

ORAL PRESENTATION

Open Access

Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito *Anopheles gambiae s.s.*

Renate C Smallegange^{1*}, Wolfgang H Schmied¹, Karel J van Roey¹, Niels O Verhulst¹, Jeroen Spitzen¹, Wolfgang R Mukabana^{2,3}, Willem Takken¹

From Parasite to Prevention: Advances in the understanding of malaria Edinburgh, UK. 20-22 October 2010

Background

Carbon dioxide (CO_2) plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is therefore commonly added to mosquito sampling tools. The African malaria vector *Anopheles gambiae* Giles *sensu stricto* is attracted to human volatiles augmented by CO_2 . We investigated whether CO_2 , usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO_2 derived from fermenting yeast (yeast-produced CO_2).

Methods

Trapping experiments were conducted in the laboratory, semi-field and field, with An. gambiae s.s. as the target species. MM-X traps were baited with volatiles produced by yeast-sugar solutions, prepared in bottles. Catches were compared with traps baited with industrial CO_2 . The additional effect of human odours was also examined.

Results

Traps baited with yeast-produced CO₂ caught significantly more mosquitoes than unbaited traps and also significantly more than traps baited with industrial CO₂, both in the laboratory and semi-field. Adding yeast-produced CO₂ to traps baited with human odour significantly increased trap catches. During the field trials, traps baited with yeast-produced CO₂ caught similar numbers of *An. arabiensis* Patton as traps baited with

industrial CO₂. Addition of human odour increased trap catches.

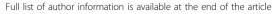
Conclusions

We conclude that yeast-produced CO_2 can effectively replace industrial CO_2 for sampling of *An. gambiae s.s.*. This will significantly reduce costs and allow sustainable mass application of odour-baited devices for mosquito sampling in remote areas.

Acknowledgements

This study was funded by a grant from the Foundation for the National Institutes of Health (NIH) through the Grand Challenges in Global Health Initiative (GCGH#121).

Author details


¹Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands. ²International Centre of Insect Physiology and Ecology, P.O.Box 30772 - 00100, GPO, Nairobi, Kenya. ³School of Biological Sciences, University of Nairobi, P.O. Box 30197 - 00100 GPO, Nairobi, Kenya.

Published: 20 October 2010

doi:10.1186/1475-2875-9-S2-O29

Cite this article as: Smallegange *et al.*: Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito *Anopheles gambiae s.s. Malaria Journal* 2010 **9**(Suppl 2):O29.

¹Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands

