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Sufficiently Informative Functions and the Minimax
Feedback Control of Uncertain Dynamic Systems

DIMITRI P. BERTSEKAS axp IAN B. RHODES

Abstract—The problem of optimal feedback control of uncertain
discrete-time dynamic systems is considered where the uncertain
quantities do not have a stochastic description but instead are
known to belong to given sets. The problem is converted to a sequen-
tial minimax problem and dynamic programming is suggested as a
general method for its solution. The notion of a sufficiently informa-
tive function, which parallels the notion of a sufficient statistic
of stochastic optimal control, is introduced, and conditions under
which the optimal controller decomposes into an estimator and an
actuator are identified. A limited class of problems for which this
decomposition simplifies the computation and implementation of
the optimal controller is delineated.

I. INTRODUCTION

HI1S PAPER is concerned with the optimal feedback
control of a discrete-time dynamic system in the
presence of uncertainty. The traditional treatment
of this problem has been to assign probability distributions
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to the uncertain quantities and to formulate the optimiza-
tion problem as one of minimizing the expected value of a
suitable cost functional. In this paper, a nonprobabilistic
deseription of the uncertainty is adopted, where, instead
of being modeled as random vectors with given probability
distributions, the uncertainties are considered to be
unknown except for the fact that they belong to given
subsets of appropriate vector spaces. The optimization
problem is then cast as one of finding the feedback con-
troller within a prescribed admissible class that minimizes
the maximum value (over all possible values of the
uncertain quantities) of a suitable cost functional. This
worst case approach to the optimal control of uncertain
dynamic systems is applicable to problems where a set-
membership description of the uncertain quantities is
more natural or more readily available than a probabilistic
one, or when specified tolerances must be met with
certainty.

- The modeling of uncertainties as quantities that are
unknown except that they belong to prescribed sets and
the adoption of a worst case viewpoint in the context of
the problem of feedback control of a dynamic system was
first considered by Witsenhausen [1], [2] and received
further attention in [4]-[10]. In this paper a general
minimax feedback control problem which involves a
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discrete-time dynamic system defined on a Euelidean
space is formulated in Section 11, and, in Section III, a
dynamic programming algorithm is given for its solution.
This algorithm is similar to one given earlier by Witsen-
hausen [1], but is somewhat more detailed and explicit
than and somewhat different in its form from that in
[1], although the same basic ideas are involved. Sub-
sequently, in Section IV, an effort is made to identify
conditions under which this algorithm can be simplified,
and to deduce structural properties of the optimal con-
troller. This is accomplished by introducing the notion of
a sufficiently informative function, in analogy with the
familiar notion of a sufficient statistic of stochastic
optimal control. It is proved in Section IV that the
decomposition of the optimal controller into an estimator
and an actuator is possible. Finally, in Section V some
special cases for which this decomposition is profitable
are delineated.

1I. ProBLEM FORMULATION
Problem 1: Given is the discrete-time dynamic system
Tpr = [l ue, ), k=01,--N—-1 (1)

where z, € R*, k = 0,1,---,N, is the state vector; u, €
R™ k =0,1,---,N — 1, is the control vector; w; € R,
E = 0]1,--- N — 1, is the input disturbance vector;
and f.: B* X R® X R"— K" is a known function for each
k=01, --N—1

Available to the controller are measurements of the
form

2 = }Zk(xk:l"r'.‘)) k= 1)2,1' . ';‘N- —1 (2)

where 2, € R, k= 1,2,---,N — 1, is the measurement
veetor; v, € R?, k= 1,2,--- N — 1, is the measurement
noise vector; and h;: R® X R? — R°is a known function
foreachkt =0,1,--- N — L.

The uncertain quantities lumped in a vector ¢ &
RrA+NTHE -1

)’ 3)

are known to belong to a given subset @ of R*+¥7+(¥ =12,
Attention is restricted to control laws of the form

s REo > B L =01, N —1  (4)

g = (xo'wo’ ey, - - w00 0,

taking values

[ -
= ﬂk(‘lyz% L2 Uy UL, 0 :uk—1)7

E=01--N—1 ()

w

Because the control at time 0 depends only on a prior:
data, po may be interpreted as a constant vector.
It is required to find (if it exists) the control law in this
class for which the cost functional
J (o <+ un—) = Sl}g F 21,0, -+ T t0p1(21,%0),
qc
Tt 7#.'\’—1(21: et Ju'N—l)] (6)

is minimized subject to the system equation constraint,
where F': R¥("+™) — (— o + o ] is a given function.
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It should be noted that this problem formulation
implicitly includes the possible presence of state and control
constraints, since we allow the function F to take the
value 4 o. We need simply specify that F take the
value 4+ @ whenever some constraint is violated. Thus,
for example, state and control constraints of the form
e Xroruy € Uiy, where Xpand Uy, k= 1,2,--- N,
are given sets, may be accounted for by additively in-
cluding in # the function

x
;1{5(-’/51[)(1') + 8[psalz, - - ','u'i—Q)ILTi—l]}

where (yY) denotes the indicator function of a set Y,
vey

viz.,
o,
”‘{m, yq Y. @

In the next section we present a dynamic programming
algorithm for the solution of Problem 1. Using this
algorithm we will then be able to reach some conclusions
concerning the structure of the optimal control law.

oy

III. Sorution BY DynNamMic PROGRAMMING

Consider the optimal value of the cost function (6)

J = inf sup F(x1;$27' © AU, Uyttt ,'u'N—l)a
2k 2@

k=01---N—1 (8

The purpose of the dynamic programming algorithm is to
convert the minimization problem indicated in the above
equation to a sequence of simpler minimization problems
by taking advantage of the sequential evolution of the
system state and the information available to the controller
according to (1) and (2). However, matters are somewhat
complicated in the above problem by the presence of
uncertainty, since in the process of generating the state
and measurement vectors the disturbances are inter-
mediately selected by, say, Nature with the objective of
maximizing the value of the cost. For this reason the
development of the dynamic programming algorithm
requires a somewhat elaborate construction.

In order to simplify the notation we will make use of
the vector { € R*¢+™ | = 1,2,--- N — 1, which consists
of all the information available to the controller at time
k, viz.,

& = (21’,22,, T ';zkI;uUl;ull) T )u'k—l/),- (9)
With this notation we write for the control law

(10)

pr(2r,2e, U0 UL, k) = pe($r) = Upe

Now consider the following definitions. Let P(R®) be
the power set (the set of all subsets) of R and consider
the following function:

Z: RE—vstim s P(Rs) (1)

which assigns to the vectors {p_juz—1 the set 2:(Ce1,
u;_1) © R° of all measurement vectors z; given by (2)
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which are consistent with the constraint set @, the previous
measurement vectors zj,2s,---,%.1q, and the previous
control vectors o, - - uz—. In other words, z;, € Z,
(£x—1,4z—) if and only if there exists a vector ¢ = (xz¢/,
wo'w’, o wy v, owa’)’ € @ such that the
vectors zo,Wo,* + +,Wr—1,01,* * * V21, * * &, U0," * * Uz tOgether
satisfy the system and measurement equations (1) and (2)
for times 0,1,- - - k.
We also define the function

Q: RW—Ds+Nm _y P(Rn+NT+HE-17) (12)

which assigns to the vectors {y_ity-1 the set Q(;N_l,
Uy—y) C REHNTHW D2 of g]] vectors ¢ € @ [recall (3)]
which are consistent with the measurements 2,2y - -,
zy—1 and the control vectors we,u,- - - ,ux—1. In other words
a vector ¢ belongs to the set Q(fy_1,uy_1) if and only if
g € @ and the vectors zo,wo, * * , Wy—1,01," * ", Ux—1,21," * *
Zy—1,U0," * * ,Uy—1 together satisfy the system and measure-
ment equations (1) and (2) for all k.

It should be noted that for some veectors {;_; it is
possible that the set Zi({i_1,us—1) or the set Q(Cw—_1,un—1)
is empty for all w,_; € E™, implying that the vector {;_; is
inconsistent with the constraint set @ and the system
and measurement equations. Notice also that whether
the set Z(¢i_1,4z—1) is empty or nonempty depends on the
vector {,; alone and is entirely independent of wu, ..
From (2) the consistency of a vector {; is equivalent
to the existence of vectors x;,v, consistent with {;; and the
constraint ¢ € @ (for all u,_;) and therefore is equivalent
to the existence of a vector 2z, & Zi({i_1,uz—1). In sub-
sequent equations in which empty sets appear we will
adopt the convention that the supremum of the empty
set is —w(sup ¢ = — =). Another possible approach
would be to restrict the domain of definition of the func-
tions Z:,Q to include only those vectors ¢;_; for which the
sets Zu(Cr1,te1), Q(En—1,uv—1) are nonempty. Since in
any actual operation of the system these sets will always
be nonempty, this restriction results in no loss of generality.

We are now ready to state and prove the following
dynamic programming algorithm for the solution of
Problem 1.

Proposition 1: Assume that for the functions H; defined
below we have — o < H(¢:), k = 1,2,---,N — 2, for all
vectors ¢, such that the set Z;,1({1%:) is nonempty (for
all u, € B™), and — o < Hy 3({x—1) for all veetors ¢y
such that the set Q(¢{y_1,unx—1) is nonempty. Then the
optimal value J of the cost functional (6) is given by

j = inf E1(u0) (13)
where the function E;: R™® - (— o, 4+ « | is given by the
last step of the recursive algorithm

B¢ ya1ytn)

= sup F(xbx?: Ccy TanUey Uy, :uN—l) (14)

Q€O (w1 un—1)
H(6:) = inf Eppa($r,t),
ukg

E=12---N—1 (15)
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Bon(Coyws) = sup Hi1 ($r Uy 2is1)

2k 1E Lk 1(SksUE)

= sup H wr1(Cr), k=

2 1€ 2 1 ki)

0,1,--- N — 2. (16)

The above proposition will not be proved here. Its
proof involves standard but lengthy dynamic programmiing
arguments and can be found in [4].

The dynamic programming algorithm of Proposition 1
can be profitably interpreted in terms of game theory,
and in particular in terms of multistage games of perfect
information [13]. The optimal value of the cost J can
be viewed as the upper value (br min-max) of a game
played by two opponents, the Controller selecting the
control law (uo,u1,’  *,un—1), and Nature selecting the
uncertain quantities ¢ from the set @. The information,
based on which the decision of the Controller is made, is
fixed by the form of the functions u,, i.e., by the informa-
tion vectors {;. Since, however, only the ipper value
of the game is of interest here, a variety of equivalent
methods of selections of the vector ¢ and corresponding
information patterns can be assigned to Nature. One such
informstion pattern and method for selection of the com-
ponents of the wvector ¢ corresponds to the following
sequence of events: 1) Controller selects u; 2) Nature
selects z; from the set Zi(uo); 3) Controller selects ui;
4) Nature selects z, from the set Za(z1,u0,%), - -, 2N — 1)
Controller selects wuy—; 2N) Nature selects all the
uncertain quantities ¢ = (zo’,wo’, w1, « - Wa_1' 01 302"y * -,
vw—’)’ from the set Q({ny_1uv—1). Each selection by
either Controller or Nature is made with full knowledge
of the outcomes of previous selections.

This sequence of events is fictitious; however, it ac-
curately reflects the sequence of everits as viewed by the
Controller whose only information concerning the course
of the game at time k is the information {;, i.e., all measure-
ments and all control selections up to that time.

A moment’s reflection shows that in fact the dynamic
programming algorithm determines the (pure) value J
of the game of perfect information described above.
This value is the same as the optimal cost J of the Problem
1.

Finding the optimal cost J and the optimal control
law from the dynamic programming algorithm of Prop-
osition 1 is in general a very difficult task. Part of the
difficulty stems from the fact that, loosely speaking, the
objective of the Controller is dual in nature: first, to
actuate the system in a favorable fashion, and, second, to
try to improve the quality of his estimate of the un-
certainty in the system. This is a familiar situation from
stochastic optimal control, known as dual control problem
[11], the formidable complexities of which have been
widely discussed in the literature. In stochastic optimal
control, insight into the structure of the optimal control-
ler, and its dual function, ecan be obtained through the
notion of a sufficient statistic [12]-[14]. Similar insight
will be obtained for the minimax controller of this chapter
by introducing in the next section the analogous concept
of a sufficiently informative function.
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IV. SurriciExTLY INFORMATIVE FUNCTIONS

Let us consider the following definition.

Definition 1: A function §;: R¥¢+™ — 3. where I,
Is some space, will be called suficiently informative with
respect to Problem 1 if there exists a function E,ii:
i X R" > (—w,+o]forallk = 0,1,--- N — 1 such
that

Eial8e(f) ] = Erga(brywe) (17)

where E.y; is the function defined in (14) and (16) for
k=01, .- N — 1. The value of a sufficiently informative
function at any point will be called sufficient information.

The clear consequence of the above definition is that,
if 8, is a sufficiently informative function, then (15) may
be rewritten as

ﬁl:(sk(fk)) = H.() = in.f Ez:+l(5k(fk);uk)§

so that we riow seek the infimum over w, of a function of
u; and the sufficient information §,(¢,). If this infimunr is
attained for all ¢, then there exists an optimal control
law g, that can also be written as

2:($n) = B 8($e)

where 7;* is a suitable function which can be determined
by minimizing the function £,.; of (17) with respect to
ur. As a result the control at any time need only depend
on the sufficient information 8;(¢x). If this sufficient
information can be more easily generated or stored than
the information vector ¢, and, furthermore, if it is easier
to minimize the function E,,; over u; rather than the
function F,,,, then it is advantageous to compute and
implement the control law in the form of (18).
Factorizations of the optimal control law into the
composition of two functions, as in (18), have been widely
considered in stochastic optimal control theory, and are
commonly referred to as separation theorems whenever
the function §, can be interpreted as an estimator. In
such problems the function 8; or its valueis usually called a
sufficient statistic. Particularly simple sufficient statisties
have been found for problems involving a linear system,
linear measurements, and Gaussian white input and
measurement noises [12]. In other problems sufficient
statisties of interest take the form of conditional prob-
ability distributions econditioned on the information
available [12]. Such sufficient statistics imply the factor-
ization of the optimal control law into an estimator §;
computing the conditional probability distribution of some
quantities, which may differ depending on the problem
given, and an actuator g, * applving a control input to the
system. It has been demonstrated [3]-[5] that, in esti-
mation problems which involve a set-membership de-
scription of the uncertainty, the set of possible states
consistent with the measurements received plays a role
analogous to that of conditional probability distributions
in stochastic estimation problems. Thus it should not
come as a surprise that for Problem 1 we shall be able to
derive sufficiently informative functions that involve

(18)
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sets of possible system states (or other quantities) con-
sistent with the measurements received. In what follows
we obtain such sufficiently informative functions and
further discuss the well-behaved case of a linear system
and an energy constraint on the uncertain quantities for
which, as was demonstrated in [4] and [7], the set of
possible states can be characterized by a finite set of
numbers. We first introduce the following notation.
We denote for all & by

Si(1, Ty Why * * W1 Vig1, ,UN—l!fk)

the subset of R¥?+W—A7+(N—k—1)? which consists of all

vectors (T, - * T W * * *,Wh—1,0k41,* * *,¥y—1) that are con-
sistent with the measurements z;,2,---,2, the control
vectors ue,us,: * *,4—1, the system and measurement

equations (1) and (2) and the constraint ¢ € Q. Similarly,
we denote by Si(-,-,-- -,-[;k) the respective sets of all
possible quantities within the parentheses that are con-
sistent with the information vector ¢, the system and
measurement equations, and the constraint ¢ € Q.

With the above notation we have the following prop-
osition.

Proposition 2: A sufficiently informative function with
respect to Problem 1 is the function

Sk: Rk(x+m) — P(Rkn+(1\'—k)r+(x\’—k—~l)p) X ka
given for all {; and & by
Sk(g‘k) = [‘Sk(xl) Wyt W,V

(19)

Uy_1l§'k),uo,u1, cr U ]

Again, the proof of the above proposition is straight-
forward but tedious, and will not be presented here. It
can be found in [4].

Proposition 2 shows that sufficient information in the
case of Problem 1 is provided at each time by the set of
past inputs together with the set of past and present
states and future uncertainties that are consistent with the
observed output sequence up to that time. In addition,
Proposition 2 clearly illustrates the dual function of the
optimal controller. By (18) the optimal control law is of
the form

Fr = B Sk (20)

i.e., it is the composition of the sufficiently informative
function 8, and the function z,*. The function §; may be
interpreted as an estimator, and the function g.* as an
actuator. Alternatively, the optimal controller can be
viewed as being composed of two cascaded parts. The
first part produces an estimate set and the second part
accepts as input this estimate set and produces a control
vector. This control vector is stored and recalled in the
future by the controller.

By adding additional structure to Problem 1, various
important simplifications can be achieved in the suffi-
ciently informative function (19). The additional structure
takes the form of further assumptions on the form of the
set @ in which the uncertainties lie, and the cost functional
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F. The simplifications that these additional assumptions
induce in the sufficiently informative function are reduc-
tions in the number of entities whose consistency with the
past output measurements needs to be considered. For
example, under certain conditions there is no need to
include the past states zj,---,z,1 in the set of entities
whose consistency with the output data is part of the
sufficient information (19). Under other conditions there
is no need to retain the future uncertainties in S(-|¢;).
In other cases, the controller need not recall past control
inputs. Because the verification of each of these simplifica-
tions requires only a straightforward specialization of
the proof of Proposition 2, we state them as a sequence of
Corollaries to Proposition 2.
Corollary 1: If the cost functional F in (6) has the form

N-1

F(a:l:' C TNy U, ':uN—l) = f(xN) + ;0 gi(ui)J (21)

then the function

Su{e) = Se(Tr, W, Wit - -+ Wy, Upp1,Ves2, = ;UN—llfk) (22)

is sufficiently informative.

Thus when F has the form (21) the past states @y, - -,
;-1 and controls ue,- - -,uz—1 no longer appear in the
sufficiently informative function. The dependence of the
sufficient information on the future uncertainties can be
removed if the constraint set @ for the uncertain quantities
has a property implying that the set of values that any
particular uncertain quantity can take is independent of
the values of the other uncertain quantities.

Corollary 2: If the set @ has the form

Q= {Io,wo,u‘l,' © W1, -,vN_llxo € X,
w, Ew;, 1=021,--- N —1,

Vg E Tjk; k= 172y' . 'JN - 1} (23)

where Xo, W, V, are given subsets of the corresponding
Euclidean spaces, then the function §; given for all k by

Sk(g-k) = [Sk(zlyx% e ;xklg-l:)) Uo, U, * 7uN—1]

is sufficiently informative.

The case where the constraint @ is of the form (23)
should be considered analogous to the case of uncorrelated
white input and measurement noises in the corresponding
stochastic problem.

The natural combination of Corollaries 1 and 2 ylelds
the following.

Corollary 8: If F has the form (21) and @ has the form
(23), then the function

Sk(fk) = Sk(xklg-k)

i sufficiently informative.

In the stochastic problem analogous to Problem 1,
important simplifications in the sufficient statistic result
when the function F in (6) is additively separable [12],
i.e., when
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N-1
F(th?) © I Uo UL, ;uN—l) = Z% gi(xi:ui) (24)
i=

where ¢,(-,-) are given real valued functions. In the
minimax framework of interest here, simplification of the
sufficiently informative function can be achieved only
at the expense of adjoining to the system equation (1) an
additional state z,*+? defined by

T = 57D 4 g (u), 2o+ = 0

so that the function F given by (24) becomes simply
5™+ and the simplification of the sufficient information
afforded by Corollary 1 is applicable to the augmented
system. The sufficiently informative function is reduced to

Sk(fk) = Sk(:;}k;wz;;' C WAVt ',Ulv—llf'k)

where &, £ (2;,2;"tY) is the augmented state. If, in
addition, @ has the form of (23), we have

57:(3'1:) = Sk(:iklfk)-

The difference between the simplifications available for
additively separable cost functionals in the stochastic
setting and those available under the minimax formulation
may be attributed to the fact that, whereas the expectation
operation is linear and distributes over addition, the
maximization operation is not.

Equation (20) demonstrates the structure of the
optimal control law, provides an alternative conceptual
framework for considering Problem 1, and can give insight
concerning the complexity of the optimal control law.
Furthermore, it can form the basis for the development
and the analysis of suboptimal control schemes [15].
However, it appears that only for a limited class of
problems is it profitable to implement the optimal control
law in the form given by (20) since the estimator §; is
infinite dimensional in most cases. Some typical examples
of this limited class of problems are discussed in the next
section.

V. Soue SpeciaL CasEes

It is advantageous to use a specific sufficiently in-
formative function 8, only if the sufficient information
8(¢:) has smaller dimension than {;, i.e., § maps into a
finite-dimensional space with dimension less than k(s +
m). Under these circumstances by using 8, the solution of
the problem by dynamic programming will be im-
plemented over a space of smaller dimension. Further-
more, the computation of the optimal control law g*
$:(¢)), E =01,---,N — 1, must be at least as easy as the
computation of the optimal control law z(,). Such
situations occur in problems involving finite-state systems,
one-dimensional problems with terminal cost where the
set of possible states is an interval, and, of course,
the case of perfect state information where system
state is measured exactly and constitutes a sufficient
information. Another situation in which the sufficient
information has smaller dimension than {. and leads
to simplified computations is the case of a linear system
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with linear measurements and an energy constraint on the
uncertain quantities. This case bears great similarity to
the linear quadratic Gaussian ecase of stochastie control.
We have

Tpy1 = ‘41::’-‘17: + Bkuk + Gl:u‘l:,u k= 0_11:‘ ’ .’Af —1 (25)
Zp = C}:xk + U1y k= 172," ) ')‘N -1 (26)

N—1 N—1
2 P~z + Z wiQ; w, + Z v/R, <1 (27)

i=0 i=1

where P, Q,, R; are positive-definite symmetric matrices.
It has been shown in [7] that under these circumstances
the set S(xp,wy, - - Way—1,0e41, * Uv—l) 1 the ellipsoid

{xk;wky' TN, Vet ‘:UN—II(Q«' = T) Ty — T
N-—1 N—-1
+ ZA w,/'Q; e, + Z v/Rye, <1 — 6&-2} (28)
5T

i=k41

where the n-vector &, the n X n matrix Z;,, and the real
number §2 are generated recursively by

=~ — 4= t+ -
Zia = A3+ By + Ei+l|i+lc Y M

(2 — Coud @ — CepnBauy)  (29)
Zio = [Zhet + C/R,Ci! (30)
ZSh = 424+ GCRG/ (31)

b2 = 6, + (2i+1 - Ci+14'1i-'?i -
Cra’ + Ry e — (32)

with initial conditions ¥ = 0, Z¢;9 = P, 80> = 0. Since the
matrix Z;,; is independent of the output z and precom-
putable from the problem data, the ellipsoid (28) is com-
pletely specified by the n-vector ¥, and the scalar §,2. If
the function F has the form (21), combination of this
result with Corollary 1 immediately yields the following
result.

Corollary 4: For the system (23) and (26), the constraint
sct @ specified by (27), and the function # given by (21),
the function §,: R*¥¢*™ — R" X [0, 1] defined by

5k(§') = {-Tku 51:2}

is sufficiently informative, where %, and §,® are given above.

Thus, for the problem involving a linear system, linear
measurements, an energy constraint on the uncertain
quantities, and a cost functional involving a function
F of the form (21), the estimator part of the optimal
controller can be completely and efficiently characterized.
Furthermore, the computational requirements of the
dynamic programming algorithm leading to the calcula-
tion of the optimal controller are greatly reduced. This is
due to the fact that the algorithm can be redefined over
the space of the sufficient information as follows:

{f (xr + Ba_jux_y)

CinaB ) (CinZiy
Cind 3, — CiaB iU

a _.\-'-1(-{"\'-1:54\'—12) = inf

uN_:

sup
FreA G A

+ gxa(ux_) } (33)
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where X y_; is the ellipsoid

XN].-\‘—I = {1‘] (x — Axadx)’

Eyy—1 @~ Ay Zy) <1 — 54-\'—12} (34)
E;:(i’k,»ék"’) = inf sup {ﬁl:+1(£k+1:6k+12) + gk(uk)}r
ut 2k 1€Zgs
E=201-.-N—2 (35

where 7,41, §41% are given in terms of %, &2, u, and 2.
by the estimator equations (29)-(32) and Z,.; is the
ellipsoid

Zit1 = {21 et — Condidr — CrnaBowy)’
(CrnZpsyCront” + Bpa) ™!

Crnd 3y — Ck+1Bkuk) <1l- 51:2}- (36)
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The optimal controller is of the form

E=401--N—-1

U = B (8,67,

where #,,6;2 are generated recursively by the estimator of
(29)-(32). The function g, * is computed from the dynamic
programming algorithm of (33)-(36). This algorithm is
carried over a space of dimension (n + 1)—a substantial
improvement over the case where the optimal control
law is calculated as a function of {; by means of the al-
gorithm of Proposition 1.

A special case of the function (21) occurs in the target
set reachability problem in which

N-1
F(l"ly' s, U0t 7u3\'~1) = a(x_vliX_;\r) + 2 6(u1’| LT,')
i=0

where B(yIY) denotes the indicator function of a set ¥
given by (7). This problem has been examined in detail in
[4].

As another representative example of the limited class
of problems where the use of a suitable sufficiently in-
formative function results in substantial reduction of
computational and storage requirements, consider the
following scalar system:

k=01, N -1

Tpp1 = ay + we + Uy,
where a > 0, with medsurement equation
% =2+ v,

and where the initial state and the input and measurement
noises are known to belong to the following intervals:

2o € [sol, 807, we € [pt, P2l v & [rt, r2].

It is required to find a control law ps, £ = 0,1,--- N — 1
with u,(5:) € U © R, that minimizes a cost functional
involving a function F of the form
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N-1

F(xl) s XA Uoyt )u]\'—l) = f(xN) + EO g(ui)

where f, ¢ are given real valued functions.
From Corollary 3 we have that the function

Sk(?k) = S(xkk-k)) k= 0117' ’ ')N —1

is sufficiently informative where S(xklg‘;_.) is the set of all
states z; consistent with the information veetor § =
(21,22, * * 25, 0,2, " * *yUg—1). The set S(:ck[g.) is a closed
interval for this problem and can be computed by using
the recursive set algorithm given in [5]. We have

‘S(xklfk) = [sx!, 8:%]

where s,!, s are generated by the following estimator
equations:

37
(38)

Spp1! = max {as! + w + pY 2 — d2)
Sp1? = min {aSkg + we + P2 2 — dl}

with initial conditions the endpoints so!, 8% of the interval
of uncertainty for the initial state.

The dynamic programming algorithm in terms of the
sufficiently informative function takes the form of
EN—I(SN—II;SN—12) = inf {f (aJJN—1 + Un_1

wy1EU

sup

uy_1€(p,p?]
1€ [sv-al,s812]

+ wya) + ¢ (uN—l)} (39)

H, (531,847 = inf sup

R { By [max {ask_ll
U aCU ZREZE(Sk-1,5k12,%k 1)

+ we + pLz — dg}, min {ask_f + U
+ p%e — d}] + gwn)}, k=12, N (40)
where the interval Z;(sy—1},ss—1%,%x_1) is given by
Zi(sea s s) = alsemt,se?] + wes
+ et + )

Thus for the above problem the optimal controller is of
the form

Uy = Iik*(sklask2)7 k = 0)17' . '7]\,— — 1

where s;!,8;2 are generated by the estimator of (37) and
(38). The function @:* & = 0,1,---,N — 1, is computed
from the dynamic programming algorithm (39), (40).
This algorithm is carried over a two-dimensional hali-
space (recall that s;! < §2). It can be seen that the
reduction in computational and storage requirements is
substantial over the case where the optimal controller
would be computed in the form p:(¢;) by means of the
algorithm of Proposition 1, since the dimension of {; is
2k for this problem,

VI. CoNCLUSIONS

In this paper we considered some gencral aspects of a

minimax feedback control problem with imperfect state:
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information. A dynamic programming algorithm was
given for the solution of this problem, which in general
must be implemented over the space of the information
available to the controller. The notion of a sufficiently
informative function, which parallels the notion of a
sufficient statistic of stochastic control, was introduced
with a twofold purpose. First, to provide an alternative
conceptual framework for viewing the problem and to
demonstrate the separation of the optimal controller
into an estimator and an actuator. Second, to demonstrate
the possibility of redefining and implementing the dy-
namic programming algorithm so that it is carried over the
space of the sufficient information. For a limited class of
problems it was shown that this alternate implementation
is profitable. The results in this paper should not come as a
surprise to anyone familiar with dynamic programming,
sequential games, and stochastic control since they
represent a formalization and extension of well-known
concepts within the framework of the minimax problem.
It is to be noted that, similar to the stochastic control
case, the notion of a sufficiently informative function is
useful for only a limited class of problems; however, this
class does not include any special case with a solution as
elegant as the case of a linear system with a quadratic
cost in stochastic control.
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Optimal Stochastic Linear Systems with Exponential

Performance Criteria and Their Relation to

Deterministic Differential Games

DAVID H. JACOBSON

Abstract—~—Two stochastic optimal control problems are solved
whose performance criteria are the expected values of exponential
functions of quadratic forms. The optimal controller is linear in both
cases but depends upon the covariance matrix of the additive process
noise so that the certainty equivalence principle does not hold. The
controllers are shown to be equivalent to those obtained by solving a
cooperative and a noncooperative quadratic (differential) game, and
this leads to some interesting interpretations and observations.

Finally, some stability properties of the asymptotic controllers
are discussed.

1. INTRODUCTION

HE SO-CALLED linear-quadratic-Gaussian (LQG)
problem! of optimal stochastic control [1] possesses a
number of interesting features. First, the optimal feedback
controller iz a linear (time-varying) function of the state
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1 This is a problem with linear dynamics disturbed by additive
Gaussian noise, together with a performance criterion which is the
expected value of a positive-semidefinite quadratic form.

variables. Second, this linear controller is identical to
that which is obtained by neglecting the additive Gaussian
noise and solving the resultant deterministic linear-quad-
ratic problem (LQP)? (certainty equivalence principle).
Thus the controller for the stochastic system is inde-
pendent of the statistics of the additive noise. This is
appealing for small noise intensity, but for large noise
(large covariance) one has the intuitive feeling that per-
haps a different controller would be more appropriate.

In this paper we consider optimal control of linear sys-
tems disturbed by additive Gaussian noise, whose asso-
ciated performance criteria are the expected values of
exponential functions of negative-semidefinite and positive-
semidefinite quadratic forms. We shall refer to the former
case as the LE—G problem, and the latter as the LE*G
problem, and to their deterministic counterparts as LE~P
and LE *P, respectively. In the deterministic cases LE=P,
the solutions are identical to that for the LQP (the natural
logarithm of the exponential performance criteria yvields
quadratic forms). However, when noise is present, LExG
problems, the optimal controllers are different from that of
the LQG problem. In particular, though as in the case of
the LQG problem, these are linear functions of the state

* This is the same as the LQG problem, but with noise set to zero.



