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For most of the time, biomedical researchers have been dealing with ordinal outcome variable in multilevel models where patients
are nested in doctors. We can justi	ably apply multilevel cumulative logit model, where the outcome variable represents the mild,
severe, and extremely severe intensity of diseases likemalaria and typhoid in the formof ordered categories. Based on our simulation
conditions, Maximum Likelihood (ML) method is better than Penalized Quasilikelihood (PQL) method in three-category ordinal
outcome variable. PQL method, however, performs equally well as ML method where 	ve-category ordinal outcome variable is
used. Further, to achieve power more than 0.80, at least 50 groups are required for bothML and PQLmethods of estimation. It may
be pointed out that, for 	ve-category ordinal response variable model, the power of PQL method is slightly higher than the power
of ML method.

1. Introduction

Data collected fromhospitals and educational institutions are
mostly multilevel or hierarchical data. �is type of data is
frequently used by researchers to construct statistical models
such as multilevel models, hierarchical models, or mixed
e�ects models [1, 2]. As the observations in these nested
data structures become dependent, the classical methods
and models like analysis of variance (ANOVA) and linear
regression cannot be applied because these models assume
independence. Hence, the use of alternative multilevel mod-
els is warranted to analyze the nested data structure.

It is really challenging to decide about an appropriate
sample size for multilevel ordinal logistic models. In the
contemporary literature, only [3] discusses the issue of sample
size inmultilevel ordinal logisticmodel by using PQLmethod
of estimation. �e researcher uses three-category multilevel
ordinal logistic models. Apart from this, there is no existing

research on sample size and power issues inmultilevel ordinal
logistic models. Unlike [3], the study of [4] compares both
PQL and ML methods in small group sizes. However, the
study of [4] does not provide any results about power analysis.
In the present study, the focus of researchers is not only
to compare ML and PQL estimation methods of estimation
in larger group sizes but also to provide guidelines about
optimum sample size needed for multilevel ordinal logistic
models.

2. Materials and Methods

2.1. Multilevel Logistic Regression Model. A very popular
concept is used in social sciences to develop a dichotomous
multilevel logistic model through a latent continuous
variable model [5].�e same idea can be extended to three or
more ordered categories through a threshold parameters. A
threshold concept is used that the latent continuous variable
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�∗�� underlies the observed variable ���. A simple two level

ordinal logistic model can be written as

�∗�� = �0� + �1���� + ��� level 1 model

�0� = �00 + �01�� + ��� level 2 model

�1� = �10 + �11�� + �1�
�∗�� = (�00 + �10��� + �01�� + �11�����) + (��� + �1���� + ���)(Fixed part) + (Random part) ,

(1)

where ��� corresponds to level 1 explanatory variable, ��
represents level 2 explanatory variable, and level 1 coecients
denoted by � and �’s are the 	xed e�ects. If it is assumed that��� follows a normal distribution, that is, ��� ∼ �(0, 1), then
the resulting multilevel model is termed as multilevel probit

model. Similarly, if ��� ∼ logistic(0, �2/3), then the model is
said to bemultilevel logisticmodel [6]. Level 2 random e�ects
are more o�en assumed to have a normal distribution as

[����1�] ∼ �([
0
0] , [
�2� ��1
��1 �21 ]) . (2)

According to [7], ICC is the proportion of group level
variance compared to the total variance, represented by

ICC = �2��2� + �2/3 . (3)

�2� is the group level or level 2 variance and �2/3 is the
individual level or level 1 variance so the total variance = (level
2 variance) + (level 1 variance) = �2� + �2/3.

�at is why the squared sigma �(�2�) appeared in both
numerator and denominator.

Now �∗�� can be linked with the observed variable ���
through a threshold model. �e threshold model for �
categories,� = 1, 2, 3, . . . ,�, can be written as

��� = 1 if �∗�� < V(1)
��� = 2 if V(1) ≤ �∗�� ≤ V(2)
��� = 3 if V(2) ≤ �∗�� ≤ V(3)

...
��� = � if �∗�� ≥ V(�−1),

(4)

where (V(1) < V
(2) < V

(3) ⋅ ⋅ ⋅ < V
(�−1)) are the threshold

parameters.
For identi	cation purpose, it is common to set the 	rst

threshold to zero and to allow an intercept in the model
[8]. We will assume a proportional odds model which means
that the e�ect of explanatory variables will remain the same

across categories [9–12]. �e equivalent to the cumulative
logit model above in generalized linear models context is

��� = �00 + �10��� + �01�� + �11����� + ��� + �1����. (5)

2.2. Simulation Design. �e 	xed e�ect parameters (�00, �10,�01, �11) were set from the previous study by [4]. �10 = 1,�01 = 1, �11 = 1, and �00 = 0. �e reason behind �00 = 0
is that multilevel ordinal logistic model cannot identify the
overall model intercept and all threshold parameters jointly.
�ere are twoways: a researcher can (1) estimate the intercept
by setting the 	rst threshold parameter to zero or (2) equate
the intercept to zero and estimate the threshold parameters.
�at is why we put �00 = 0. �ere are three groups conditions(30, 50, 100), three group sizes (5, 30, 50), and three values
of ICC (0.1, 0.3, 0.5). �ese values of ICC correspond to an
intercept variance �2� = 0.39, 1.45, and 3.4. Similarly, random

slope values were taken as �21 = 0.12, 0.32, and 0.62, while�2�1 = 0.01, 0.15, and 0.30. For each scenario, the number of
simulation R was set to be 1000. We used GLIMMIX (ML)
with adaptive quadrature procedure and GLLIMIX (PQL)
procedures in SAS for data generation and analyses.

2.3. Procedure for the Parameter Estimations. �e accuracy of
di�erent 	xed e�ect and random e�ect parameters estimates
was calculated through the relative parameter bias, that is,

RPB = Estimate − parameter

Parameter
, (6)

while estimate is the value produced by ML or PQL method
of estimations and parameter values are those taken in the
simulation design. Average relative biases for Tables 1 and 2
are obtained by using (6).

Similarly, power was computed as

Estimate

Standard error
. (7)

Empirical powers were computed for ���, ��, and �����
by using (7). �e power was calculated as the number of
replications inwhich�0 : Parameter value = 0, was correctly
rejected at 5 percent level of signi	cance divided by 1000 as
we used 1000 replications for each condition. Power values
between 0.80 and 1.0 were considered excellent and below



Computational and Mathematical Methods in Medicine 3

Table 1: Average relative bias of 	xed e�ect estimates obtained as a function of groups, group size, and ICC, collapsing over the category
distribution and number of categories.

Groups Group size ICC
ML method PQL method�10 �01 �11 �10 �01 �11

30 5

0.1 0.0953 0.0960 0.0523 −0.0925 −0.0858 −0.0810
0.3 0.0790 0.0823 0.0397 −0.1061 −0.0967 −0.0899
0.5 0.0636 0.0675 0.0313 −0.1186 −0.1074 −0.0999

30 30

0.1 0.0708 0.0376 0.0469 −0.0601 −0.0595 −0.0603
0.3 0.0577 0.0292 0.0496 −0.0677 −0.0714 −0.0797
0.5 0.0506 0.0263 0.0347 −0.0732 −0.0816 −0.0878

30 50

0.1 0.0314 0.0562 0.0785 −0.0427 −0.0433 −0.0452
0.3 0.0256 0.0507 0.0778 −0.0539 −0.0551 −0.0720
0.5 0.0161 0.0466 0.0696 −0.0642 −0.0598 −0.0829

50 5

0.1 0.0750 0.0607 0.0656 −0.0587 −0.0616 −0.0678
0.3 0.0577 0.0485 0.0558 −0.0645 −0.0669 −0.0763
0.5 0.0471 0.0489 0.0423 −0.0742 −0.0690 −0.0796

50 30

0.1 0.0175 0.0196 0.0285 −0.0410 −0.0518 −0.0506
0.3 0.0202 0.0154 0.0219 −0.0474 −0.0443 −0.0559
0.5 0.0160 0.0154 0.0337 −0.0536 −0.0570 −0.0611

50 50

0.1 0.0281 0.0248 0.0501 −0.0252 −0.0384 −0.0400
0.3 0.0340 0.0260 0.0333 −0.0391 −0.0370 −0.0447
0.5 0.0265 0.0243 0.0307 −0.0412 −0.0402 −0.0400

100 5

0.1 0.0319 0.0357 0.0421 −0.0520 −0.0505 −0.0472
0.3 0.0188 0.0169 0.0255 −0.0549 −0.0416 −0.0357
0.5 0.0235 0.0188 0.0211 −0.0518 −0.0536 −0.0303

100 30

0.1 −0.0025 0.0066 0.0092 −0.0206 −0.0270 −0.0236
0.3 −0.0033 0.0044 0.0060 −0.0216 −0.0324 −0.0230
0.5 −0.0037 0.0019 0.0041 −0.0248 −0.0172 −0.0182

100 50

0.1 0.0064 0.0069 0.0041 −0.0102 −0.0114 −0.0084
0.3 0.0051 0.0048 0.0025 −0.0105 −0.0125 −0.0243
0.5 0.0030 0.0031 0.0042 −0.0148 −0.0120 −0.0205

0.80 as inadequate [13]. For brevity, the threshold estimates
are excluded as researchers are not interested in their values.

Empirical coverage rates of 95% con	dence intervals were
used to judge the accuracy of the standard errors of estimated
parameters [14]. Tables 4–11 were obtained by using

Estimate ± ��/2 × standard error of estimate. (8)

�e 95% con	dence intervals coverage rates were computed
in each condition as the proportion of replications in which
the true parameter is captured by the 95% con	dence interval.
Reference [15] recommended acceptable coverage rates as
92.5% to 97.5%. A separate logistic regression was used to
assess the impact of simulation conditions on empirical
coverage rates of estimates. � values in Tables 4 to 11 are
obtained by

logit (���) = �0 + �1 groups + �2 group size + �3 ICC. (9)

3. Results and Discussion

Tables 1 and 2 are estimated for the purpose of checking
the accuracy of both 	xed and random e�ects estimates
through relative bias. Absolute relative bias <5% is negligible
under both ML and PQL method. Estimates that have
absolute relative bias close to zero are considered as unbiased
estimates; that is, estimates and parameters become identical.

Tables 4 to 11 are computed to check the accuracy of
estimates standard errors through 95% con	dence interval.
�ose estimates which achieve acceptable coverage rates
(92.5% to 97.5%) are considered best. Similarly, Table 3 is
computed to get power rates under both ML and PQL
methods.

Table 1 represents the impact of various simulation
conditions on average relative bias of the 	xed e�ect estimates
under two estimation methods ML and PQL. Estimates were
substantially biased when the number of groups was 30,
group size was 5, and ICC = 0.1 under ML method. �e
estimates relative bias was less than 5% when the number of
groups was 50 underMLmethod.With 100 groups, estimates
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Table 2: Average relative bias of random e�ect estimates obtained as a function of groups, group size, and ICC, collapsed over the category
distribution and number of categories.

Groups Group size ICC
ML method PQL method�� �1 �� �1

30 5

0.1 −0.1106 0.2000 −0.0812 0.1143

0.3 −0.0701 −0.0176 −0.1158 −0.1403
0.5 −0.0326 0 .0127 −0.1469 −0.1725

30 30

0.1 −0.0806 −0.0572 −0.0645 −0.1429
0.3 −0.0578 −0.0702 −0.0926 −0.1053
0.5 −0.0327 −0.0633 −0.1196 −0.1311

30 50

0.1 −0.0645 −0.0858 −0.0483 −0.1066
0.3 −0.0578 −0.0351 −0.0689 −0.0878
0.5 −0.0490 −0.0620 −0.0794 −0.1079

50 5

0.1 −0.0645 0.0286 −0.0967 0.0282

0.3 −0.0330 −0.0702 −0.1239 −0.1555
0.5 0.0226 −0.0507 −0.1414 −0.1809

50 30

0.1 −0.0483 −0.1143 −0.0725 −0.1525
0.3 −0.0413 −0.0527 −0.0893 −0.1209
0.5 −0.0272 −0.0380 −0.1022 −0.1461

50 50

0.1 −0.0483 −0.0572 −0.0512 −0.0882
0.3 −0.0330 −0.0176 −0.0656 −0.0933
0.5 −0.0272 −0.0291 −0.0751 −0.1131

100 5

0.1 −0.0322 0.0000 −0.0754 −0.1220
0.3 −0.0330 −0.0179 −0.1063 −0.1425
0.5 0.0055 −0.0254 −0.1095 −0.1520

100 30

0.1 −0.0322 −0.0286 −0.0442 −0.0832
0.3 −0.0328 −0.0176 −0.0611 −0.1051
0.5 −0.0055 0.0000 −0.0709 −0.1165

100 50

0.1 −0.0330 0.0000 −0.0391 −0.0595
0.3 −0.0333 −0.0180 −0.0476 −0.0682
0.5 −0.0540 0.0000 −0.0465 −0.0729

were unbiased under MLmethod. Estimates relative bias was
negligible when the number of groups was 100 under ML
method. Relative bias of estimates was highly in�uenced by
the number of groups under ML method. On the contrary,
estimates were underestimated under PQLmethod. Substan-
tial bias of estimates was noted when group size was 5 and
ICC = 0.5 under PQL method. Estimates relative bias was
less than 5% when group size was 50 under PQLmethod. On
average, ML method 	xed e�ects estimates average relative
bias was smaller than that of PQL method in absolute terms.
Moreover, group size impact was larger on estimates relative
bias under PQL method.

Similarly, ML method random e�ects estimates were
substantially biased when the number of groups was 30 as
shown in Table 3. With 100 groups, random e�ects estimates
bias was less than 5% consistently. ML method performed
well when the number of groupswas large.On the other hand,
random e�ects estimates were substantially biased under
PQL method when group size was 5 and ICC = 0.5. Like
	xed e�ects estimates, ML method random e�ects bias was
smaller than that of PQL method random e�ects estimates
bias in absolute terms.

Table 3 re�ects the power pattern of estimates under
both ML and PQLmethods in 	ve-category ordinal outcome
variable model. Further, to achieve more than 0.80 power
rates for estimates, at least 50 groups are mandatory for both
estimation methods. However, the power of PQL method
estimates was slightly higher than that of ML method esti-
mates in 	ve-category ordinal outcome variable model.

Table 4 lists empirical coverage rates for estimates of the
multilevel ordinal logistic model under ML method when
response variable had three categories and distribution type
was symmetrical. Under the three group conditions, the 	xed
e�ect estimates achieve the acceptable coverage rates (92.5
to 97.5) de	ned by [13]. However, random e�ect estimates
coverage rates were smaller than the nominal coverage rates.
�e e�ect of the number of groups was signi	cant on
estimates coverage rates. However, group size and ICC e�ect
was minimal on estimates coverage rates. Table 4 results
suggest that a large number of groups should be used rather
than larger group size under ML method.

Table 5 lists empirical coverage rates for estimates of the
multilevel ordinal logistic model under ML method when
response variable had three categories and distribution type
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Table 3: Power of 	xed e�ect estimates of 	ve-category response multilevel ordinal logistic model (method: ML and PQL, category
distribution: symmetrical).

Groups Group size ICC
ML method PQL method�10 �01 �11 �10 �01 �11

30 5

0.1 0.536 0.551 0.488 0.607 0.611 0.523

0.3 0.561 0.559 0.492 0.596 0.621 0.539

0.5 0.572 0.550 0.501 0.599 0.616 0.531

30 30

0.1 0.624 0.661 0.569 0.661 0.659 0.591

0.3 0.639 0.639 0.589 0.650 0.672 0.602

0.5 0.635 0.669 0.594 0.658 0.649 0.611

30 50

0.1 0.715 0.709 0.661 0.739 0.693 0.681

0.3 0.731 0.721 0.679 0.749 0.716 0.699

0.5 0.739 0.732 0.703 0.745 0.726 0.693

50 5

0.1 0.850 0.835 0.731 0.886 0.849 0.756

0.3 0.861 0.849 0.729 0.897 0.863 0.769

0.5 0.873 0.858 0.740 0.897 0.869 0.763

50 30

0.1 0.871 0.864 0.778 0.903 0.914 0.809

0.3 0.877 0.856 0.789 0.914 0.895 0.795

0.5 0.869 0.879 0.768 0.909 0.899 0.799

50 50

0.1 0.891 0.859 0.815 0.956 0.916 0.849

0.3 0.882 0.880 0.826 0.969 0.931 0.871

0.5 0.896 0.878 0.831 0.972 0.939 0.878

100 5

0.1 0.992 1.000 0.851 1.000 1.000 0.914

0.3 0.998 1.000 0.859 1.000 0.997 0.902

0.5 0.998 0.995 0.867 1.000 1.000 0.909

100 30

0.1 0.995 0.989 0.890 1.000 1.000 0.929

0.3 0.997 0.998 0.897 1.000 1.000 0.936

0.5 0.992 0.998 0.879 1.000 1.000 0.939

100 50

0.1 0.989 0.992 0.906 1.000 1.000 0.952

0.3 0.996 0.996 0.919 1.000 1.000 0.959

0.5 0.996 0.997 0.899 1.000 1.000 0.951

Table 4: 95% CI coverage rates for the estimates in a three-category ordinal response variable model by groups, group size, and intraclass
correlation (method: ML, category distribution: symmetrical).

Parameters
Number of groups Group size ICC

30 100 120 � value 5 30 50 � value 0.1 0.3 0.5 � value
�10 0.942 0.949 0.953 0.0006 0.948 0.946 0.949 0.7886 0.945 0.948 0.951 0.0270�01 0.941 0.947 0.952 0.0008 0.946 0.946 0.950 0.3865 0.943 0.947 0.951 0.0165�11 0.939 0.946 0.951 0.0007 0.945 0.945 0.947 0.4895 0.946 0.946 0.946 0.9737�� 0.905 0.908 0.918 0.0041 0.908 0.910 0.913 0.3086 0.911 0.910 0.909 0.6199�1 0.907 0.915 0.927 0.0000 0.912 0.917 0.920 0.0632 0.918 0.913 0.918 0.8929

Table 5: 95% CI coverage rates for the estimates in a three-category ordinal response variable model by groups, group size, and intraclass
correlation (method: ML, category distribution: skewed).

Parameters
Number of groups Group size ICC

30 100 120 � value 5 30 50 � value 0.1 0.3 0.5 � value
�10 0.941 0.948 0.951 0.0053 0.946 0.948 0.949 0.5283 0.943 0.948 0.949 0.0503�01 0.946 0.949 0.951 0.1780 0.947 0.948 0.950 0.4000 0.947 0.948 0.949 0.7360�11 0.942 0.946 0.955 0.0001 0.944 0.950 0.949 0.0821 0.948 0.947 0.948 0.9733�� 0.900 0.908 0.917 0.0000 0.904 0.908 0.913 0.0494 0.908 0.908 0.910 0.7760�1 0.909 0.913 0.922 0.0011 0.909 0.915 0.920 0.0077 0.918 0.913 0.918 0.8939



6 Computational and Mathematical Methods in Medicine

Table 6: 95% CI coverage rates for the estimates in a 	ve-category ordinal response variable model by groups, group size, and intraclass
correlation (method: ML, category distribution: symmetrical).

Parameters
Number of groups Group size ICC

30 100 120 � value 5 30 50 � value 0.1 0.3 0.5 � value
�10 0.946 0.948 0.950 0.2542 0.945 0.949 0.951 0.0702 0.947 0.946 0.951 0.3144�01 0.945 0.946 0.949 0.4840 0.945 0.947 0.948 0.2440 0.947 0.946 0.947 0.9730�11 0.943 0.947 0.949 0.0490 0.946 0.947 0.946 0.9470 0.948 0.944 0.948 0.9210�� 0.904 0.907 0.918 0.0001 0.909 0.910 0.912 0.4497 0.907 0.912 0.912 0.2305�1 0.903 0.915 0.926 0.0000 0.911 0.914 0.918 0.0585 0.914 0.915 0.914 1.0000

Table 7: 95% CI coverage rates for the estimates in a 	ve-category ordinal response variable model by groups, group size, and intraclass
correlation (method: ML, category distribution: skewed).

Parameters
Number of groups Group size ICC

30 100 120 � value 5 30 50 � value 0.1 0.3 0.5 � value
�10 0.939 0.944 0.946 0.0340 0.947 0.933 0.948 0.8470 0.944 0.943 0.941 0.3860�01 0.945 0.947 0.949 0.1940 0.951 0.937 0.953 0.6170 0.947 0.947 0.947 0.9470�11 0.944 0.947 0.948 0.1650 0.948 0.939 0.951 0.4080 0.944 0.947 0.947 0.3720�� 0.903 0.911 0.916 0.0024 0.910 0.904 0.917 0.0945 0.908 0.911 0.912 0.3885�1 0.907 0.916 0.922 0.0003 0.912 0.910 0.922 0.0328 0.913 0.915 0.916 0.5935

Table 8: 95% CI coverage rates for the estimates in a three-category ordinal response variable model by groups, group size, and intraclass
correlation (method: PQL, category distribution: symmetrical).

Parameters
Number of groups Group size ICC

30 100 120 � value 5 30 50 � value 0.1 0.3 0.5 � value
�10 0.921 0.925 0.928 0.1135 0.918 0.926 0.932 0.0030 0.925 0.926 0.922 0.5156�01 0.918 0.922 0.925 0.0671 0.917 0.922 0.928 0.0170 0.928 0.924 0.912 0.0001�11 0.923 0.927 0.929 0.1099 0.920 0.926 0.933 0.0014 0.931 0.929 0.918 0.0009�� 0.897 0.900 0.907 0.0087 0.896 0.902 0.908 0.0044 0.905 0.903 0.895 0.0215�1 0.903 0.906 0.908 0.1327 0.898 0.906 0.912 0.0018 0.910 0.909 0.897 0.0055

Table 9: 95% CI coverage rates for the estimates in a three-category ordinal response variable model by groups, group size, and intraclass
correlation (method: PQL, category distribution: skewed).

Parameters
Number of groups Group size ICC

30 100 120 � value 5 30 50 � value 0.1 0.3 0.5 � value
�10 0.918 0.920 0.924 0.1155 0.915 0.919 0.927 0.0053 0.928 0.923 0.912 0.0000�01 0.921 0.926 0.928 0.0245 0.920 0.927 0.931 0.0044 0.931 0.929 0.917 0.0002�11 0.921 0.924 0.928 0.0965 0.918 0.924 0.931 0.0031 0.929 0.926 0.918 0.0032�� 0.899 0.902 0.905 0.0567 0.897 0.902 0.907 0.0274 0.903 0.905 0.898 0.1459�1 0.905 0.908 0.911 0.1633 0.901 0.910 0.914 0.0015 0.916 0.909 0.900 0.0003

Table 10: 95% CI coverage rates for the estimates in a 	ve-category ordinal response variable model by groups, group size, and intraclass
correlation (method: PQL, category distribution: symmetrical).

Parameters
Number of groups Group size ICC

30 100 120 � value 5 30 50 � value 0.1 0.3 0.5 � value
�10 0.940 0.945 0.942 0.6312 0.936 0.942 0.948 0.0007 0.944 0.945 0.937 0.0590�01 0.940 0.945 0.946 0.0997 0.938 0.940 0.948 0.0027 0.945 0.945 0.940 0.1292�11 0.938 0.944 0.942 0.2029 0.937 0.942 0.946 0.0156 0.943 0.942 0.939 0.2029�� 0.906 0.910 0.911 0.2328 0.904 0.910 0.914 0.0458 0.913 0.911 0.903 0.0196�1 0.907 0.907 0.909 0.6620 0.904 0.909 0.910 0.2170 0.909 0.910 0.902 0.1050
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Table 11: 95% CI coverage rates for the estimates in a 	ve-category ordinal response variable model by groups, group size, and intraclass
correlation (method: PQL, category distribution: skewed).

Parameters
Number of groups Group size ICC

30 100 120 � value 5 30 50 � value 0.1 0.3 0.5 � value
�10 0.941 0.941 0.943 0.5893 0.937 0.942 0.946 0.0047 0.944 0.943 0.937 0.0611�01 0.939 0.940 0.941 0.5301 0.935 0.940 0.946 0.0013 0.942 0.941 0.937 0.1578�11 0.942 0.943 0.944 0.6300 0.936 0.944 0.950 0.0000 0.946 0.944 0.938 0.0160�� 0.903 0.907 0.909 0.1598 0.901 0.908 0.910 0.0658 0.907 0.907 0.904 0.6272�1 0.909 0.911 0.914 0.3463 0.905 0.911 0.917 0.0060 0.915 0.915 0.903 0.0037

was skewed. Again, group size and ICC e�ect was minimal
on estimates empirical coverage rates. �e impact of the
number of groups was again signi	cant and dominant on
estimates empirical coverage rates. Moreover, to achieve
unbiased standard errors of estimates, large number of groups
will be better than the larger group size under ML method.

Table 6 lists empirical coverage rates for estimates of
the multilevel ordinal logistic model under ML method
when response variable had 	ve categories and distribution
type was symmetrical. Like three-category response model,
the in�uence of the number of groups was signi	cant on
estimates coverage rates under ML method. More groups
should be used to achieve the desired results under ML
method.

Table 7 lists empirical coverage rates for estimates of the
multilevel ordinal logistic model under ML method when
response variable had 	ve categories and distribution type
was skewed. Like 	ve-category response model, the in�uence
of the number of groups was again signi	cant on estimates
coverage rates under ML method. On the other hand, group
size and ICC e�ect was insigni	cant on estimates empirical
coverage rates under ML method.

Table 8 lists empirical coverage rates for estimates of the
multilevel ordinal logistic model under PQL method when
response variable had three categories and distribution type
was symmetrical. With group size 5, 	xed e�ects estimates
coverage rates were unacceptable. However, with group size
of 30 and 50, respectively, 	xed estimates coverage rates were
acceptable. Furthermore, random e�ects estimates coverage
rates were unacceptable across all conditions. Additionally,
ICC had also a signi	cant e�ect on estimates coverage rates;
that is, coverage rates decreased with the larger ICC values
under PQL method. On the other hand, groups e�ect was
little under PQL method on estimates coverage rates.

Table 9 lists empirical coverage rates for estimates of
the multilevel ordinal logistic model under PQL method
when response variable had three categories and distribu-
tion type was skewed. Group size factor had a signi	cant
e�ect on estimates coverage rates. However, coverage rates
consistently decreased with the increase in ICC values under
PQLmethod. Fixed e�ects achieved acceptable coverage rates
across the last two levels of group size factor, that is, 30 and 50,
respectively. Groups had a signi	cant e�ect on coverage rates.
Larger group sizes seem to be good under PQL method.

Table 10 lists empirical coverage rates for estimates of the
multilevel ordinal logistic model under PQL method when
response variable had 	ve categories and distribution type
was symmetrical. Fixed e�ects achieved acceptable coverage
rates across all group sizes, de	nitely re�ecting improved
performance of PQL method over three-category response
model. �e performance of PQL method was as good as ML
method in 	ve-category response model. However, estimates
coverage rates decreased with the larger values of ICC. Again,
the e�ect of the number of groups was insigni	cant on
coverage rates.

Table 11 lists empirical coverage rates for estimates of the
multilevel ordinal logistic model under PQL method when
response variable had 	ve categories and distribution type
was skewed. Fixed e�ect coverage rates were all acceptable
across all group sizes. However, random e�ects coverage was
unacceptable and smaller than that of ML coverage rates.
Group size again showed a signi	cant e�ects on all estimates
coverage rates while groups e�ect was insigni	cant.

4. Conclusion

In both symmetrical and skewed distribution shapes of
category responses, �10, �01, and �11 were overestimated in
majority of the conditions under ML method of estimation
when three-category and 	ve-category multilevel ordinal
logistic models were used. Moreover, random e�ects esti-
mates, that is, random intercept and random slope estimates,
were more biased than 	xed e�ects estimates on average.�e
random e�ects estimates were not substantially biased under
ML method of estimation, especially when the number of
groups was large and random e�ects were not small. On the
contrary, �10, �01, and �11 were underestimated almost across
all conditions under PQL method of estimation when three-
category and 	ve-category multilevel ordinal logistic models
were used. Like ML method of estimation, random e�ects
estimates relative biases were higher on average than those
of the 	xed e�ects estimates under PQL method. Both 	xed
e�ects and random e�ects estimates were not substantially
biased under PQL method of estimation, particularly when

population random e�ects were small (�2� = 0.39, �21 =0.12, and ��1 = 0.01) and group sizes were large. In
general, the absolute relative bias ofMLmethod estimateswas
consistently smaller than that of PQL method estimates.
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�e accuracy of standard errors of the estimates (exclud-
ing threshold estimates) was judged through empirical cover-
age rates. �e in�uence of the number of groups was signi	-
cant on the accuracy of both three-category and 	ve-category
multilevel ordinal logistic models estimates standard errors
under ML method of estimation. On the contrary, the group
size factor and ICC had an insigni	cant e�ect on estimates
standard errors under ML method of estimation. Estimates
standard errors were least biased when number of groups was
100. On the other hand, the in�uence of group size factor
was highly signi	cant on the accuracy of estimates standard
errors under PQL method of estimation. Furthermore, ICC
also in�uenced estimates standard errors; that is, standard
errors were substantially biased when population random

e�ects were medium (�2� = 1.45, �21 = 0.32, and ��1 =0.15) and large (�2� = 3.4, �21 = 0.62, and ��1 = 0.30).
�e impact of the number of groups on estimates standard
errors in majority of the conditions was minimal under PQL
method. However, 	ve-category multilevel ordinal logistic
model estimates standard errors were as good as that of ML
method.

�e power rates of PQL estimates were slightly higher
than that ofML estimates when ordinal response variable had
	ve categories, which indicate that PQL standard errors were
least biased due to increases in the number of categories of
ordinal response variable.

In general, ML method performed well in terms of
estimates small bias, high coverage rates, and high power
rates when ordinal response variable had three categories.
However, in 	ve-category ordinal response variable model,
PQL method performances were comparable to those of
ML method. PQL estimates were poor when population
random e�ects (ICC) were medium and large while ML
estimates were poor in small population random e�ects.
In addition, ML estimates and estimates standard errors
bene	tted from larger number of groups while PQL estimates
and estimates standard errors bene	tted from larger group
sizes. We recommend at least 100 groups and 30 units per
group to achieve accurate multilevel ordinal logistic model
estimates and estimates standard errors when method of
estimation is ML. Furthermore, 100 groups and at least 50
units per group are essential for accurate multilevel ordinal
logistic model estimates and estimates standard errors when
method of estimation is PQL. Similarly, at least 50 groups
are essential to achieve 0.80 or more power for both ML
and PQL methods of estimation. On the basis of this study,
it is recommended that PQL method may be avoided when
group sizes are small, number of groups are large, random
e�ects are medium and large, and outcome variable has
three categories. In such conditions, ML method is the best
option. However, when the outcome variable has 	ve ormore
categories, random e�ects are small, group sizes are large, and
number of groups is small, PQLmethodmay be better option.
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