed by

parallel and simulated tempering, and provide a set of sufficient conditions for torpid

mixing of both techniques. Combined with the results of [22], these results yield a

two-sided bound on the spectral gap of these algorithms. We identify a persistence

property of the target distribution, and show that it can lead unexpectedly to slow

mixing that commonly used convergence diagnostics will fail to detect. For a multi-

modal distribution, the persistence is a measure of how “spiky”, or tall and narrow,

one peak is relative to the other peaks of the distribution. We show that this persis-

tence phenomenon can be used to explain the torpid mixing of parallel and simulated

tempering on the ferromagnetic mean-field Potts model shown previously. We also il-

lustrate how it causes torpid mixing of tempering on a mixture of normal distributions

with unequal covariances in R
M , a previously unknown result with relevance to statis-

tical inference problems. More generally, anytime a multimodal distribution includes

both very narrow and very wide peaks of comparable probability mass, parallel and

simulated tempering are shown to mix slowly.

Key words: Markov chain, rapid mixing, spectral gap, Metropolis algorithm.

1 Introduction

Parallel and simulated tempering [4, 13, 5] are Markov chain simulation algorithms commonly

used in statistics, statistical physics, and computer science for sampling from multimodal

distributions, where standard Metropolis-Hastings algorithms with only local moves typically

converge slowly. Tempering-based sampling algorithms are designed to allow movement be-

tween modes (or “energy wells”) by successively flattening the target distribution. Although

parallel and simulated tempering have distinct constructions, they are known to have closely
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related mixing times; Zheng [24] bounds the spectral gap of simulated tempering below by

a multiple of that of parallel tempering.

Madras and Zheng [12] first showed that tempering could be rapidly mixing on a target

distribution where standard Metropolis-Hastings is torpidly mixing, doing so for the particu-

lar case of the mean-field Ising model from statistical physics. “Rapid” and “torpid” here are

formalizations of the relative terms “fast” and “slow”, and are defined in Section 2. However,

Bhatnagar and Randall [2] show that for the more general ferromagnetic mean-field Potts

model with q ≥ 3, tempering is torpidly mixing for any choice of temperatures.

Woodard et al. [22] generalize the mean-field Ising example of [12] to give conditions

which guarantee rapid mixing of tempering algorithms on general target distributions. They

apply these conditions to show rapid mixing for an example more relevant to statistics,

namely a weighted mixture of normal distributions in R
M with identity covariance matri-

ces. In [22] the authors partition the state space into subsets on which the target dis-

tribution is unimodal. The conditions for rapid mixing of the tempering chain are that

Metropolis-Hastings is rapidly mixing when restricted to any one of the unimodal subsets,

that Metropolis-Hastings mixes rapidly among the subsets at the highest temperature, that

the overlap between distributions at adjacent temperatures is decreasing at most polyno-

mially in the problem size, and that an additional quantity γ (related to the persistence

quantity of the current paper) is at most polynomially decreasing. These conditions follow

from a lower bound on the spectral gaps of parallel and simulated tempering for general

target distributions given in [22].

Here we provide complementary results, showing several ways in which the violation of

these conditions implies torpid mixing of Markov chains constructed by parallel and sim-

ulated tempering. Most importantly, we identify a persistence property of distributions

and show that the existence of any set with low conductance at low temperatures (e.g. a

unimodal subset of a multimodal distribution) and having small persistence (as defined in

Section 3 with interpretation in Section 5), guarantees tempering will mix slowly for any

choice of temperatures. This result is troubling as this mixing problem will not be detected

by standard convergence diagnostics (see Section 6).

We arrive at these results by deriving upper bounds on the spectral gaps of parallel

and simulated tempering for arbitrary target distributions (Theorem 3.1 and Corollary 3.1).

Combining with the lower bound in [22] then yields a two-sided bound.

In Section 4.2 we show that this persistence phenomenon can explain the torpid mixing

of tempering techniques on the mean-field Potts model. The original result [2] uses a “bad

cut” which partitions the space into two sets that have significant probability at temperature

one, such that the boundary has low probability at all temperatures. We show that one of

these partition sets has low persistence, also implying torpid mixing. We then show the
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persistence phenomenon for a mixture of normal distributions with unequal covariances in

R
M (Section 4.1), thereby proving that tempering is torpidly mixing on this example. In

typical cases such as these, the low-conductance set is a unimodal subset of a multimodal

distribution. Then the persistence measures how “spiky”, or narrow, this peak is relative to

the other peaks of the distribution; this is described in Section 5, where we show that when-

ever the target distribution includes both very narrow and very wide peaks of comparable

probability mass, simulated and parallel tempering mix slowly.

2 Preliminaries

Let (X ,F , λ) be a σ-finite measure space with countably generated σ-algebra F . Often

X = R
M and λ is Lebesgue measure, or X is countable with counting measure λ . When we

refer to an arbitrary subset A ⊂ X , we implicitly assume A ∈ F . Let P be a Markov chain

transition kernel on X , defined as in [19], which operates on distributions µ on the left and

complex-valued functions f on the right, so that for x ∈ X ,

(µP )(dx) =

∫

µ(dy)P (y, dx) and (Pf)(x) =

∫

f(y)P (x, dy).

If µP = µ then µ is called a stationary distribution of P . Define the inner product

(f, g)µ =
∫

f(x)g(x)µ(dx) and denote by L2(µ) the set of complex-valued functions f such

that (f, f)µ < ∞. P is reversible with respect to µ if (f, Pg)µ = (Pf, g)µ for all f, g ∈ L2(µ),

and nonnegative definite if (Pf, f)µ ≥ 0 for all f ∈ L2(µ). If P is µ-reversible, it follows

that µ is a stationary distribution of P . We will be primarily interested in distributions µ

having a density π with respect to λ, in which case define π[A] = µ(A) and define (f, g)π,

L2(π), and π-reversibility to be equal to the corresponding quantities for µ.

If P is aperiodic and φ-irreducible as defined in [16], µ-reversible, and nonnegative defi-

nite, then the Markov chain with transition kernel P converges in distribution to µ at a rate

related to the spectral gap:

Gap(P ) = inf
f∈L2(µ)

Varµ(f)>0

( E(f, f)

Varµ(f)

)

(1)

where E(f, f) = (f, (I − P )f)µ is a Dirichlet form, and Varµ(f) = (f, f)µ − (f, 1)2
µ is the

variance of f . It can easily be shown that Gap(P ) ∈ [0, 1] (for P not nonnegative definite,

Gap(P ) ∈ [0, 2]).

For any distribution µ0 having a density π0 with respect to µ, define the L2-norm

‖µ0‖2 = (π0, π0)
1/2
µ . For the Markov chain with P as its transition kernel, define the rate of

convergence to stationarity as:

r = inf
µ0

lim
n→∞

− ln(‖µ0P
n − µ‖2)

n
(2)
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where the infimum is taken over distributions µ0 that have a density π0 with respect to µ

such that π0 ∈ L2(µ). The rate r is equal to − ln(1−Gap(P )), where we define − ln(0) = ∞;

for every µ0 that has a density π0 ∈ L2(µ),

‖µ0P
n − µ‖2 ≤ ‖µ0 − µ‖2e

−rn ∀n ∈ N,

and r is the largest quantity for which this holds for all such µ0. These are facts from

functional analysis (see e.g. [23, 11, 17]). Analogous results hold if the chain is started

deterministically at x0 for µ-a.e. x0 ∈ X , rather than drawn randomly from a starting

distribution µ0 [17]. Therefore for a particular such starting distribution µ0 or fixed starting

state x0, the number of iterations n until the L2-distance to stationarity is less than some fixed

ǫ > 0 is O(r−1 ln(‖µ0−µ‖2)). Similarly, [11] show that the autocorrelation of the chain decays

at a rate r. Their proof is stated for finite state spaces but applies to general state spaces as

well. Therefore, informally speaking, the number of iterations of the chain required to obtain

some number N0 of approximately independent samples from µ is O(N0r
−1 ln(‖µ0 − µ‖2)).

The quantity r = − ln(1−Gap(P )) is monotonically increasing with Gap(P ); therefore

lower (upper) bounds on Gap(P ) correspond to lower (upper) bounds on r. In addition,

− ln(1 − Gap(P ))/Gap(P ) approaches 1 as Gap(P ) → 0. Therefore the order at which

Gap(P ) → 0 as a function of the problem size is equal to the order at which the rate of

convergence to stationarity approaches zero. When Gap(P ) (and thus r) is exponentially

decreasing as a function of the problem size, we call P torpidly mixing. When Gap(P )

(and thus r) is polynomially decreasing as a function of the problem size, we call P rapidly

mixing. The rapid / torpid mixing distinction is a measure of the computational tractability

of an algorithm; polynomial factors are expected to be eventually dominated by increases

in computing power due to Moore’s law, while exponential factors are presumed to cause a

persistent computational problem.

2.1 Metropolis-Hastings

The Metropolis-Hastings algorithm provides a common way of constructing a transition

kernel that is π-reversible for a specified density π on a space X with measure λ. Start with

a “proposal” kernel P (w, dz) having density p(w, ·) with respect to λ for all w ∈ X , and

define the Metropolis-Hastings kernel as follows: Draw a “proposal” move z ∼ P (w, ·) from

current state w, accept z with probability

ρ(w, z) = min

{

1,
π(z)p(z, w)

π(w)p(w, z)

}

and otherwise remain at w. The resulting kernel is π-reversible.
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2.2 Parallel and Simulated Tempering

If the Metropolis-Hastings proposal kernel moves only locally in the space, and if π is multi-

modal, then the Metropolis-Hastings chain may move between the modes of π infrequently.

Tempering is a modification of Metropolis-Hastings wherein the density of interest π is “flat-

tened” in order to allow movement among the modes of π. For any inverse temperature

β ∈ [0, 1] such that
∫

π(z)βλ(dz) < ∞, define

πβ(z) =
π(z)β

∫

π(w)βλ(dw)
∀z ∈ X .

For any z and w in the support of π, the ratio πβ(z)/πβ(w) monotonically approaches one

as β decreases, flattening the resulting density. For any β, define Tβ to be the Metropolis-

Hastings chain with respect to πβ, or more generally assume that we have some way to

specify a πβ-reversible transition kernel for each β, and call this kernel Tβ .

Parallel tempering. Let B =
{

β ∈ [0, 1] :
∫

π(z)βλ(dz) < ∞
}

. The parallel tempering

algorithm [4] simulates parallel Markov chains Tβk
at a sequence of inverse temperatures

β0 < . . . < βN = 1 with β0 ∈ B. The inverse temperatures are commonly specified in a

geometric progression, and Predescu et al. [15] show an asymptotic optimality result for this

choice.

Updates of individual chains are alternated with proposed swaps between temperatures,

so that the process forms a single Markov chain with state x = (x[0], . . . , x[N ]) on the space

Xpt = XN+1 and stationary density

πpt(x) =
N
∏

k=0

πβk
(x[k]) x ∈ Xpt

with product measure λpt(dx) =
∏N

k=0 λ(dx[k]). The marginal density of x[N ] under station-

arity is π, the density of interest.

A holding probability of 1/2 is added to each move to guarantee nonnegative definiteness.

The update move T chooses k uniformly from {0, . . . , N} and updates x[k] according to Tβk
:

T (x, dy) =
1

2(N + 1)

N
∑

k=0

Tβk
(x[k], dy[k])δ(x[−k] − y[−k])dy[−k] x, y ∈ Xpt

where x[−k] = (x[0], . . . , x[k−1], x[k+1], . . . , x[N ]) and δ is Dirac’s delta function.

The swap move Q attempts to exchange two of the temperature levels via one of the

following schemes:

PT1. sample k, l uniformly from {0, . . . , N} and propose exchanging the value of x[k] with

that of x[l]. Accept the proposed state, denoted (k, l)x, according to the Metropolis
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criteria preserving πpt:

ρ(x, (k, l)x) = min

{

1,
πβk

(x[l])πβl
(x[k])

πβk
(x[k])πβl

(x[l])

}

PT2. sample k uniformly from {0, . . . , N − 1} and propose exchanging x[k] and x[k+1], ac-

cepting with probability ρ(x, (k, k + 1)x).

Both T and either form of Q are πpt-reversible by construction, and nonnegative definite

due to their 1/2 holding probability. Therefore the parallel tempering chain defined by

Ppt = QTQ is nonnegative definite and πpt-reversible, and so the convergence of P n
pt to πpt

may be bounded using the spectral gap of Ppt.

The above construction holds for any densities φk that are not necessarily tempered ver-

sions of π, by replacing Tβk
by any φk-reversible kernel Tk; the densities φk may be specified

in any convenient way subject to φN = π. The resulting chain is called a swapping chain,

with Xsc, λsc, Psc and πsc denoting its state space, measure, transition kernel, and stationary

density respectively. Just as for parallel tempering, a swapping chain can be defined using

swaps between adjacent levels only, or between arbitrary levels, and the two constructions

will be denoted SC2 and SC1, analogously to PT2 and PT1 for parallel tempering. Al-

though the terms “parallel tempering” and “swapping chain” are used interchangeably in the

computer science literature, we follow the statistics literature in reserving parallel tempering

for the case of tempered distributions, and use swapping chain to refer to the more general

case.

Simulated tempering. An alternative to simulating parallel chains is to augment a

single chain by an inverse temperature index k to create states (z, k) ∈ Xst = X ⊗{0, . . . , N}
with stationary density

πst(z, k) =
1

N + 1
φk(z) (z, k) ∈ Xst.

The resulting simulated tempering chain [13, 5] alternates two types of moves: T ′ samples

z ∈ X according to Tk, conditional on k, while Q′ attempts to change k via one of the

following schemes:

ST1. propose a new temperature level l uniformly from {0, . . . , N} and accept with proba-

bility min
{

1, φl(z)
φk(z)

}

.

ST2. propose a move to l = k − 1 or l = k + 1 with equal probability and accept with

probability min
{

1, φl(z)
φk(z)

}

, rejecting if l = −1 or N + 1.
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As before, a holding probability of 1/2 is added to both T ′ and Q′; the transition kernel

of simulated tempering is defined as Pst = Q′T ′Q′. For a lack of separate terms, we use

“simulated tempering” to mean any such chain Pst, regardless of whether or not the densities

φk are tempered versions of π.

3 Upper Bounds on the Spectral Gaps of Swapping

and Simulated Tempering Chains

The parallel and simulated tempering algorithms described in Section 2.2 are designed to

sample from multimodal distributions. Thus when simulating these chains, it is typically

assumed that if the temperature swaps between all pairs of adjacent temperatures are occur-

ring at a reasonable rate, then the chain is mixing well. However, Bhatnagar and Randall [2]

show that parallel tempering is torpidly mixing for the ferromagnetic mean-field Potts model

with q ≥ 3 (Section 4.2), indicating that tempering does not work for all target distributions.

It is therefore of significant practical interest to characterize properties of distributions which

may make them amenable to, or inaccessible to, sampling using tempering algorithms.

In this Section we provide conditions for general target distributions π under which rapid

mixing fails to hold. In particular, we identify a previously unappreciated property we call

the persistence, and show that if the target distribution has a subset with low conductance

for β close to one and low persistence for values of β within some intermediate β-interval,

then the tempering chain mixes slowly. Somewhat more obviously, the tempering chain will

also mix slowly if the inverse temperatures are spaced too far apart so that the overlap of

adjacent tempered distributions is small.

Consider sets A ⊂ X that contain a single local mode of π along with the surrounding

area of high density. If π has multiple modes separated by areas of low density, and if

the proposal kernel makes only local moves, then the conductance of A with respect to

Metropolis-Hastings will be small at low temperatures (β ≈ 1). The conductance of a set

A ⊂ X with 0 < µ(A) < 1 is defined as:

ΦP (A) =
(1A, P1Ac)µ

µ(A)µ(Ac)

for P any µ-reversible kernel on X , where 1A is the indicator function of A. ΦP (A) provides

an upper bound on Gap(P ) [9]. Note that P reversible implies (1A, P1Ac)µ = (1Ac , P1A)µ,

so

ΦP (A) =
(1A, P1Ac)µ

µ(A)
+

(1Ac , P1A)µ

µ(Ac)
(3)

and so ΦP (A) ≤ 2.
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We will obtain upper bounds on the spectral gap of a parallel or simulated tempering

chain in terms of an arbitrary subset A of X . Conceptually the case where π|A (the restriction

of π to A) is unimodal as described above is the most insightful, but the bounds hold for all

A ⊂ X such that 0 < π[A] < 1.

The bounds will involve the conductance of A under the chain Tβ defined in Section 2.2,

as well as the persistence of A under tempering by β. For any A ⊂ X such that 0 < π[A] < 1

and any density φ on X , we define the quantity

γ(A, φ) = min

{

1,
φ[A]

π[A]

}

(4)

and define the persistence of A with respect to πβ as γ(A, πβ), also to be denoted by the

shorthand γ(A, β). The persistence measures the decrease in the probability of A between π

and πβ. If A has low persistence for small values of β, then a parallel or simulated tempering

chain starting in Ac may take a long time to discover A at high temperatures (β near zero).

If A is a unimodal subset of a multimodal distribution, then it typically has low conductance

for low temperatures (β ≈ 1), so the tempering chain may take a long time to discover A

at all temperatures even when π[A] is large. This leads to slow mixing, and contradicts

the common assumption in practice that if swapping acceptance rates between temperatures

are high, the chain is mixing quickly. A key point is that, due to the low persistence of

the set, this problem does not manifest as low conductance of the high-temperature chain

which may well be rapidly mixing on πβ . Nevertheless, it does lead to slow mixing. This

contradicts the common assumption in practice that if the highest temperature is rapidly

mixing, and swapping acceptance rates between temperatures are high, then the tempering

chain is rapidly mixing.

Even if every subset A ⊂ X has large persistence for high temperatures, it is possible

for some subset to have low persistence within an intermediate temperature-interval. This

causes slow mixing by creating a bottleneck in the tempering chain, since swaps between non-

adjacent β and β ′ typically have very low acceptance probability. The acceptance probability

of such a swap in simulated tempering, given that z ∈ A, is given by the overlap of πβ and

πβ′ with respect to A. The overlap of two distributions φ and φ′ with respect to a set A ⊂ X
is given by [22]:

δ(A, φ, φ′) = φ[A]−1

∫

A

min {φ(z), φ′(z)} λ(dz) (5)

which is not symmetric. When considering tempered distributions πβ we will use the short-

hand δ(A, β, β ′) = δ(A, πβ, πβ′).

The most general results are given for any swapping or simulated tempering chain with

a set of densities φk not necessarily tempered versions of π. For any level k ∈ {0, . . . , N},
let γ(A, k) and δ(A, k, l) be shorthand for γ(A, φk) and δ(A, φk, φl), respectively.
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The following result, involving the overlap δ(A, k, l), the persistence γ(A, k), and the

conductance ΦTk
(A), is proven in the Appendix:

Theorem 3.1. Let Psc be a swapping chain using scheme SC1 or SC2, and Pst a simulated

tempering chain using scheme ST1. For any A ⊂ X such that 0 < φk[A] < 1 for all k, and

for any k∗ ∈ {0, . . . , N}, we have

Gap(Psc) ≤ 12 max
k≥k∗,l<k∗

{γ(A, k) max {ΦTk
(A), δ(A, k, l), δ(Ac, k, l)}}

Gap(Pst) ≤ 192
[

max
k≥k∗,l<k∗

{γ(A, k) max {ΦTk
(A), δ(A, k, l)}}

]1/4

where for k∗ = 0 we take this to mean:

Gap(Psc) ≤ 12 max
k

{γ(A, k)ΦTk
(A)}

Gap(Pst) ≤ 192
[

max
k

{γ(A, k)ΦTk
(A)}

]1/4
.

One can obtain an alternative bound for the swapping chain by combining the bound for sim-

ulated tempering with the results of [24]. However, the alternative bound has a superfluous

factor of N so we prefer the one given here.

For the case where tempered distributions φk = πβk
are used, the bounds in Theorem 3.1

show that the inverse temperatures βk must be spaced densely enough to allow sufficient

overlap between adjacent temperatured distributions. If there is an A ⊂ X and a level k∗

such that the overlap δ(A, k, l) is exponentially decreasing in M for every pair of levels l < k∗

and k ≥ k∗, and the conductance ΦTβk
(A) of A is exponentially decreasing for k ≥ k∗, then

the tempering chain is torpidly mixing. An example is given in Section 4.3.

The bounds in Theorem 3.1 are given for a specific choice of densities {φk}N
k=0. When

tempered densities are used, the bounds can be stated independent of the number and choice

of inverse temperatures:

Corollary 3.1. Let Ppt be a parallel tempering chain using scheme PT1 or PT2, and let

Pst be a simulated tempering chain using scheme ST1, with densities φk chosen as tempered

versions of π. For any A ⊂ X such that 0 < π[A] < 1, and any β∗ ≥ inf{β ∈ B}, we have

Gap(Ppt) ≤ 12 sup
β∈[β∗,1]∩B
β′∈[0,β∗)∩B

{

γ(A, β) max
{

ΦTβ
(A), δ(A, β, β ′), δ(Ac, β, β ′)

}}

Gap(Pst) ≤ 192

[

sup
β∈[β∗,1]∩B
β′∈[0,β∗)∩B

{

γ(A, β) max
{

ΦTβ
(A), δ(A, β, β ′)

}}

]1/4

.

where for β∗ = inf{β ∈ B} we take this to mean:

Gap(Ppt) ≤ 12 sup
β∈B

{

γ(A, β)ΦTβ
(A)

}

Gap(Pst) ≤ 192
[

sup
β∈B

{

γ(A, β)ΦTβ
(A)

} ]1/4
.
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This is a corollary of Theorem 3.1, verified by setting k∗ = min{k : βk ≥ β∗}.
Recall from Section 2 that torpid mixing of a Markov chain means that the spectral gap

of the transition kernel is exponentially decreasing in the problem size. Then Corollary 3.1

implies the following result:

Corollary 3.2. Assume that there exist inverse temperatures β∗ < β∗∗ such that:

1. the conductance sup
β∈[β∗∗,1]

ΦTβ
(A) is exponentially decreasing,

2. the persistence sup
β∈[β∗,β∗∗)∩B

γ(A, β) is exponentially decreasing, and

3. β∗ = inf{β ∈ B} or the overlap sup
β∈[β∗∗,1]

β′∈[0,β∗)∩B

max{δ(A, β, β ′), δ(Ac, β, β ′)} is exponentially

decreasing.

Then parallel and simulated tempering are torpidly mixing.

In Sections 4.1 and 4.2 we will give two examples where we use this corollary with

β∗ = inf{β ∈ B} to show torpid mixing of parallel and simulated tempering. For this

choice of β∗, condition 3 is automatically satisfied. Condition 3 is presumed to hold for

most problems of interest, even when β∗ > inf{β ∈ B}; otherwise, intermediate β values

would not be needed at all. Thus the existence of a set A (e.g. with π|A unimodal) with

low conductance for β close to 1, and low persistence for β in some intermediate β-interval,

induces slow mixing of parallel and simulated tempering. It is possible to have a set A with

low persistence in some intermediate β-interval and higher persistence for small β, since

πβ[A] is not necessarily a monotonic function of β (e.g. X = {1, 2, 3}, π = (0.01, 0.8, 0.19),

and A = {1, 2}).
The quantities in the upper bounds of this section are closely related to the quanties in

the lower bounds on the spectral gaps of parallel and simulated tempering given in Woodard

et al. [22]. The overlap quantity δ({Aj}) for a partition {Aj : j = 1, . . . , J} of X used by

Woodard et al. [22] is simply given by

δ({Aj}) = min
|k−l|=1,j

δ(Aj , k, l).

The quantity γ({Aj}) defined in [22] for the same partition is related to the persistence of

the current paper. If φk[Aj ] is a monotonic function of k for each j, then

γ({Aj}) = min
k,j

γ(Aj, k).
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In addition, the conductance ΦTk
(A) of the current paper is exactly the spectral gap of

the projection matrix T̄k for Tk with respect to the partition {A, Ac}, as defined in [22]. Since

T̄k is a 2× 2 matrix, its spectral gap is given by the sum of the off-diagonal elements, which

is precisely ΦTk
(A) written in the form (3).

The lower bound given in [22] is

Gap(Psc),Gap(Pst) ≥
(

γ({Aj})J+3δ({Aj})3

214(N + 1)5J3

)

Gap(T̄0) min
k,j

Gap(Tk|Aj
)

where Tk|Aj
is the restriction of the kernel Tk to the set Aj . This bound shows that if

there is a partition {Aj} of the space such that γ({Aj}) is large and such that Metropolis-

Hastings restricted to any one of the sets Aj is rapidly mixing, and if Metropolis-Hastings

is rapidly mixing at the highest temperature and the overlap δ({Aj}) of adjacent levels is

high, then the tempering chains Psc and Pst are rapidly mixing. The conditions on γ({Aj})
and the overlap are the important ones, since the other two conditions are typically satisfied

for multimodal distributions of interest. By comparison, Theorem 3.1 shows that both the

persistence γ(Aj , k) and the overlap δ(Aj , k, l) must be large to have rapid mixing. Although

the persistence γ(Aj , k) is closely related to the quantity γ({Aj}), the two are not identical so

we do not have a single set of necessary and sufficient conditions for rapid mixing. However,

our results suggest that the bounds in the current paper and in [22] contain the important

quantities and no unnecessary quantities.

4 Examples

4.1 Torpid Mixing for a Mixture of Normals with Unequal Vari-

ances in R
M

Consider sampling from a target distribution given by a mixture of two normal densities in

R
M :

π(z) =
1

2
NM (z;−1M , σ2

1IM) +
1

2
NM (z; 1M , σ2

2IM)

where NM(z; ν, Σ) denotes the multivariate normal density for z ∈ R
M with mean vector

ν and M × M covariance matrix Σ, and 1M and IM denote the vector of M ones and the

M×M identity matrix, respectively. Let S be the proposal kernel that is uniform on the ball

of radius M−1 centered at the current state. When σ1 = σ2, Woodard et al. [22] have given

an explicit construction of parallel and simulated tempering chains that is rapidly mixing.

Here we consider the case σ1 6= σ2, assuming without loss of generality that σ1 > σ2.

For technical reasons, we will use the following truncated approximation to π, where

11
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Figure 1: The probability of A2 under π̃β as a function of β, for the mixture of normals with

M = 35, σ1 = 6, and σ2 = 5.

A1 = {z ∈ R
M :

∑

i zi < 0} and A2 = {z ∈ R
M :

∑

i zi ≥ 0}:

π̃(z) ∝ 1

2
NM (z;−1M , σ2

1IM)1A1(z) +
1

2
NM(z; 1M , σ2

2IM)1A2(z). (6)

Figure 1 shows π̃β [A2] as a function of β for M = 35. It is clear that for β < 1
2
, π̃β[A2]

is much smaller than π̃[A2]. This effect becomes more extreme as M increases, so that

the persistence of A2 is exponentially decreasing for β < 1
2
, as we will show. We will also

show that the conductance of A2 under Metropolis-Hastings for S with respect to π̃β is

exponentially decreasing for β ≥ 1
2
, implying the torpid mixing of parallel and simulated

tempering.

The Metropolis-Hastings chains for S with respect to the densities restricted to each

individual mode

π̃|A1(z) ∝ NM(z;−1M , σ2
1IM)1A1(z)

π̃|A2(z) ∝ NM(z; 1M , σ2
2IM)1A2(z)

are rapidly mixing in M , as implied by results in Kannan and Li [8] (details are given in

Woodard [21]). As we will see however, Metropolis-Hastings for S with respect to π̃ itself is

torpidly mixing in M . In addition, we will show that parallel and simulated tempering are

also torpidly mixing for this target distribution for any choice of temperatures.

First, calculate π̃β [A2] as follows. Let F be the cumulative normal distribution function

in one dimension. Consider any normal distribution in R
M with covariance σ2IM for σ > 0.

The probability under this normal distribution of any half-space that is Euclidean distance

d from the center of the normal distribution at its closest point is F (−d/σ). This is due to

the independence of the dimensions and can be shown by a rotation and scaling in R
M .

12



The distance between the half-space A2 and the point −1M is equal to
√

M . Therefore

∫

A1

N(z;−1M , σ2
1IM)βλ(dz) = (2πσ2

1)
−Mβ

2

∫

A1

exp
{

− β

2σ2
1

∑

i

(zi + 1)2 }

λ(dz)

= (2πσ2
1)

M(1−β)
2 β−M

2

∫

A1

N(z;−1M ,
σ2

1

β
IM)λ(dz)

= (2πσ2
1)

M(1−β)
2 β−M

2 F

(

(Mβ)
1
2

σ1

)

,

and similarly

∫

A2

N(z; 1M , σ2
2IM)βλ(dz) = (2πσ2

2)
M(1−β)

2 β−M
2 F

(

(Mβ)
1
2

σ2

)

.

Therefore

π̃β [A2]

π̃β [A1]
=

(

σ2

σ1

)M(1−β) F
(

(Mβ)
1
2

σ2

)

F
(

(Mβ)
1
2

σ1

)

.

Recall the definition of B from Section 2.2; for the mixture π̃, we have B = (0, 1]. We will

apply Corollary 3.2 with A = A2, β∗ = 0, and β∗∗ = 1
2

to show that parallel and simulated

tempering are torpidly mixing on the mixture π̃.

Looking first at the persistence γ(A2, β), since F
(

(Mβ)1/2

σ1

)

> 1
2

we have

sup
β∈(0,β∗∗)

π̃β [A2] ≤ sup
β∈(0,β∗∗)

π̃β [A2]

π̃β [A1]
< 2 sup

β∈(0,β∗∗]

(

σ2

σ1

)M(1−β)

= 2

(

σ2

σ1

)M(1−β∗∗)

which is exponentially decreasing in M . Therefore since π̃[A2] > 1
2
,

sup
β∈[0,β∗∗)∩B

γ(A2, β) ≤ sup
β∈[0,β∗∗)∩B

π̃β [A2]

π̃[A2]
< 2 sup

β∈[0,β∗∗)∩B

π̃β[A2] (7)

is also exponentially decreasing.

Turning now to the conductance ΦTβ
(A2), define the boundary ∂A2 of A2 with respect

to the Metropolis-Hastings kernel Tβ as the set of z ∈ A2 such that it is possible to move to

A1 via one move according to Tβ. Then ∂A2 contains only z ∈ A2 within distance M−1 of

13



A1. Therefore

sup
β∈[β∗∗,1]

π̃β[∂A2]

π̃β [A2]
= sup

β∈[β∗∗,1]







F
(

(Mβ)
1
2

σ2

)

− F
(

(M
1
2 −M−1)β

1
2

σ2

)

F
(

(Mβ)
1
2

σ2

)







≤ 2 sup
β∈[β∗∗,1]

{

F
((Mβ)

1
2

σ2

)

− F
((M

1
2 − M−1)β

1
2

σ2

)

}

≤ 2 sup
β∈[β∗∗,1]

{

1 − F
((M

1
2 − M−1)β

1
2

σ2

)

}

= 2 sup
β∈[β∗∗,1]

{

F
(

− (M
1
2 − M−1)β

1
2

σ2

)

}

= 2F
(

− (M
1
2 − M−1)(β∗∗)

1
2

σ2

)

.

For M > 1, this is bounded above by

2F
(

− (Mβ∗∗)
1
2

2σ2

)

. (8)

Analytic integration shows for any a > 0 that F (−a) ≤ N1(a; 0, 1)/a. Therefore 8 is ex-

ponentially decreasing in M . Analogously, for the boundary ∂A1 of A1 with respect to the

Metropolis-Hastings kernel,

sup
β∈[β∗∗,1]

π̃β[∂A1]

π̃β [A1]

is exponentially decreasing. Therefore the conductance

sup
β∈[β∗∗,1]

ΦTβ
(A2) (9)

is exponentially decreasing. In particular, ΦTβ
(A2) is exponentially decreasing for β = 1,

so the standard Metropolis-Hastings chain is torpidly mixing. Using the above facts that

(7) and (9) are exponentially decreasing, Corollary 3.2 implies that parallel and simulated

tempering are also torpidly mixing for any number and choice of temperatures.

4.2 Small Persistence for the Mean-Field Potts Model

The Potts model is a type of discrete Markov random field which arises in statistical physics,

spatial statistics, and image processing [1, 3, 7]. We consider the ferromagnetic mean-field

Potts model with q ≥ 2 colors and M sites, having distribution:

π(z) ∝ exp

{

α

2M

∑

i,j

1(zi = zj)

}

for z ∈ {1, . . . , q}M

14



with interaction parameter α ≥ 0. The mean-field Potts model exhibits a phase transition

phenomenon similar to the more general Potts model, where a small change in the value of

the parameter α near a critical value αc causes a dramatic change in the asymptotic behavior

of π in M .

We will use the proposal kernel S that changes the color of a single site, where the site

and color are drawn uniformly at random. It is well-known that Metropolis-Hastings for S

with respect to π is torpidly mixing for α ≥ αc [6]. Bhatnagar and Randall [2] show that

parallel and simulated tempering are also torpidly mixing on the mean-field Potts model

with q = 3 and α = αc (their argument may extend to q ≥ 3 and α ≥ αc). Here we show

that this torpid mixing can be explained using the persistence phenomenon described in

Section 3. We use the same cut of the state space as do Bhatnagar and Randall [2], since it

has low conductance for β close to 1. Our torpid mixing explanation will be stated for q ≥ 3

and α ≥ αc. Our initial definitions will be given for q ≥ 2 to allow us to address the case

q = 2 in Section 4.3.

Define σ(z) = (σ1(z), . . . , σq(z)) to be the vector of sufficient statistics, where σk(z) =
∑

i 1(zi = k). Then π can be written as

π(z) ∝ exp

{

α

2M

q
∑

k=1

σk(z)2

}

,

and the marginal distribution of σ is given by

ρ(σ) ∝
(

M

σ1, . . . , σq

)

exp

{

α

2M

q
∑

k=1

σ2
k

}

.

For q ≥ 3 define the “critical” parameter value αc = 2(q−1) ln(q−1)
q−2

; for q = 2 set αc = 2. Let

a = (a1, . . . , aq) = σ/M be the proportion of sites in each color. Using Stirling’s formula,

Gore and Jerrum [6] write
(

M
σ1,...,σq

)

as:

(

M

σ1, . . . , σq

)

= exp

{

− M

q
∑

k=1

ak ln ak + ∆(a)

}

(10)

where ∆(a) is an error term satisfying

sup
a

|∆(a)| = O(lnM). (11)

Gore and Jerrum [6] apply (10) to rewrite ρ as:

ρ(σ) ∝ exp {fα(a)M + ∆(a)} where fα(a) =

q
∑

k=1

gα(ak)
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and gα(x) = α
2
x2−x ln x. Observe that fα does not depend on M . It is also shown in [6] that

any local maximum of fα is of the form m = (x, 1−x
q−1

, . . . , 1−x
q−1

) for some x ∈ [1
q
, 1) satisfying

g′
α(x) = g′

α(1−x
q−1

), or a permutation thereof (the apostrophe denoting the first derivative).

Gore and Jerrum also show that at α = αc the local maxima occur for x = 1
q

and x = q−1
q

.

Letting m1 = (1
q
, . . . , 1

q
), m2 = ( q−1

q
, 1

q(q−1)
, . . . , 1

q(q−1)
), and m3 equal to m2 with the first

two elements permuted, note that

fαc(m
1) = fαc(m

2)

and that for any a, fα(a) is invariant under permutation of the elements of a. Therefore the

q + 1 local maxima of the function fαc are also global maxima (for q = 2 there is a single

global maximum).

We will additionally need the following results. The proofs are given in the thesis by

Woodard [20].

Proposition 4.1. For any q ≥ 3 and α < αc, fα has a unique global maximum at m1, while

for α > αc every global maximum of fα is of the form (x, 1−x
q−1

, . . . , 1−x
q−1

) for some x ∈
[

q−1
q

, 1
)

,

or a permutation thereof.

Asymptotically in M , the distribution of a(z) concentrates near the global maxima of

fα(a) in the following sense:

Proposition 4.2. (Gore and Jerrum 1999) For any fixed q ≥ 2, α ≥ 0 and ǫ > 0, let

Cα,ǫ = {a : ‖a − m‖ < ǫ for some m ∈ M}

where M are the global maxima of fα and ‖‖ indicates Euclidean distance. Then Pr(a(z) ∈
Cc

α,ǫ) is exponentially decreasing in M , while for any specific m ∈ M, Pr(‖a(z) − m‖ < ǫ)

decreases at most polynomially in M .

Gore and Jerrum state this result for α = αc, but their argument can be extended in a

straightforward manner; details are given in [20].

As in Bhatnagar and Randall [2], define the set A = {z : σ1(z) > M
2
}. Then we have the

following two results, also shown in [20].

Proposition 4.3. For any fixed q ≥ 3 and α ≥ αc, π[A] and π[Ac] decrease at most polyno-

mially in M . For any q ≥ 3 and α < αc, π[A] is exponentially decreasing in M . Furthermore,

for any q ≥ 3 and τ ∈ (0, αc), supα<αc−τ π[A] is also exponentially decreasing.

Proposition 4.4. For q ≥ 3 there exists some τ ∈ (0, αc) such that the supremum over

α ≥ αc − τ of the conductance of A under Metropolis-Hastings is exponentially decreasing.
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Now consider any q ≥ 3 and α ≥ αc. For any β, the density πβ is equal to the mean-field

Potts density with parameter αβ. Recall that Tβ is the Metropolis-Hastings kernel for S

with respect to πβ . Take the value of τ from Proposition 4.4. Define the inverse temperature

β∗∗ = αc/α − τ/α. Propositions 4.3 and 4.4 imply that

sup
β∈[β∗∗,1]

ΦTβ
(A)

and

sup
β∈[0,β∗∗)

γ(A, β) ≤ sup
β∈[0,β∗∗)

πβ[A]

π[A]

are exponentially decreasing. Therefore Corollary 3.2 can be used to show the torpid mixing

of parallel and simulated tempering on the mean-field Potts model with q ≥ 3 and α ≥ αc,

for any number and choice of inverse temperatures.

4.3 Torpid Mixing on the Mean-Field Ising Model using Fixed

Temperatures

Consider the mean-field Ising model, which is simply the mean-field Potts model from Sec-

tion 4.2 with q = 2. Recall the definitions from that section. Madras and Zheng [12] show

that parallel and simulated tempering with N = M and βk = k/N are rapidly mixing on

the mean-field Ising model, while Metropolis-Hastings is torpidly mixing for α > αc. As a

demonstration of the importance of the overlap quantity in Theorem 3.1, we show here that

if instead the number N of temperatures does not grow with M , then parallel and simulated

tempering are torpidly mixing. We will need the following result, proven in the thesis [20]:

Proposition 4.5. For q = 2 and α ≤ αc, fα has a unique global maximum at a = (1
2
, 1

2
).

For q = 2 and α > αc the global maxima occur at (x, 1 − x) and (1 − x, x) for some x > 1
2

that is strictly increasing in α.

Now consider any α1, α2 such that αc < α2 and α1 < α2. If α1 ≤ αc, let x1 = 1
2
;

otherwise, let x1 be the value of x in Proposition 4.5 for α1. Let x2 be the value of x in

Proposition 4.5 for α2, so that x1 < x2. Let ǫ = (x2 − x1)/2. Recalling the definition

of Cα,ǫ from Proposition 4.2, Cα1,ǫ ∩ Cα2,ǫ = ∅. Letting π and π′ be the mean-field Ising

model density at α1 and α2 respectively, Proposition 4.2 implies that π[{z : a(z) ∈ Cc
α1,ǫ}]

and π′[{z : a(z) ∈ Cc
α2,ǫ}] are exponentially decreasing. Therefore

∑

z min{π(z), π′(z)} is

exponentially decreasing.

Parallel and simulated tempering with N = 0 are equivalent to Metropolis-Hastings

with respect to π, so they are torpidly mixing for α > αc. Now consider the case where

N > 0. Note that for l ∈ {0, . . . , N − 1}, πβl
is the mean-field Ising model with parameter
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αβl and πβN
= π is the mean-field Ising model with parameter α. Therefore with βl fixed

in M ,
∑

z min{πβl
(z), πβN

(z)} is exponentially decreasing. Note that π[A] ∈ [1
4
, 3

4
] for all

M . Therefore δ(A, N, l) and δ(Ac, N, l) are exponentially decreasing. By Theorem 3.1 with

k∗ = N , parallel and simulated tempering are torpidly mixing.

5 Interpretation of Persistence

As described in Section 3, tempering algorithms mix slowly when there is a set A ⊂ X which

has low conductance under the low-temperature (β = 1) chain and has small persistence for

some range of β-values. Here small persistence means πβ[A]/π[A] near zero. To understand

how the existence of such a set depends on the properties of π, we can rewrite this ratio as:

πβ[A]

π[A]
=

∫

A
π(z)βλ(dz)/

∫

X
π(z)βλ(dz)

∫

A
π(z)λ(dz)/

∫

X
π(z)λ(dz)

=

∫

A
π(z)βλ(dz)/

∫

A
π(z)λ(dz)

∫

X
π(z)βλ(dz)/

∫

X
π(z)λ(dz)

=
Eπ|A(π(Z)β−1)

Eπ(π(Z)β−1)
(12)

where π|A is the restriction of π to A. Here Eπ(π(Z)β−1) denotes the expected value of the

random variable W = π(Z)β−1 where Z has distribution π.

Let Z1 and Z2 be random variables with distributions π|A and π, respectively, and define

random variables W1 = π(Z1)
β−1 and W2 = π(Z2)

β−1. One way in which the ratio (12)

may be smaller than one is if W2 stochastically dominates W1, or equivalently if the random

variable Y1 = π(Z1) stochastically dominates Y2 = π(Z2). This means that within the set

A the probability mass is concentrated in places where the density is high relative to those

places where mass is concentrated for the rest of the space Ac. For example, if π consists of

two peaks, one in A and the other in Ac, and π(A) = π(Ac), then loosely speaking the peak

in A is more “spiky”, or tall and narrow, than the peak in Ac.

As a concrete example, consider π an equal mixture of two trivariate normal distributions,

with component means µ1 = (10, 10, 10) and µ2 = −µ1 and covariance matrices Σ1 = 2I

and Σ2 = 10I. Define the set A = {z ∈ R
3 :

∑

i zi ≥ 0}, which contains almost all of the

probability mass of the first component and almost no mass from the second component.

Figure 2 shows the cumulative distribution functions of the random variables Y1 and Y2

defined above, where it can be seen that Y1 stochastically dominates Y2. Intuitively this is

because π has two peaks, one primarily in A and the other in Ac, with the first taller and

more narrow than the other. As shown above, this stochastic dominance implies that the

persistence γ(A, β) is less than one for any β ∈ (0, 1).
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Figure 2: The cumulative distribution functions of Y1 (left) and Y2 (right), for the trivariate

normal mixtures example.

More generally, the persistence of a set A can be less than one whenever Y1 tends to be

larger than Y2, in the sense that the transformation W1 = Y β−1
1 has a smaller expectation

than W2 = Y β−1
2 . Again this occurs when the probability mass within A is concentrated in

regions of high density relative to the regions where mass concentrates in Ac. Again, if π

consists of two peaks, one in A and one in Ac, and π(A) = π(Ac), then informally speaking

the peak in A is taller and more narrow than the peak in Ac.

Now take the more interesting case where π consists of multiple peaks of comparable

probability, some of which are much taller than others; then the tallest peaks are also the

narrowest peaks. Define A to contain one of these tall, narrow peaks. Since there are other

peaks of the distribution that are much lower and wider, and none that are much taller and

narrower, the expectation of W1 is much smaller than that of W2. The persistence of A is

therefore small, and since A is a set having low conductance at low temperatures, the results

in Section 3 imply that parallel and simulated tempering mix slowly. Here we mean slow

mixing in a relative sense, that the smaller the persistence the slower the mixing, when other

factors are held constant.

6 Conclusion

We have seen that if the multimodal target distribution has very wide peaks and very narrow

peaks of comparable probability, then parallel and simulated tempering mix slowly. This

means that if the simulated tempering chain is initialized in one of the wide peaks, or for

parallel tempering if every level of the tempering chain is initialized in a wide peak, then the

tempering chain will take a very large number of iterations to discover the narrow peaks of

the distribution.
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During application of simulated or parallel tempering, the acceptance rate of swap or

temperature change moves is monitored, as are standard Markov chain convergence diagnos-

tics. If the convergence diagnostics do not detect a problem, and if the acceptance rate for

swap or temperature changes is high, then the tempering chain is presumed to be mixing well

among the modes of the target distribution. However, we have shown that small persistence

can cause slow mixing even when the acceptance rate for swaps or temperature changes,

as measured by the quantity δ, is large. Additionally, standard Markov chain convergence

diagnostics will rarely detect the problem; convergence diagnostics based on the history of

the chain cannot detect the fact that there are undiscovered modes, unless they take into

account some specialized knowledge about the distribution. Widely-used convergence di-

agnostics, such as time-series plots and autocorrelation plots, make few assumptions about

the target distribution; these convergence diagnostics cannot infer features of the distribu-

tion in parts of the space that have not been explored. Even the Gelman-Rubin diagnostic,

which is specifically designed to detect lack of convergence due to multimodality, works very

poorly when some modes have a much smaller “basin of attraction” than others [21]. This

is typically the case for the narrow peaks with which we are concerned.

When there are undiscovered modes, inferences based on samples from the tempering

chain can be inaccurate. Practitioners should therefore be cautious about inferences that

have been obtained using parallel and simulated tempering, just as for Metropolis-Hastings,

and not presume that all the modes of the distribution have been discovered.

This slow mixing result is not surprising, since narrow peaks that have a small basin of

attraction are extremely difficult to find in a large space. This has been called the “needle

in a haystack” or “witch’s hat” problem in the statistics literature, where it is recognized

as causing difficulty for Metropolis-Hastings and Gibbs samplers [14]. We suspect that the

problem of approximately sampling from a multimodal distribution containing very narrow

peaks at unknown locations can be shown to be NP-complete (this question is addressed in

[18]). If so, then parallel and simulated tempering fail in exactly the same situation that all

other sampling methods would fail, namely for high-dimensional multimodal distributions

with some very narrow peaks.
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Appendix A: Proof of the Spectral Gap Bounds

We will prove the bound in Theorem 3.1 for the swapping chain. The proof for simulated

tempering is similar; see [20] for details. We will use the following results, which hold for

any transition kernels P and Q that are reversible with respect to distributions µP and µQ

on a space X with countably generated σ-algebra F .
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Lemma 7.1. Let µP = µQ. If Q(x, A\{x}) ≤ P (x, A\{x}) for every x ∈ X and every

A ⊂ X , then Gap(Q) ≤ Gap(P ).

Proof. As in Madras and Randall [10], write Gap(P ) and Gap(Q) in the form

Gap(P ) = inf
f∈L2(µP )

VarµP
(f)>0

(
∫ ∫

|f(x) − f(y)|2µP (dx)P (x, dy)
∫ ∫

|f(x) − f(y)|2µP (dx)µP (dy)

)

and the result is immediate. �

Lemma 7.2. (Madras and Zheng 2003)

Gap(P ) ≥ 1

n
Gap(P n) ∀n ∈ N.

Although Madras and Zheng [12] state Lemma 7.2 for finite state spaces, their proof extends

easily to general spaces.

To prove Theorem 3.1, start by noting that by the definition of the spectral gap, Gap(Psc) =

Gap(QTQ) = 8Gap(1
8
QTQ + 7

8
I) for a swapping chain Psc as defined in Section 2.2. By

Lemma 7.1, Gap(1
8
QTQ + 7

8
I) ≤ Gap((1

2
T + 1

2
Q)3). By Lemma 7.2, Gap((1

2
T + 1

2
Q)3) ≤

3Gap(1
2
T + 1

2
Q). Therefore

Gap(Psc) ≤ 24Gap(
1

2
T +

1

2
Q). (13)

Take any A ⊂ X such that 0 < φk[A] < 1 for all k, and any k∗ ∈ {0, . . . , N}. Define the

set B = {x ∈ Xsc : ∀k ≥ k∗, x[k] ∈ Ac} for which all low-temperature chains are in Ac, so

πsc[B
c] = 1−∏

k≥k∗ φk[A
c]. Gap(1

2
T + 1

2
Q) is bounded above by the conductance of B under

(1
2
T + 1

2
Q):

Gap(
1

2
T +

1

2
Q) ≤ Φ( 1

2
T+ 1

2
Q)(B)

=
1

2
ΦT (B) +

1

2
ΦQ(B). (14)

For any k ≥ k∗ we have πsc[B
c] ≥ max{φk[A], φN [A]}; therefore

ΦT (B) =
1

πsc[Bc]
Pr(moving to Bc via T | in B)

=
1

πsc[Bc]

1

2(N + 1)

∑

k≥k∗

(1Ac , Tk1A)φk

φk[Ac]

≤ 1

2πsc[Bc]
max
k≥k∗

{

(1Ac , Tk1A)φk

φk[Ac]

}

≤ 1

2
max
k≥k∗

{

1

max{φk[A], φN [A]}
(1Ac , Tk1A)φk

φk[Ac]

}

=
1

2
max
k≥k∗

{γ(A, k)ΦTk
(A)} . (15)
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First consider k∗ = 0. In this case (1B, Q1Bc) = 0, so combining (13-15) yields Theorem 3.1.

Now consider k∗ > 0. For swapping scheme SC1, we have

ΦQ(B) =
1

πsc[Bc]
Pr(moving to Bc via Q| in B)

=
1

πsc[Bc]

∑

k≥k∗,l<k∗

1

(N + 1)2

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w), φk(w)φl(z)}λ(dw)λ(dz)

φk[Ac]

≤ 1

4πsc[Bc]
max

k≥k∗,l<k∗

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w), φk(w)φl(z)}λ(dw)λ(dz)

φk[Ac]

≤ 1

4
max

k≥k∗,l<k∗

φk[A]

max{φk[A], φN [A]}

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w), φk(w)φl(z)}λ(dw)λ(dz)

φk[A]φk[Ac]

=
1

4
max

k≥k∗,l<k∗

γ(A, k)

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w), φk(w)φl(z)}λ(dw)λ(dz)

φk[A]φk[Ac]
.

Consider k, l such that φl[A
c] < φk[A

c]; then,

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w), φk(w)φl(z)}λ(dw)λ(dz)

φk[A]φk[Ac]

≤

∫

z∈Ac

∫

w∈A

min{φl(w), φk(w)} [φk(z) + φl(z)] λ(dw)λ(dz)

φk[A]φk[Ac]

=

(φk[A
c] + φl[A

c])
∫

w∈A

min{φl(w), φk(w)}λ(dw)

φk[A]φk[Ac]

≤ 2

∫

w∈A

min{φl(w), φk(w)}λ(dw)

φk[A]
= 2δ(A, k, l).

Similarly, exchanging the roles of A and Ac yields an upper bound of 2δ(Ac, k, l) when

φl[A
c] ≥ φk[A

c]. Therefore

ΦQ(B) ≤ 1

2
max

k≥k∗,l<k∗

[γ(A, k) max {δ(A, k, l), δ(Ac, k, l)}] . (16)

Combining (13-16), we get that for k∗ > 0, Gap(Psc) is bounded above by

12 max

{

max
k≥k∗

γ(A, k)ΦTk
(A), max

k≥k∗,l<k∗

γ(A, k) max{δ(A, k, l), δ(Ac, k, l)}
}

which implies Theorem 3.1 for the swapping chain that uses scheme SC1. With only minor

modification, this proof also applies to the swapping scheme SC2. �
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