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Sufficiently Informative Functions and the Minimax 
Feedback Control of Uncertain Dynamic  Systems 

DIMITRI P. BERTSEIUS AKD IAN B. RHODES 

Absfract-The problem of optimal feedback control of uncertain 
discrete-time  dynamic systems is considered where  the  uncertain 
quantities do not  have a stochastic  description but  instead  are 
known to belong to given sets.  The problem is converted to a sequen- 
tial minimax problem and dynamic programming is  suggested a s  a 
general  method for its solution. The notion of a sufIiciently informa- 
tive function, which parallels the notion of a  suflicient statistic 
of stochastic  optimal control, is introduced, and conditions under 
which the optimal controller  decomposes into  an  estimator  and  an 
actuator  are identified. A limited  class of problems for which this 
decomposition simplifies the computation and  implementation of 
the optimal  controller is  delineated. 

T 
I.  INTRODUCTION 

H1S PAPER is concerned with the optimal  feedback 
control of a  discrete-time  dynamic  system  in the 

presence of uncertainty.  The t,raditional treatment 
of this problem has been to assign probabilhy  dist,ributions 
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to  the uncertain  quantities  and  to  formulate  the optimiza- 
tion problem a.s one of minimizing the expected  value of a 
suitable cost funct,ional. In  t,his  paper, a. nonprobabilistic 
description of the uncertainty is adopted,  where,  instead 
of being modeled as  random vect,ors with  given  probability 
distributions,  t,he  uncertainties  are considered to be 
unknown except for the fact that the; belong to given 
subset.s of appropriate vect.or spaces. The optimizat,ion 
problem is then cast. as one of finding the feedback con- 
troller  within  a prescribed admissible class t,hat minimizes 
the maximum d u e  (over all possible va.lues of the 
uncertain  quantities) of a  suitable cost functional. This 
worst case approach to  the opt,imal  control of uncertain 
dynamic  systems is applicable to problems where a  set- 
membership  description of the uncert,ain  quant.ities is 
more nat,ural or more readily  available than a  probabilistic 
one, or when specified t.olerances must  be  met wit,h 
cert.ainty. 

The modeling of uncertainties  as  quantities  that  are 
unknown except that  they belong to prescribed set.s and 
the adoption of a worst case viewpoint, in the context of 
the problem of feedback  control of a  dynamic sy.st,em was 
first considered by Witsenha,usen [l], [2] and received 
further  a.ttention  in [4]-[lo]. In  this paper  a  general 
minimax feedback  control problem which involves a 
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discrete-time  dynamic syst.em defined on  a  Euclidean 
space is formulated  in Section 11, and,  in Section 111, a 
dynamic  programming  algorithm is given for its solution. 
This algorithm is similar to  one given earlier by Witsen- 
ha,usen [ l ] ,  but is somewhat, more det.ailed and esplicit. 
than  and somewhat different in  its form from that.  in 
[l 1. although t,he same basic ideas are involved. Sub- 
srquently,  in Section IT, an effort, is made to identify 
conditions  under n-hich this algorit.hm can be simplified, 
and  to deduce structural properties of the optima.1 con- 
troller.  This is accomplished by  introducing  the not.ion of 
a sufficiently informative  function,  in ana.logy with the 
familiar  notion of a sufficient statistic of stochastic 
optimal cont.ro1. It is proved in Sect,ion IV  that  the 
decomposition of t.he optimal  controller into  an  estimator 
a.nd an  actuator is possible. Finally, in Section V some 
special cases for which t,his decomposition is profitable 
a.re delineated. 

11. PROBLEM FORMULATIOK 
Problem 1: Given is the discret e-time dynamic  system 

Zp+1 = fk(Z,,Uk,WJ:), k = 0,l; . . , N  - 1 (1) 

where xk E R", k = 0,1, . . . ,N,  is the  &ate  vector; ul: E 
R"', k = 0,1,. . . , N  - 1, is the control  vector; ' l c k  E R', 
X: = 0,l;. . , N  - 1, is the input,  disturbance  vector; 
and f,: R" x R" x R'+ R" is a known function for each 

Available to  the controller are  mmsurements of t.he 
k = 0,1,- . . , N  - 1. 

form 

Z k  = h,(.T,,ri:), k = 1 , 2 , .  . - , x  - 1 ( 2 )  

whcrc zk E Rs, k = 1?2: . . ,N  - 1. is the measurement 
rrctor; z l k  E R p ,  k = 1>2,.  . . ,N - 1 ,  is the measurement 
noise vector;  and 11,: R" X RP ---f Rs is a known function 
for each k = 0.1,. . . , N  - 1.  

The  uncertain  quantities lumped  in  a  vector q E 
R ~ + . V r + ( . ? . - l ! p  

q = (xot,?rot,zrlt , .  . . , tP'v- l t ,q  ,2"2 ,' . . ,v'y-lr)r ( 3 )  / I  

are known to belong to a given subset. Q of Rn+"'T+(S-l)P. 
At.tention is restricted to control l a m  of the form 

R k ( s + m !  + R m  , li = O J , .  . . , x  - 1 (4) 

taking values 

It should be  noted  t.hat,  this  problem  formulation 
implicitly includes the possible presence of sta.te a,nd control 
constraints, since n-e allow the function F to  take t-he 
value + a. R e  need simply specify that. F take  the 
value + 03 whenever some const,raint. is violated. Thus, 
for esample,  state  and control  constraints of the form 
x&: E X, or uk-l E l.Tk-l, n-here X, and r,-1, k = 1,2; . . ,N, 
are given sets,  may  be  accounted for by additively in- 
cluding in F the function 

.?' 
{ 6 ( Z , I X i )  + 6 [pi--l(z1, . . ,ui-z) p - ~  1 

i = l  

where (ylY) denotes the indicator  function of a set Y, 
viz., 

In  the next sect.ion we present  a  dynamic  programming 
algorit,hm for the solution of Problem 1 .  Using t,hk 
algorit,hm we  will then be a.ble to rea.ch some conclusions 
concerning the  structure of the optimal  control  law. 

111. SOLUTIOK BY DYXAAIIC PROGR4MhIIKG 

Consider the optimal  value of the cost function (6) 

J = inf sup F ( X ~ , X ~ , -  . . , I , ~ , u ~ , u ~ ,  . . . ;u..\--l), 
PL nEQ 

k = 0,1, . - . ,A7 - 1. (8) 

The purpose of the dynamic  programming  a.lgorithm is to  
convert the minimization  problem indicat.ed in  the above 
equation to a  sequence of simpler minimizat.ion problems 
by-taking  advantage of t.he sequential  evolution of the 
system  stat.e  and the information  available to  the cont.roller 
according to ( 1 )  and ( 2 ) .  Hou-elrer, matt.ers  are  somewhat 
complicated in the above  problem  by the presence of 
uncertainty, since in the process of generating the  state 
and measurement  vectors the disturbances  are  inter- 
mediat,ely selected by,  say,  Sature n-ith the objective of 
maximizing the value of the cost. For this reason t.he 
development of the dynamic  programming  a.lgorithm 
requires a. somewhat elaborate  construction. 

In  order to simplify the  notation we \till  make use of 
the vect.or {k E k = 1,2,. . . ,N - 1, which consists 
of all the informa,t.ion available to t.he controller a t  time 
k ,  viz., 

Ik = (21t ,221 , .  . . ,Zkf , tdO~,Ul1, .  . . ,Uk-l ) . (9) / I  

With t.his notation we m i t e  for t,he  control law 

pLI;(Zl,z?: * . . ,Z,,UO,U1,. . . ,2d,-1) = C ( k ( { k )  = Uk.  (10) 

Now consider the folloming definitions. Let. P(Rs) be 
the power set. (the  set of all  subsets) of Rs a.nd consider 
the follon-ing funct,ion: 

2,: R(k--l)S+k" + P ( P ) ,  (1 1) 

is minimized subject  to  the system  equation const.raint,, which assigns to t.he vectors rl:-l,uk-l t.he set. zl:({k-~j 
\There F :  R ~ > - ( n + m j  + (- m , + 3 is a given funct.ion. u . ~ - I )  c Rs of all  measurement  vectors z, given  by ( 2 )  
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which are consistent  with the  constraint  set Q ,  the previous 
measurement  vectors zI,zz, * - ,zx--l, and  the previous 
control  vectors uo,u1,. . . ,ut-l. I n  other words, zt E 2t 
({t-llut-l) if a.nd only if t,here exists a vect.or q = (xo', 
wO',w1',. - . ,z~~-~',v~',v~', . - - ,vdv-l') ' E Q such that  the 
vectors zo,'u:o,. . . ,wt--l,vl,. - ,vk,zl, . . ,zp,uo,. . ,uk--l t,oget,her 
satisfy  the  system  and  measurement equat.ions (1) and (2) 
for  times 0,1, * . ,k. 

We also define the funct,ion 

0: R(N-l)S+AVn ~ p ( R n + N r + ( i ? - - l ) P  1, (12) 

which assigns t.0 t,he vectors {N-I,uN-l the set. 
uN--l) c Rn+Nr+(N-l )p  of all  vectors q E Q [recall (3)] 
which are consistent with  the  measuremenh z1,z2,. . . , 
zN-l and  the control vect.ors uo,z+, . . . ,uLV-1. In  other words 
a. vector q belongs to  the set Q({N-l,ui?--l) if and  only if 
q E Q and the vectors X ~ , U : ~ ,  . . . , z ~ ! , ~ . ~ ~ , v ~ , ~  . - , V ~ - ~ , X ~ ,  - . , 
zN--l,uo,. . . ,u+1 t,oget.her satisfy the  system  and measure- 
ment  equations (1) and (2) for all k .  

It. should  be  noted that for some  vectors {,-I i t  is 
possible that  the set, it({k-l,uJz-l) or t,he set ~([+l,u,v-l) 
is empty for a.11 utPl E Rm, implying that  the vector is 
inconsistent, with the  constraint  set Q and  the  system 
and measurement.  equations.  Notice also that, whet.her 
the set. ik({k-l,uk-l) is  empty or nonempty  depends  on  the 
vector  alone  and is entirely  independent of 
From (2) the consist,ency of a  vector pk is equivalent 
to  the existence of vectors x,,vk consist,ent, with  and  the 
constraint. q E Q (for all u+~) and  therefore is equivalent. 
to  the existence of a  vector z, E ix-({k-lluk-l). I n  sub- 
sequent  equations in which empty  sets  appear we will 
adopt  the convention that t,he supremum of the  empty 
set  is - m (sup @ = - m ). Another possible approach 
would be to restrict.  the domain of definition of t,he func- 
tions iklQ to include  only  those  vectors {,-1 for which the 
sets ik({k-l,ut-l), @(<A7-1JuN-l) are nonempt,y.  Since in 
any  actual operat.ion of the system t,hese sets will always 
be nonempt.y, this  restriction  results  in no  loss of generality. 

Me  are now ready t.0 state  and  prove  the following 
dynamic  programming  algorithm for t.he solut,ion of 
Problem 1. 

Proposition 1: Assume that for t.he functions Ht defined 
below  we have - m < Hk(lk),*k = 1,2,. . . , N  - 2, for all 
vectors bk such  t,hat  the  set ZX+I({Jc,uR) is nonempty (for 
all u, E R"), and - < HA--l({-&r-l) for all vectors {x-l 
such  that. t.he set. $({N-l,uN-l) is nonempty.  Then  the 
optimal va.lue 9 of t.he cost functiona,l (6) is  given by 

J = inf El(uo) (13) 

where the funct.ion El: R" + (- m , + m ] is given  by the 
last  step of t,he recursive algorithm 

uo 

EK(~N-l,U.?'-l) 

= SUP F(Z~,ZZ, '  . * ,  ~ A ~ , U O , U I , '  . . , u~ - I )  (14) 
nEQ(1.v-1~u.v-l) 

H,(lk) = infEt+l({k,uk), k = 1,2,. . , N  - 1 (15) 
Uk 

-Gc+l ( l k ,uk )  = ,SUP H t + l ( ~ k , U k , Z k + l )  
zk+ 1Ezh l(Pk,uk) 

- - SUP Hk+l ( {k+1) ,  k = 0,l; . .,AT - 2. (16) ,. 
Zk, IEZ& I(fk,Uk) 

The  above proposition w4l not be  proved  here. Its 
proof involves st.andard  but  lengthy  dynamic  programming 
arguments a.nd can  be  found  in [4]. 

The dyna.mic  progmmming algorit,hm of Proposition 1 
can be profitably interpreted in terms of game theory, 
a.nd in  pa.rticular  in t,erms of multistage  games of perfect 
informatmion [13]. The  optimal  value of the cost J can 
be viewed as t,he  upper  value (or min-max) of a  game 
played by  two  opponents, t,he Controller selecting the 
control law (po,pl,. . . lpA+l), and  Nature selecting t,he 
uncertain  quantities q from the  set Q. The information, 
based  on  which the decision of the  Controller  is  made,  is 
fixed by  the form of the  functions p,, i.e., by  the informa- 
tion  vectors tk. Since, however,  only t.he upper  value 
of the game is of int.erest here, a  variety of equivalent, 
met,hods of selections of t.he vect.or q and corresponding 
information  patt,erns  can  be  assigned to  Nature. One  such 
inform6tion pattern  and method for selection of the com- 
ponents of t.he vector q corresponds t.0 the following 
sequence of events: 1) Controller selects uo; 2) Nature 
selects z1 from  the set. i l ( u o )  ; 3) Controller selects ul; 
4) Kature selects z2 from the set. ~2(z1,u.o,z~.1) . . , 2N - 1) 
Controller selects uN-]; 2 N )  Nature selects all  the 
uncertain  quantities q = (x~',w~',zc~', . . . ,zL~~~-~',v~',v~', . . . , 
~~-1')' from the  set ~(~A7-1,u,v-1). Each selection by 
either  Controller or Nature is ma.de with full knowledge 
of the outcomes of previous selections. 

This sequence of events  is  fictitious;  however, it, ac- 
curat.ely reflects the sequence of events  as viewed  by t.he 
Controller whose only  information  concerning  the  course 
of the game at  time k is t,he information i.e., all  measure- 
ments  and all control selections up to  that.  time. 

A moment's  refledion show  that  in  fact  the dynamic 
programming algorit.hm determines  the  (pure)  value J 
of the game of perfect  information  described  above. 
This  value is t,he same as  the  optimal cost, J of the  Problem 
1. 

Finding  the  optimal cost J and  the  optimal cont,rol 
law  from the  dynamic  programming algorit,hm of Prop- 
osition 1 is in general a  very difficult task. Part  of the 
difficulty  stems  from  the fact, that,, loosely speaking, the 
objective of the  Controller is dual  in  nature:  first, t.o 
act.uate t,he syst.em in a favorable fashion, and, second, t.0 
try  to improve the qua.lit,y of his estimate of the un- 
cert,ainty  in  the  system. This is a familiar situation  from 
stochastic  optimal  control,  known  as  dual  control  problem 
[ l l ] ,  the formidable complexit,ies of which have  been 
widely discussed in  the  literature.  In  stochastic  optimal 
control, insight into t.he structure of the opt,imal control- 
ler,  and its dual  function,  can  be obt,ained through  the 
notion of a s a c i e n t  statistic [12]-[i4]. Similar insight 
will be  obtained for the minimax controller of this  chapt,er 
by  introducing  in t.he next. section the analogous  concept 
of a sufEciently informative  function. 
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IV. SUFFICIEKTLY INFORMATIVE FUNCTIONS 
Let us consider the folloning defidion. 
Definition 1: ,4 function sp: Rk(S+m) + &, where zp  

is some space, will be called m . c i e n t l y   i n f o r m a t i w  with 
respect t.0 Problem 1 if there exist,s a funct,ion E,,,: 
& X Rm+ (-a, + a ] f o r a l l k  = 0,1 , . . . ,N - 1 such 
t.hat 

G + l  [ S d r r ) , ~ k I  = - G + l ( r t , u k )  (17) 

sets of possible system  states (or other  quant,ities) con- 
sistent.  with the measurements received. In  what follows 
we obtain  such  sufficiently  informat,ive  functions and 
further discuss the well-behaved case of a  linear  system 
a.nd an energy const.ra.int, on  t,he  uncertain  quant,ities  for 
which, as was demonstrat.ed  in [4] and [7]? the  set of 
possible states can  be  characterized  by  a  finite  set of 
numbers.  We  first  introduce the follon-ing notat,ion. 

We denote for all k by 

equations (1) and (2) and  the constraint. q E &. Similarly, 
we denot,e by Sk(. , .,- . .,a I r k )  t.he respective  sets of all 
possible quantities  within  the parentheses that  are con- 

so that we now seek the infimum over up of a funct.ion of sistent the information vector Tk, the system and 
u , ~  and  the sufficient information S,(<,J. If this  infimum  is mea,surement equations, and t,he constraint E Q .  

attained  for all Ck, t,hen  t,here exists an optimal  control Jvith  the above notation ~~e have t,he follo~xing prop- 
law pp that can also be Initten as osit,ion. 

PdTd = Pk*. Sk(Pk) (1 8) 

where p,* is a  suitable  function which can  be  determined 
by minimizing the function E k + l  of (17) with  respect t.0 
up. As a  result the control a t  any  time need only depend 
on  the sufficient. information s,((,). If this sufficient 
information  can be more easily generated or stored  t.han 
the information  vector Tk, and,  furthermore, if it is easier 
to minimize the function E,+l over up rather  than  the 
function  then  it is. advant,a.geous to compute  and 
implement the cont,rol law in  the  form of (1s). 

Factorizations of t,he opt.imal control law into  the 
composition of tn-o functions, a.s in (18), have been widely 
considered in  stochastic opt,imal control theory,  and  are 
commonly referred to as separhon theorems n-henever 
the function SI, can be interpreted  as  an  estimator. In  
such problems the function S, or its value is usually called a 
sufficient s taht ic .  Particularly simple sufficient. stat,istics 
have been found for problems involving a  linear  system, 
linear mea.surements, and Gaussian  white input  and 
measurement noises [123. In  other  problems sufficient 
statistics of int,erest take  the form of condit,ional prob- 
ability  distribut,ions conditioned on the information 
available [12]. Such sufficient stat,ist*ics imply the factor- 
ization of the  optimal control law into  an  estimator s, 
computing t.he conditional probabilit,y distribut,ion of some 
quantit.ies, u-hich may  differ  depending on the problem 
given, and an actuat,or pk* applying  a  control  input  to the 
system. It ha.s been demonst.rated [3]-[5] that, in esti- 
mation problems whch involve a  set-membership de- 
scription of the uncerbainty, the  set of possible st,ates 
conaishent. with the measurements received plays a role 
analogous to  that of condit,ional probability  distributions 
in  stochastic ehmation problems. Thus  it should not 
come as a surprise that for Problem 1 11-e shall be able to 
derive sufficiently informahre functions  t.hat involve 

Proposition 2: A sufflciently informative  function wit.h 
respect to Problem 1 is the function 

sk: R k ( S + m )  p ( R k n + ( N - k ) r + ( , ~ - k - l ) p  ) X RM 

given for all lk and k by 

S k ( [ k )  = [S,(Zl,. . ' ,Xk ,ZCk, .  . . ,zL',\--1,vX.+1,. . . 
~ . v - l ~ T k ) , ~ o , ~ l , -  . . ,Uk--ll. (19) 

Again, the proof of the  above proposition is st.raight- 
forward  but  tedious, and nil1 not be present,ed here. It 
can be found  in [4]. 

Proposition 2 show  that sufficient information in  the 
case of Problem 1 is provided at  each  time by  the set of 
past  inputs together  with t,he set. of past. and  present 
st,ates  and fut.ure  uncertainties  that.  are  consistent  with t.he 
observed out.put sequence up to t,hat  time. I n  addition, 
Proposition 2 clearly illust.rates the dual  function of t,he 
opt.imal cont,roller. By (18) t.he optimal  control law is of 
the form 

P p  = pJ:*.sp, (20) 

i.e.,  it. is the composit,ion of t.he sufficient,ly informative 
function S1: and  the function ,E,*. The function Sk may  be 
interpret,ed  as  an  estimator,  and t,he  function pI:* as  an 
actuator. Alternat.ively, t.he optimal  controller  can  be 
viewed as being composed of t.wo cascaded parts.  The 
first part produces an estimate  set  and  the second part 
accepts as input,  this  estimate set and produces  a  control 
vector.  This cont.ro1 vector is stored  and recalled in  the 
future  by  the controller. 

By adding addit.iona1 structure  to Problem 1, various 
important. simplifications can be achieved in  the suffi- 
ciently  informative  function (19). The addit.iona1 st,ructure 
takes the form of further assumptions  on t.he form of t.he 
set & in which the  uncerhinties lie, and  the cost funct.iona1 
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F. The simplifications t.hat  these  additional  assumptions 
induce  in t.he sufficient.ly informative  function  are  reduc- 
tions  in  the  number of ent,it>ies whose consistency n-ith the 
past,  output. measurements  needs to be considered. For 
example,  under cert.ain conditions there is no need t.0 
include the  past  st.ates xl; . . in t.he set of entit.ies 
whose consistency with  the  output  data is pa.rt of the 
sufficient information (19). Under  other conditions there 
is no need to ret,ain the  future  uncertainties  in S ( .  Ilk). 
In  ot,her cases: the controller need  not  recall past cont.ro1 
inputs. Because the verification of each of these  simplifka- 
tions  requires  only  a  straightforward specialization of 
the proof of Proposition 2,  u-e state  them  as  a sequence of 
Corollaries to Proposition 2. 

Corollary 1: If t.he cost functional F in (6) has t,he form 

h'- 1 

F ( z 1 , .  . * ,Z~ \ - ,~O, .  * . ,uLv-~) = f(zA7) + C gi (Ui ) ,  (21) 
i=O 

then  the  function 

St({*) = Sk(xk,zL!k,wJ:+l,. . . , tuAL1,v~+1,vk+2,  . . . ,v.y_llb8) (22) 

is sufficiently informative. 
Thus when F has t.he form (21) the  past  stat,es zl,. . . , 

xB-l and  controls ~ 0 , .  . . , u ~ - ~  no longer appear  in  the 
sufficient.ly informative  function.  The  dependence of the 
sufficient information  on t,he future uncert.ainties can  be 
removed if the  constraint  set Q for the  uncerhin quantit.ies 
has  a  property  implying  t,hat  the  set of values  t.hat  any 
particular  uncertain  quantity  can  take  is  independent of 
the  values of t,he other  uncertain  quantities. 

Copollary 2: If t.he set. Q has the form 

Q = { X ~ , Z L ' ~ , Z C ~ ;  . - , ~ ~ - \ ~ - 1 , ~ ~ 1 ,  - * . ,oA~--~~zO E Xo, 

Z C ~  E ~ i ,  i = O,l;.-,h7 - 1, 

~ ' 8 ;  E V k ,  k = 1,2,. . - , N  - 1 ] (23) 

where X O ,  W i ,  Yk are given  subsets of the corresponding 
Euclidean spaces, then  the  function Sk given for all k by 

s k ( l k >  = [Sk(x1&,' ' * , x k l l ? : ) ,  UO,ul,' ',U-V-I] 

is su6ciently  inforrmtive. 
The case where the const,raint Q is of the  form (23) 

should be considered  analogous to  the case of uncorrelated 
white input  and measurement. noises in  the corresponding 
stochast,ic problem. 

The  natural combination of Corollaries 1 and 2 yields 
the folloxulg. 

Corollary 3: If F has  the  form (21) a.nd Q has the  form 
(23), then  the  function 

S k ( l ? J  = f l B ( & J  

is sufficient,ly informative. 
In  the st,ochastic problem  analogous to Problem 1, 

important simplificat,ions in  the sufficient statistic  result 
when t,he function F in (6) is addit.ively separable [12], 
i.e., when 

N - 1  

F(z1,52, * * . , z ~ , u o , ~ I ,  ' * . ,unr-1) = C gt(z,uJ (24) 
i = O  

where Si(. , .) are given rea.1 va.lued functions. In  the 
minimax  framework of interest  here, simplification of the 
suAiciently informative  function  can  be  achieved  only 
at  the expense of adjoining  to  the syst.em equation (1) an 
additional  state xa(n+l) defined by 

xk+l(n+l)  = 2 , ( n + 1 )  + gx(xx,ul:), ZO@+l) = 0 

so that  the function F given by (24) becomes simply 
xA7(n+1) and the simplification of the sufficient informat.ion 
afforded by  Corollary 1 is applicable t,o the  augmented 
system.  The sufficient.ly informative  function is reduced to 

sk(rk) = sk(gk,w?;;, * ' . ~ 2 f l ~ \ ~ - l , v k + l >  ' ' ' ~ U X - l l l k )  

where A ( Z ~ , Z ~ ( ~ + ~ ) )  is the  augmented  state. If, in 
addition, Q has t.he form of (23), we have 

Sk(Tk) = f l d i k l l k ) .  

The difference between the simplifications available  for 
additively  separable cost functionals  in  the  stochastic 
setting a,nd those  available  under t.he minimax  formulation 
may be  attributed  to t,he fact  that, whereas the  expectation 
operation is linear and  distributes over  addition, the 
maximization  operation is not. 

Equat,ion (20) demonst.rates  the  struct,ure of t.he 
optimal  control law.? provides an alternative concept,ual 
framework for considering  Problem 1, and  can give insight 
concerning the complexity of the opt,imal cont,rol law. 
Furt.hermore, it, can  form  the basis for the development 
and t,he analysis of subopt,imal control  schemes [153. 
However, i t  a.ppears that only for a. limited class of 
prob€ems is it profitable to implement. the  optimal  control 
law in t,he form  given  by (20) since t.he estimator Sx is 
infinite dimensional in most cases. Some t.ypical. examples 
of this limited cla.ss of problems are discussed in  the next 
section. 

V. SOME SPECIAL CASES 
It is  advantageous t o  use  a specific sufficiently in- 

forma.t.ive funct.ion SI; only if t.he sufficient information 
s(lx) has smaller dimension than lk, i.e., SI; maps into a. 
finit.e-dimensional space wit.h dimension less than k(s + 
m). Under t,hese circumstance3 by using Sk the  solution of 
t,he problem by  dynamic  programming will be im- 
plement.ed over a space of smaller dimension. Further- 
more, the  computation of the  optimal  control law p* 
[Sk(lk) 1, k = 0,l; . . , N  - 1, must  be at least as easy as the 
computation of the  optimal  control la,w p ( l L ) .  Such 
situations occur in problems  involving finite-&ate systems, 
one-dimensional  problems wit.h t.ermina1 cost where the 
set of possible states is an  interval,  and, of course, 
the case of perfect state  information where syst,em 
&ate is measured exact.ly and  constitutes a sufficient 
informat,ion. Another  situation  in which the sufficient 
informat,ion has sma.ller dimension than bl: and leads 
to simplified computation? is the case of a linear system 
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n-ith  linear  measurements  and an energv constraint on the 
uncertain  quantities.  This case bears great similarity to 
the  linear  quadratic Gaussian case of stochastic  control. 
We have 

= A,J ,  + Bku, + GJLzrS, X: = 0,1, . . . ,N - 1 (25) 

2): = C , X ~  + u t ,  k = 1,2,. . -,A' - 1 (26) 
.\- - 1 

xO'P-~XO + + ~ui'Ri-'vi 5 1 (27)  

where P ,  Qj, Ri are positive-definite symmetric matrices. 
It has been shon-n in [7 ]  that  under thcsc circunlstancea 
the set S(xk,wJ:. . . !'trs-l,z!Jz+l,. * . ? L I ~ - ~ < ~ ; )  is the ellipsoid 

s - 1 

i = O  i = l  

where the .n-vector f,, the n X n matrix Zkll;, and  the  real 
numbrr 6,' are generated recursively by 

Bi+l = Aifi + Biui + Si+lli+lCi+l'Ri+l-' 

. ( T i + l  - Ci+lA iPi - Ci+lBiUj) (29) 

Zi : i  = [Z2Ii-1-' + C'ifRi-lCi]-l (30) 

si+1:i - - AiZiiAi '  +- GiQiGi' (31) 

&,+I' = 6i? + ( Z i + l  - C , + l d i f i  - CiTIBiUj) ' (Ci+l~ir l ! t  

.CljT1' + Ri+l)-'(z+l - Ci+ldiPi  - C,1BiZl,) (32) 

with  initial  conditions .To = 0: = P ,  602 = 0. Since the 
matrix Z,,, is independent of the  output z and precom- 
putable from the problem data, t,he ellipsoid (2s) is  com- 
pletely specified by the n-vector .?, and  the  scalar AlL2. If 
the function F has  the form (21)? combination of this 
result  with  Corollary 1 immediately yields the following 
result. 

Corollary 4: For  the  system (25) and (26): the  constraint 
set Q specified by (27). and t.he function F given b -  ( Z l ) ,  
the function &: RR('+m' -+ R" X [0, 11 defined by 

s,(l) = {T,, 6 , ~ )  

is sufficiently informative, where .TIL and  are given above. 
Thus, for the problem involving a linear  system, linear 

measurements, an energy constraint. on the  uncertain 
quantities!  and a cost funct,ional involving a function 
F of the form @I), the  estimator  part of the  optimal 
controller can be completely a.nd  efficiently characterized. 
Furthermore,  the conlputational requirements of the 
dynamic  programming  algorithm  leading to  the calcula- 
tion of  thc. optimal controller are  greatly reduced. This is 
duc t o  thc  fact  that  the algorithm can be redefined over 
thc spncc of thc sufficicnt information as  follow: 

. ZNI.V-1-l (z - A,, & L I )  5 1 - 6.\Ll?) (34) 

RJ:(~,,6,') = i d  suq {RJ:+1(~k+1,6,+12) + gk(uk)), 
Ul: Zk- IF&+ I 

k = 0,1,. . . , N  - 2 (35) 

where .F,+l, 6,+1' are given in  terms of &:, &?, u,, and z!:+~ 

by the  estimator  equations (29)-(32) and j,+, is the 
ellipsoid 

f 2,+1 = ,zJ:+ll (%+1 - C,+IAJ& - C k + l ~ , U , ) '  

. (CkTIL+l~rC1;+l' + R~+I)- '  

. ( z ~ + I  - C,+I-~,?, - C,+~B,UJ 5 1 - 6 k 2 ) .  (36) 

The  optimal controller is of the form 

21, = p/:*(2,,6,'), k = 0,1;-.,N - 1 

where .7k,6kz are generated recursively by the  estimator of 
(29)-(32). The function ps* is computed  from the  dynamic 
programming  algorithm of (33)-(36). Ths algorithm is 
carried over a space of dimension (n + 1)-a substantial 
inlprovement over the case where the  optimal control 
law is calculated as a function of sn. b r  means of the al- 
gorithm of Proposition l. 

A special case of the function (21) occurs in  the  target 
set reachability  problem in which 

s - 1 
F(s1,. ' . ,S.\~>UO!. . . ?U.?+1) = 6(x.&) + 6(2LiJ U i )  

1 = o  

where 6(ylI') denotes the indicator  function of a set Y 
given b>- (7). This problem has been examined in  det,ail  in 

As another  representative example of the limited class 
of problems n-here the use of a suitable sufficiently in- 
formative function  results in subst.antia1 reduction of 
computat.iona1 and  storage  requirements? consider the 
following scalar system: 

141. 

xhfl = ax, + ZL, + zr,, li = 0,1,*. . , N  - 1 

where a 2 0, with  measurement equation 

z, = x, + VI;! 
and where the  initial  state  and t.he input  and measurement 
noises are knon-n to belong to  the following intervals: 

so E [so'. so?], K, E [p ' ,  p'l. L'h. E [r' ,  T 2 1 .  

~ ~ ~ - - 1 ( ~ , ~ - - 1 ! 6 . ~ - l ? )  = inf sup $(.r + B.\--l~t~.%-V-l) It. is required t o  find a control law p,? k = 0,l; . . , N  - 1 
\ ~ i t h  p,(<,J E I -  c R ,  that minimizes a cost functional K-: Ze-\.\-l.\Ll 

+ g.\--l(~.,--~) \ (33) involving a function F of the form 
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A-- 1 

F(z1, * . . ,2-\-,uo,. * . ,ux-d = f(zd + c g ( u 4  
i = O  

where f, g are given  real  valued  funct,iom. 
From  Corollary 3 we have  that,  the  function 

S,({,) = S(Xkl{,), k = O , l , . .  . ,N - 1 

is sufficient.ly informative  where S(Z~I{~:) is the set. of all 
states zp  consistent with the information  vector la = 

(z~,z?,  . . . ,zk,u0,u1,. . . ,ux--I). The  set S(q.\{J is a closed 
interval for this problem and  can  be  computed  by  using 
the recursive set algorit.hm given  in [ 5 ] .  R e  have 

S ( Z , l L )  = b k ’ ,  Sk21 

where s!:’, sk2 are  generated  by  the following estimator 
equations 

sk+ll = m a  { asI:’ + uk + p1, zk+’ - dz) (37) 

sh+12 = min (asI:2 + uk + p2, zk+l - d l )  (35) 

with  initial conditions the  endpoints so1, .so2 of the  int,erval 
of uncert,ainty for the  initial  state. 

The  dynanic  programming  algorithm  in  terms of the 
sufficiently informative  function  takes  the  form of 

SN-I(sA7-11,sh--12) = inf sup { S ( r n N - l  + ux-1 
ffA-lfC E.wE[p1,pZl  

z~-lE[BY-l~,s~~-1~1 

+ w?-1) + g(uN-1)  1 (39) 

RI:-1(sk-11,sk-.12) = inf *. sup {Rk [max { ask-ll 
U k - 1 ~ ~  zk:‘zlr(Sk-i’,Sk_lz,Ulr_l) 

+ ~ . ~ - - 1  + pl,zk - CP], min {askPl2 + 
+ p3,zx. - d ’ ) ]  -I- g(up-1) f ,  k = 1,2; . ., N (40) 

n-here t,he interval 2k(~k-11,~k-12,~k-l) is given  by 

zI:(sk-l’,sp-l~,uk--I) = a [sI:-ll,s+l2] + uX.4 

+ [p1,p21 + [r1,1’21. 

Thus for the  above problem the opt,imal cont.roller is  of 
the form 

u k  = pI:*(skl,sk*), k = 0,1,-. - , N  - 1 

where skl,skz are  generated  by  the  estimator of (37) and 
(35). The funct,ion pg*, k = 0,1,. . . , N  - 1, is computed 
from  the  dynamic  programming  algorithm (39), (40). 
This  algorithm is carried  over  a  twxlimensional  half- 
space (recall that. st1 < sk2) .  I t  can be seen that.  the 
redudon  in computat.iona1 and  storage  requirements is 
substa,ntial  over  the case where t,he optimal  controller 
would be  comput,ed in the  form p P ( l k )  by  means of the 
algorithm of Proposition 1, since t,he dimension of lk is 
2k for this problem. 

VI. CONCLUSIOXS 
In  this  paper we considered  some genera.1 aspects of a 

minimax  feedback  control  problem n7ith imperfect  st,ate 
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information. A dynamic  programming  algorithm  was 
given for  the solution of this problem,  which in  general 
must  be  implemented  over  the  space of the informa.t,ion 
available  to t,he controller. The notion of a sufficiently 
informat,ive funct,ion, which parallels the not.ion of a 
sufFicient statistic of st.ochastic cont,rol, \ n e  introduced 
with  a twofold purpose. First,  to  provide  an  alternative 
concept.ua1 framework for viening  the problem and  to 
demonstrate  the  separation of the  optimal  controller 
into  an est,imator and  an  actuat.or. Second! to  demonstrate 
t.he possibility of redefining a.nd implementing t,he dy- 
namic  programming  algorithm so t,hat it. is ca.rried over t.he 
spa.ce of the sufficient information. For a  limited class of 
problems it was shown that,  this  alternate implement.a.tion 
is profitable. The results  in  this  paper should not come as a. 
surprise to anyone  familiar  with  dynamic  programming, 
sequent.ia1 games, and st,ochast,ic control since they 
represent  a  formaIization and extension of welI-known 
c0ncept.s d h i n  t.he framework of the minimax  problem. 
It is to  be  noted that, similar to t,he stochastic contxol 
case, the  notion of a sufficient<ly informative  function  is 
useful for only  a  limited class of problems;  however, this 
class does not include any special case n-ith a. solut,ion as 
elegant, as  the case of a  linear syst,em with  a  quadrat.ic 
cost in  stochastic  control. 
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Optimal Stochastic  Linear  Systems with  Exponential 
Performance Criteria and Their Relation to 

Deterministic Differential Games 
DAVID H. JACOBSON 

Absfracf-Two stochastic optimal control problems are solved 
whose  performance  criteria are  the expected values of exponential 
functions of quadratic  forms. The optimal  controller is  linear in both 
cases  but  depends upon the covariance matrix of the additive  process 
noise so that  the  certainty equivalence principle does  not hold. The 
controllers are shown to be equivalent to those obtained by solving a 
cooperative and a noncooperative quadratic (dserential)  game,  and 
this  leads to some  interesting  interpretations  and observations. 

Finally, some stability  properties of the asymptotic  controllers 
are discussed. 

T 
I. IXTRODFCTION 

HE SO-CALLED linear-quadratic-Gaussian (LQG) 
problem' of optimal  stochastic  control [l] pozL  <$esse8 a 

number of interesting  features.  First,  the opt.ima1 feedback 
controller is a  linear  (time-varying)  function of the  state 
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This 1s a problem with linear  dynamics  disturbed by additive 

Gausian noise, together m-ith a  performance  criterion which  is the 
expected value of a positive-semidefinite quadratic form. 

variables. Second, this 1inea.r controller is identical to 
that,  xhich is obtained  by neglecting the addit.ive  Gaussian 
noise and solving the resulta.nt  deterministic  linear-quad- 
ratic problem  (LQP) * (certainty  equivalence  principle). 
Thus  the controller for the stochastic  system is inde- 
pendent of the  statistics of the additive noise. This is 
appealing for small noise intensity.  but for  large noise 
(large Covariance) one has the intuitive feeling that per- 
haps  a  different  controller would be more appropriate. 

In  this  paper 11-e consider optimal  control of linear sys- 
tems  dist.urbed  by  additive  Gaussian noise, \Those asso- 
ciated  performance  criteria are t.he expected values of 
exponential  functions of nega.t.ive-semidefinite and positive- 
semidefinite quadratic  forms. We shall  refer to  the former 
case as the  LE-G problem, and  the  latter  as  the  LE+G 
problem,  and t.0 their  deterministic  counberparts  as LE-P 
and  LE-P, respectively. In  the deterministic cases LE'P, 
the solutions are identica.1 to that for the  LQP  (the  natural 
logarithm of t.he exponential  performance  criteria yields 
quadratic  forms).  However, n-hen noise is present. LE*G 
problems, the optimal  controllers are different from that of 
the LQG problem. In particular,  though a5 in  the  cme of 
the LQG problem.  these are linea? functions of the  state 

This is the same as  the LQG problem, hut with noise set. to zero. 


