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Abstract

Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient
 assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little
 is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet
 taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First,
 we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric
 (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG
 administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR.
 Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not
 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in
 short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas
 T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani
 (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars,
 although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for
 sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates
 CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it
 should provide opportunities for the development of new treatments for controlling blood sugar.
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Animals and housing conditions.

WHEN A MAMMAL INGESTS A sugar-sweetened beverage, it activates circuits in the gustatory neuraxis that
 perform three distinct functions: analyze its chemical composition (stimulus identification/discrimination),
 determine its acceptability (hedonic evaluation), and activate cephalic-phase responses (digestive
 preparation) (40, 41). While there is abundant evidence that the canonical sweet taste receptor T1r2+T1r3 is
 necessary for the identification and hedonic evaluation of sugar solutions (9, 33, 50, 57, 59), the question of
 whether T1r2+T1r3 is also necessary for digestive preparation is unresolved.

We focused on one aspect of digestive preparation: cephalic-phase insulin release (CPIR). It is elicited by
 pregastric contact with nutrients and enhances glucose tolerance (i.e., ability to maintain glucose
 homeostasis) in humans (22, 44) and rats (6, 18, 26, 37, 43, 47, 48). CPIR operates through the dorsal
 motor nucleus of the vagus (DMNX) in the medulla oblongata. Food-related sensory inputs (taste,
 trigeminal, and olfactory) activate parasympathetic neurons in the DMNX, which project to pancreatic beta-
cells, release acetylcholine, and cause insulin release (5, 34, 44, 55). Sugars are potent elicitors of CPIR, but
 little is known about the nature of the underlying taste pathways. Furthermore, there is debate over which
 chemical stimuli elicit CPIR. For instance, in humans, there are reports that CPIR is elicited by sugars (55),
 sugars and artificial sweeteners (20), sugars but not artificial sweeteners (10), or neither (1, 45). In rats, one
 report indicated that CPIR is elicited by glucose alone (18), whereas others indicated that it is elicited by
 multiple sugars and artificial sweeteners (6, 35, 37, 47, 48).

Because sugars and artificial sweeteners are ligands of T1r2+T1r3 (25, 30, 31), they may be able to elicit a
 CPIR by activating the T1r2+T1r3-dependent taste signaling pathway (7). However, T1r2+T1r3-
independent signaling pathways could also contribute. This latter possibility is based on comparisons
 between C57BL/6 wild-type (B6) and T1r3 knockout (KO) mice in the C57BL/6 background. For instance,
 the chorda tympani (CT) taste nerve of both mouse groups responds similarly to 0.5 M glucose (9).
 Furthermore, taste cells in both B6 and T1r3 KO mice release GLP-1 (an incretin hormone) in response to
 oral stimulation with glucose (21). Mice also express several potential T1r2+T1r3-independent signaling
 mechanisms for sugars in their taste cells, including a sodium-glucose cotransporter (SGLT1), several
 glucose transporters (GLUTs), and an ATP-gated K  glucose sensor (27, 49, 56).

The present study had three goals. The first was to measure sugar-induced CPIR in B6 and T1r3 KO mice
 and assess its role in glucose tolerance. Prior studies have established that T1r2 KO and T1r3 KO mice
 display impaired glucose tolerance (12, 28, 29, 38), but normal insulin sensitivity (38). However, because
 these prior studies administered the glucose postorally (i.e., intragastrically or intraperitoneally), they did
 not address the specific contribution of orally expressed T1r3 to insulin release and glucose tolerance. The
 second goal was to determine the sugar specificity of CPIR in B6 and T1r3 KO mice. The third goal was to
 confirm prior reports of divergent behavioral attraction and CT nerve responses to sugars across both
 mouse groups.

METHODS

The wild-type (i.e., C57BL/6J, or B6) mice were purchased from the
 Jackson Laboratories (Bar Harbor, ME). The T1r3 KO mice were derived from parental stock produced by
 homologous recombination in C57BL/6J (B6) embryonic stem cells (9) and maintained in a colony at
 Barnard College. The T1r3 KO mice were identical to the B6 mice in all respects, except that they did not
 express the Tas1r3 gene, which codes for the T1r3 subunit of the T1r2+T1r3 sweet receptor.
 Approximately equal numbers of males and females from each group were tested in each experiment. We
 provide sample sizes in the figure legends.

+
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Test solutions.

Phenotypic and genotypic screen.

Blood glucose and plasma insulin measurements.

All tests involved young (7–10 wk of age) mice that weighed between 19 and 27 g. Each mouse was tested
 only once in the study to avoid experiential confounds. The mice were maintained in a vivarium with
 controlled temperature and humidity and a 12:12-h light-dark cycle. They were housed individually in
 polycarbonate tub cages (27.5 × 17 × 12.5 cm) with Bed-O'Cobs bedding (Andersons, Maumee, OH) and
 Nestlet cotton pads (Ancare, Bellmore, NY). The mice had unlimited access to tap water and chow (5001;
 PMI Nutrition International, Brentwood, MO), except where noted otherwise (see below). According to the
 manufacturer, the chow diet contained four carbohydrates at the indicated concentrations (by weight):
 starch (31.9%), sucrose (3.7%), lactose (2.0%), fructose (0.4%), and glucose (0.2%). Mice obtained water
 from sipper spouts (with a 1.5-mm hole) attached to water bottles, which were placed on the wire cage top.

All animal procedures were approved by the Institutional Animal Care and Use Committee of Columbia
 University and conducted in accordance with the National Institutes of Health Guidelines for the Care and
 Use of Laboratory Animals.

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) and were dissolved in
 deionized water. The solutions were all prepared on the day of testing and (unless stated otherwise) were
 presented at room temperature.

Before testing was started, all mice were subjected to a two-bottle
 preference test with 10 mM saccharin vs. water. Previous studies demonstrated that B6 mice are strongly
 attracted to 10–38 mM saccharin and that T1r3 KO mice are either indifferent or mildly deterred by it (9,
 15, 50, 57).

For each preference test, the mice were caged individually and provided chow ad libitum and two bottles.
 One bottle contained deionized water and the other 10 mM saccharin. The test was conducted over a 48-h
 period. For the first 24 h, the saccharin solution was placed on the left side of the cage; for the second 24 h,
 it was placed on the right side. Consumption from each bottle was measured after each 24-h period by
 weight. The results of this test confirmed that the B6 exhibit a strong (>90%) preference for the saccharin
 solution over water, while the KO mice exhibit no (<60%) preference.

The genotype of the B6 and T1r3 KO mice was confirmed by analyzing a random sample of the total test
 population (Transnetyx, Cordova, TN), using previously published primer information (9).

Before oral or intragastric (IG) administration of a sugar
 solution (see below), we water deprived mice for 23.5 h and food deprived them for 6 h. Water deprivation
 was necessary to motivate the mice to lick from the sipper tube during oral administration. Food
 deprivation was necessary to limit the quantity of food in the stomach of the mice during both oral and IG
 administration.

At the beginning of each trial (between 2:00 and 2:30 PM), we weighed the mice and then obtained a
 baseline tail blood sample (at 0 min). For blood glucose measurements, we collected five additional blood
 samples 5, 15, 30, 60, and 120 min after oral or IG administration. We collected a single drop of tail blood
 at each time point and measured plasma glucose with a hand-held glucometer (OneTouch Ultra, Milpitas,
 CA). For plasma insulin measurements, we collected four additional blood samples 5, 15, 30, and 60 min
 after the oral or IG administration. We collected a 30-μl sample of tail blood at each time point in an
 EDTA-coated capillary tube (Innovative Medical Technologies, Shawnee Mission, KS), centrifuged it for 3
 min at 6,000 rpm, and decanted and stored the plasma ( 10 μl) at −80°C until analysis with an Ultra-
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Oral glucose administration.

IG glucose administration.

Insulin release and glucose tolerance following oral vs. IG glucose administration (experiment 1).

What is the sugar specificity of the CPIR? (experiment 2).

Sensitive Mouse Insulin ELISA (Crystal Chem, Downers Grover, IL).

The mice were trained to lick from a sipper tube. All oral glucose
 administrations were conducted in a commercially available gustometer (Davis MS160-Mouse; DiLog
 Instruments), which permitted us to monitor the number of licks taken by each mouse.

To train the mice to drink in the gustometer, we subjected them to three training sessions. Immediately
 before each training session, we deprived each mouse of water for 22.5 h to motivate drinking. Afterwards,
 we placed the mouse in the gustometer; the training session began when it took its first lick and lasted for
 30 min. On each training day, the mouse was permitted to drink water freely from a single stationary spout
 during the training session. Immediately afterwards, the mouse was returned to its home cage and given 1 h
 of ad libitum access to water. Then, it was water deprived for another 22.5 h. All mice adapted readily to
 the gustometer and the water-deprivation schedule and took between 250 and 500 licks per training session.

Immediately before an oral glucose administration, we deprived mice of water for 23.5 and food for 6 h.
 The administration procedure began once we obtained the baseline blood sample (henceforth, 0 min).
 Immediately afterwards, we put the mouse in the gustometer and gave it a maximum of 3 min to complete
 its weight-specific number of licks (see below). Once it did so, we closed the shutter (preventing any
 further licks) and transferred the mouse to a cage lacking food and water. The second blood sample was
 taken 5 min after the mouse took its first lick in the gustometer. If a mouse did not take the requisite
 number licks within 3 min, it was removed from the experiment.

We subjected each mouse to the same water- and food-deprivation procedure as
 during oral glucose administration. Then, we secured the mouse by the scruff of its neck, gently inserted a
 curved feeding needle (Fine Science Tools, Foster City, CA) directly into its stomach (or the bottom of its
 esophagus), and injected a weight-specific volume of the test solution in <1 s.

We subjected
 each B6 and T1r3 KO mouse to a single oral or IG administration of glucose solution. Subsequently, we
 made six blood glucose measurements (at 0, 5, 15, 30, 60, and 120 min) and five plasma insulin
 measurements (at 0, 5, 15, 30, and 60 min) per mouse.

We used a 2.8-M (50%) glucose solution because it enabled us to deliver the recommended body weight-
specific dosage of glucose (i.e., 2 mg glucose/g mouse) (2) in an appropriate volume (e.g., 0.1 ml of 2.8 M
 glucose in a 25-g mouse). For the IG dosing, we used a 1-ml syringe attached to the feeding tube to ensure
 accurate mass-specific dosing. For oral dosing, we determined during pilot studies that B6 mice obtain, on
 average, 0.93 μl per lick from a 2.8-M glucose solution. Accordingly, a 25-g mouse would have to
 complete 107 licks in the gustometer to obtain the required 0.1 ml of 2.8 M glucose (i.e., 107 licks × 0.93 μl
 = 0.1 ml). This calculation generalized to an oral dosing regimen of 4.3 licks/g mouse.

Here, we examined changes in plasma insulin that
 occurred within 5 min of oral administration of one of three sugars (glucose, sucrose, and fructose) in B6
 and T1r3 KO mice. We selected these sugars because they are all ligands of T1r2+T1r3 (25, 30) and
 stimulate high rates of intake in B6 mice (4, 13, 51). We used the same procedures as described above for
 measuring plasma insulin. Furthermore, the mice had to complete the same mass-specific number of licks
 (i.e., 4.3 licks/gram mouse) as in the previous experiment. Finally, the sugars were all presented at a 1-M
 concentration. We selected the 1-M concentration to accommodate the different molecular weights of the
 mono- and disaccharide sugars and because it approximates the concentration used by most other CPIR
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Are B6 and T1r3 KO mice differentially attracted to the 1-M sugar solutions? (experiment 3).

CT responses to sugars (experiment 4).

 studies with rodents (11, 18, 47, 48).

We ran two negative control experiments. First, we asked whether the act of licking for water in a water-
 and food-restricted state was sufficient to induce insulin secretion in B6 and T1r3 KO mice. To this end, we
 used the same oral administration procedures described above, except that we offered deionized water to
 the experimental mice and no water to the control mice in the gustometer. Second, we asked whether the IG
 administration procedure (e.g., physical restraint and insertion of the feeding tube) would alter the time-
dependent changes in plasma insulin in B6 mice. To this end, we repeated the oral administration procedure
 described above, using 2.8 M glucose as a stimulus. However, half of the mice were subjected to a sham
 gavage treatment immediately before oral administration, while the other mice were spared the gavage
 treatment before oral administration.

We used a no-
choice two-bottle testing paradigm (14) to evaluate the oral acceptability of 1 M glucose, 1 M fructose, and
 1 M sucrose to the B6 and T1r3 KO mice. We selected the 1-M concentration of each sugar because that is
 what was used in experiment 2.

Each test session lasted 20 min, during which time the mouse initiated a series of licking trials with two
 solutions: water or a sugar solution. It was provided access to a single solution during each trial. A trial
 began when the mouse took its first lick and ended 5-s later. We recorded both the number of licks the
 mouse emitted during each 5-s trial and the number of trials initiated. Because each trial was separated by a
 7.5-s intertrial interval, a mouse could initiate up to 96 trials across the 20-min test session. To control for
 order effects within a test session, we treated the two test solutions (i.e., water and sugar solution) as a
 block and randomized (without replacement) their order of presentation within a block so that each solution
 was presented once before the next block began.

We subjected each mouse to three test sessions, each on separate days. During each test session, the mouse
 was offered a different pair of solutions, i.e., glucose/water, sucrose/water, or fructose/water. To control for
 order effects across test sessions, we tested each sugar/water pair in a counterbalanced manner across the
 mice. Therefore, for instance, during the first test session, approximately equal numbers of mice were tested
 with the glucose/water, sucrose/water, or fructose/water pair.

Before testing was started, each mouse received three training sessions with water in the gustometer. This
 served to familiarize the mice with the gustometer and train them to obtain fluid from the sipper tube. Each
 training session began when the mouse took its first lick and lasted 30 min. On training day 1, the mouse
 could drink freely from a single sipper tube throughout the session because the shutter was permanently
 open. On training days 2 and 3, the mouse could only drink from a sipper tube during sequential 5-s trials.

During training and testing, we used different restriction schedules to motivate mice to initiate large
 numbers of trials (16). During training, we water deprived the mice for 22.5 h before each session so as to
 motivate licking for water. Immediately afterwards, the mouse was returned to its home cage and was given
 1 h of ad libitum access to water and food; then, it was water deprived for another 22.5 h. During testing,
 we food and water restricted the mice by giving them 1 g of laboratory chow (dustless precision 1 g food-
pellets; BioServ) and 2 ml of water 23.5 h before each session. This latter deprivation schedule causes mice
 to lick avidly for sugar solutions but not plain water. Afterwards, the mouse was given a recovery day,
 during which it had food and water ad libitum.

The methodological details of the nerve recordings are described in
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Statistics.

 detail elsewhere (13). In brief, the CT nerve innervates taste buds in the fungiform papillae, which occur
 primarily on the anterior portion of the tongue. We recorded from the CT nerve in the middle-ear cavity,
 while the mice were anesthetized with 1–5% isoflurane (Butler Schein, Albany, NY). During the surgery
 and recording procedure, the mice were maintained on a thermostat-controlled circulating-water heating
 pad set at 37°C (HTP-1500; Adroit Medical Systems, Loudon, TN). Neural responses were amplified
 10,000× with an optically coupled isolated bio-amplifier (ISO-80; World Precision Instruments), passed
 through a band-pass filter (40 - 3,000 Hz), and then digitized (sampling rate = 2,000 samples/s),
 transformed (root mean square), and integrated (time constant = 1 s) (Biopac software, Goleta, CA).

We dissolved the chemical stimuli in an artificial saliva solution (32), consisting of deionized water plus
 NaCl (0.015 M), KCl (0.022 M), CaCl  (0.003 M), and MgCl  (0.0006 M). We used 0.25, 0.5, 1.0, and 2.0
 M glucose and fructose; and 0.03, 0.1, 0.3, and 1 M sucrose. We used 0.1 M NH Cl as a reference stimulus
 to be consistent with previous studies (9, 13).

We delivered the artificial saliva and tastant solutions to the anterior tongue (at a rate of 10 ml/min) with a
 continuous-flow system (VC-6 Perfusion Valve Control System; Warner Instruments, Hamden, CT). All
 solutions were kept at 35°C with an automatic temperature controller (Warner Instruments). The tongue
 was rinsed continuously with artificial saliva, both before and after each 20-s stimulation trial. To control
 for time-dependent changes in CT nerve responsiveness, we stimulated the tongue with the reference
 stimulus immediately (i.e., 40 s) before stimulating it with each of the sugar solutions.

The dependent measure was the relative response of the CT nerve to each sugar solution. We used Biopac
 software to determine the mean voltage during the 20 s immediately before chemical stimulation (=
 baseline response) and during chemical stimulation with the sugar solution (= excitatory response). Then,
 we measured the difference between the baseline and excitatory response (= absolute response). Finally, we
 divided the absolute response to a sugar solution by the mean absolute response to NH Cl, yielding the
 relative response to each sugar solution.

In all experiments, we set the alpha-level at 0.05. We used IBM SPSS Statistics, v22
 (www14.software.ibm.com) and Prism (http://www.graphpad.com) to analyze the data.

For the blood analysis, we used blood glucose concentration (in mg/dl) and plasma insulin concentration (in
 ng/ml). We analyzed the glucose and insulin data with mixed-model ANOVAs, using time and
 administration method as independent variables. Whenever the sphericity assumption was violated for the
 repeated-measures ANOVAs, we used the Greenhouse-Geisser correction to adjust the degrees of freedom
 (17). To determine whether there was a significant rise within 5 min of initiating licking, we compared the
 insulin samples collected at 0 and 5 min with a paired t-test.

For the lick data, we determined the mean number of licks emitted per trial for each of the test solutions. We
 used a paired t-test to compare the number of licks emitted/trial for the two test solutions during a test (e.g.,
 1 M glucose vs. water), separately for each mouse group and sugar. We also compared the total number of
 trials initiated (as a measure of ingestive responsiveness) across the two mouse groups during a given test
 (e.g., 1 M glucose vs. water), using an unpaired t-test.

For the CT nerve recordings, we analyzed the relative nerve responses with a two-way mixed-model
 ANOVA, separately for each sugar. We treated mouse group as a between factor and sugar concentration as
 a within factor. We also ran post hoc mouse group comparisons at each concentration, using Bonferroni's
 multiple comparisons test.

2 2
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Insulin release and glucose tolerance following oral vs. IG glucose administration (experiment 1).

What is the sugar specificity of the CPIR? (experiment 2).

RESULTS

We examined
 the temporal dynamics of plasma insulin and blood glucose following oral (i.e., licking) vs. IG
 administration of a 2.8-M glucose solution in B6 and T1r3 KO mice.

We compared changes plasma insulin levels over time across mouse groups, separately for mice that
 received oral (Fig. 1A) or IG (Fig. 1B) administration of the 2.8 M glucose solution. A mixed-model
 ANOVA revealed a significant main effect of time (F  = 16.7, P < 0.001), reflecting the fact that plasma
 insulin increased and then decreased over the course of the 60-min test. Although the main effect of
 administration method was not significant (F  = 3.5, P = 0.074), there was a significant interaction of
 time × administration method (F  = 11.5, P < 0.001); this shows that the changes in plasma insulin over
 time differed across administration method. Indeed, one-sample t-tests revealed that plasma insulin in both
 B6 and T1r3 KO mice increased significantly within 5 min of the oral glucose challenge (in both cases, P <
 0.009) but not within 5 min of the IG glucose challenge (in both cases, P > 0.55). This latter result indicates
 that the rapid elevation in plasma insulin following oral stimulation with glucose reflects a CPIR. Finally,
 the main effect of mouse group was not significant (F  = 2.6, P > 0.12), indicating that T1r3 did not
 contribute to the dynamics of the insulin response.

We compared changes in blood glucose levels over time across mouse groups, separately for mice that
 received oral (Fig. 2A) or IG (Fig. 2B) administration of the 2.8-M glucose solution. The mixed-model
 ANOVA revealed a significant main effect of administration method (F  = 34.6, P < 0.001) and time
 (F  = 136.9, P < 0.001) but not of mouse group (F  = 3.0, P = 0.1). These findings illustrate that
 plasma glucose peaked within 15–30 min of the glucose challenge and that mice from both mouse groups
 tolerated the glucose challenge significantly better following oral than IG administration. The significant
 interaction of time × administration method (F  = 30.7, P < 0.001) reflects the fact that the rise in blood
 glucose persisted longer following IG administration, particularly in the T1r3 KO mice. Indeed, at 60 min,
 blood sugar was significantly higher in T1r3 KO than B6 mice (unpaired t-value = 3.34, df = 10, P <
 0.008).

In Fig. 3, we show plasma insulin levels before (i.e.,
 at 0 min) and 5 min after licking for 1 M glucose, 1 M sucrose, and 1 M fructose in both mouse groups.
 Plasma insulin levels were significantly higher 5 min after licking for the glucose and sucrose solutions in
 both B6 and T1r3 KO mice. This is revealed by a significant main effect of time (for both sugars, P <
 0.0001) but not of mouse group (for both sugars, P > 0.6) or interaction of time × strain (for both sugars, P
 > 0.16). In contrast, plasma insulin levels did not increase significantly after licking for the fructose
 solution in either mouse group, as indicated by nonsignificant main effects of time (F  = 3.1, P > 0.11)
 and mouse group (F  < 0.1, P > 0.88) and a nonsignificant interaction of time × mouse group (F  <
 0.91, P > 0.47). Paired t-tests, conducted separately for each sugar and mouse group, confirmed a
 significant CPIR in response to 1 M glucose and 1 M sucrose (in all comparisons, P < 0.012) but not 1 M
 fructose (in all comparisons, P > 0.27).

We ran two negative control experiments. First, we asked whether licking for water alone elicited insulin
 release in B6 or T1r3 KO mice (Fig. 4A). A mixed-model ANOVA (performed separately on each mouse
 group) revealed no significant main effect of treatment (i.e., licking for water vs. sitting in cage) or time (in
 each case, P > 0.26) on plasma insulin levels. This shows that neither the act of licking nor the sensory
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Are B6 and T1r3 KO mice differentially attracted to the 1-M sugar solutions? (experiment 3).

Do B6 and T1r3 KO mice display CT nerve responses to sugars? (experiment 4).

 input associated with ingesting water altered plasma insulin levels. Second, we asked whether the sham
 gavage treatment altered the time-dependent changes in plasma insulin levels after licking for 2.8 M
 glucose in B6 mice (Fig. 4B). The main effect of time was significant (F  = 11.30, P < 0.0001) but that
 of the treatment (i.e., sham gavage + licking for glucose vs. licking for glucose) was not (F  = 0.25, P >
 0.61); likewise, the interaction of treatment × time was not significant (F  = 1.0, P > 0.39). Plasma
 insulin levels increased significantly (P ≤ 0.02) between 0 and 5 min in mice from both treatment levels.
 The latter findings show that the sham gavage treatment itself did not alter the time-dependent changes in
 plasma insulin following the ingestion of glucose.

Previous studies
 have reported that T1r3 KO mice do not show appetitive licking for sucrose and glucose solutions in short-
term lick tests (50, 57, 59). Here, we used a two-bottle acceptability test to confirm that T1r3 KO mice in
 our laboratory do not show appetitive licking for the sugar solutions used in the CPIR studies (i.e., 1 M
 glucose, 1 M sucrose, and 1 M fructose).

The B6 mice exhibited high rates of licking for the three sugar solutions (range: 30–35 licks/trial) but not for
 the water (range: 8–12 licks/trial) (Fig. 5). When we compared licks for each sugar solution vs. water, the
 paired t-values were all >6.3 (df = 8, P < 0.0001). In contrast, the T1r3 KO mice exhibited low and
 statistically indistinguishable rates of licking for each sugar solution and water (in all comparisons, paired t-
values were <1.9, df = 8, P > 0.10).

There were also large mouse group differences in number of trials initiated. The B6 mice initiated
 significantly more trials per test session (range: 20–27) than the T1r3 KO mice during each of the sugar
 tests (range: 10–11). In all comparisons, unpaired t-values were >2.3 (df = 8, P < 0.035).

These results reveal that the B6 mice licked more avidly for the glucose, sucrose, and fructose solutions than
 for water during the short-term lick tests, whereas the T1r3 KO mice did not. In experiment 2, by contrast,
 both types of mice generated equally robust CPIRs in response to glucose and sucrose but not fructose.
 Thus the ability of the sugars to elicit CPIR in both mouse groups varied independently of their ability to
 stimulate licking.

We asked whether the CT
 nerve of the B6 and T1r3 KO mice generated significant responses to glucose, sucrose, and fructose. Prior
 studies reported that T1r3 KO mice (as compared with B6 mice) exhibit highly attenuated CT nerve
 responses to 0.5 M fructose (9), 0.1–1.0 M sucrose (59), and 0.5–0.6 M glucose in some (57) but not all (9)
 studies.

Figure 6 shows CT nerve responses of B6 and T1r3 KO mice to a range of glucose, fructose, and sucrose
 concentrations. For glucose, there were significant main effects of mouse group (F  = 10.9, P < 0.004)
 and concentration (F  = 78.0, P < 0.0001) and a significant interaction of mouse group × concentration
 (F  = 15.1, P < 0.0001). These results reflect the fact that the magnitude of the CT nerve response was
 similar across mouse groups at concentrations ≤1 M, but that of B6 mice was significantly greater than that
 of T1r3 KO mice at the 2-M concentration. Finally, we conducted a repeated-measures ANOVA across
 glucose concentration, separately for each mouse group. These analyses confirmed that the relative
 response of the CT nerve to glucose increased significantly with concentration in both mouse groups (in
 each case, P < 0.0001).

For fructose, there were significant main effects of mouse group (F  = 95.1, P < 0.0001) and
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 concentration (F  = 135.4, P < 0.0001) and a significant interaction of mouse group × concentration
 (F  = 59.5, P < 0.0001). This reflects the fact that the CT nerve response of all three mouse groups
 increased with fructose concentration but that of B6 mice increased disproportionately at concentrations
 ≥0.5 M. We also ran a separate one-way repeated-measures ANOVAs across fructose concentration,
 separately for each mouse group. These analyses demonstrated that the CT nerve response to fructose
 increased significantly with concentration in both groups (in each group, P < 0.0001).

For sucrose, the main effects of mouse group (F  = 24.0, P < 0.0005) and concentration (F  = 26.9, P
 < 0.0001), and the interaction of mouse group × concentration (F  = 14.0, P < 0.0001), were all
 significant. These results illustrate that the CT nerve response of both B6 and T1r3 KO mice increased with
 sucrose concentration but that of B6 mice increased at a significantly greater rate across all concentrations.
 For each mouse group, we ran separate one-way repeated-measures ANOVAs across sucrose concentration.
 These analyses revealed that the CT nerve response to sucrose increased significantly with concentration in
 both groups (in each case, P < 0.0001).

DISCUSSION

The mouse has become an important model system for analyzing the molecular basis of glucose tolerance
 and insulin release. To identify the genes associated with glucose homeostasis, including Tas1r2 and
 Tas1r3, investigators typically administer sugars via a postoral route (i.e., IG, intraperitoneally, or
 intravenously) to mice with gene deletions and then assess the functional consequences (2, 3, 12, 24, 28).
 While these postoral administration methods help identify the location of signaling or secretory cells
 involved in glucose homeostasis, they do not provide clinically relevant information because they bypass
 the oral stimulation associated with ingestion. Indeed, had we limited our studies to postoral stimulation,
 we would have grossly underestimated glucose tolerance in the mice. Accordingly, our results from mice,
 together with similar findings from humans (42), underline the importance of incorporating oral stimulation
 into glucose tolerance protocols.

When rats ingest glucose or sucrose, the latency for the sugar-induced insulin spike is typically <5 min,
 whereas that for the postabsorptive blood glucose spike is typically ≥5 min (37, 47). Because the CPIR
 occurred before the rise in blood glucose in these rat studies, the authors inferred that that the insulin spike
 was elicited by pregastric input and was thus a CPIR. We could not use a similar line of inference in this
 study because the insulin and glucose spikes both occurred in <5 min (Figs. 1 and 2). As a result, we
 focused on the fact that the insulin spike began in <5 min following oral administration but took >5 min to
 develop following IG administration. Indeed, there were no measureable changes in plasma insulin levels
 during the 5-min period immediately following IG glucose administration in the B6 and T1r3 KO mice.
 Based on these observations, we infer that the insulin spike following oral administration of glucose must
 have been elicited by oral sensory stimulation and was thus a CPIR.

The observation that it takes >5 min for insulin to reach detectable levels in the plasma following IG
 administration has been replicated in another laboratory (23). Such a long latency cannot be explained by 1)
 a slow rate of glucose entry into the stomach because once the feeding tube was inserted, it took <1 s to
 inject the full dose of glucose; or 2) stress associated with the IG gavage procedure because delivering a
 sham IG gavage, immediately before oral glucose administration, failed to alter plasma insulin levels over
 the next 60 min in the present study. Instead, we attribute the long latency of insulin release (following IG
 administration) to delays associated with the 1) absorption of glucose from the intestine, 2) transport of
 glucose (via the blood) to the pancreas, and 3) a slow rate of insulin buildup in the plasma. Indeed, there is
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 evidence that the latter process alone takes 2–3 min (8). On the other hand, we propose that oral
 administration of glucose caused more rapid insulin release by activating ascending taste pathways, which
 in turn stimulated parasympathetic neurons in the DMNX. Some of these parasympathetic neurons project
 to pancreatic beta-cells and thus could elicit insulin release directly (34).

Several observations support our inference that the CPIR was elicited by taste input. First, licking for water
 alone failed to elevate plasma insulin; this shows that the CPIR was not elicited by the act of licking for a
 fluid while in a water- and food-restricted state. Second, the CPIR was induced by 1 M glucose and 1 M
 sucrose but not 1 M fructose; this establishes that insulin release was not stimulated by an osmotic effect of
 the sugar solutions. Third, the CT nerve of both the B6 and T1r3 KO mice responded to glucose and
 sucrose solutions in the present study and elsewhere (9); this demonstrates that the sugar solutions generate
 a measurable and consistent peripheral taste response in both mouse groups.

There are two notable differences between the CPIR of mice and those of other mammals. In humans, the
 peak plasma insulin achieved during CPIR is 33% of that achieved during the postabsorptive insulin
 response (46). In B6 mice, the peak plasma insulin achieved during CPIR (measured at 5 min) is nearly
 60% of the peak insulin levels achieved 15–30 min after oral administration (Fig. 1A). This interspecific
 discrepancy suggests that the relative magnitude of the CPIR is larger in mice, perhaps reflecting their
 higher mass-specific energy demands. Second, the CPIR is temporally distinct from the postabsorptive
 insulin peak in humans (46) and rats (26), resulting in a bimodal pattern of insulin secretion. We did not
 observe a similar bimodal pattern in mice. This may reflect the fact that we sampled plasma insulin too
 infrequently.

Our results show that T1r3 is not necessary for the generation of a normal CPIR. Indeed, 2.8 M glucose, 1
 M glucose, and 1 M sucrose all elicited strong CPIRs in the B6 and T1r3 KO mice. The robust CPIR (and
 associated glucose tolerance) likely contributes to the ability of T1r3 KO mice to maintain normal fasting
 blood-glucose levels (38), daily chow intakes, and growth rates (52), relative to their wild-type
 counterparts. It is unlikely that the spared T1R2 subunit (either as a homodimer or in conjunction with a
 novel protein) mediated CPIR in the T1r3 KO mice. This is because sucrose, glucose, and fructose all elicit
 calcium release in heterologous reporter systems expressing T1r2+T1r3 but not in ones expressing T1r2
 alone (25, 30) (P. Jiang, unpublished observations). Further, it seems improbable that a T1r2-mediated
 transduction pathway would generate a CPIR in response to sucrose and glucose but not fructose.

Other investigators have speculated about a T1r2+T1r3-independent taste transduction pathway for sugars in
 mice (9, 27, 49, 56). This study establishes that such a pathway exists and that it serves a critical metabolic
 function (i.e., eliciting CPIR and enhancing glucose tolerance) in mice. The fact that this pathway responds
 to glucose and sucrose, but not fructose, would appear incompatible with the hypothesized T1r2+T1r3-
independent signaling mechanisms (i.e., SGLT1, GLUTs, and ATP-gated K  channels), which are selective
 for glucose (27, 49, 56). However, there is some evidence that sucrase is expressed on the surface of taste
 cells (R. Margolskee, unpublished observations), and it is possible that the T1r2+T1r3-independent
 signaling pathway does not actually respond to sucrose. Instead, it may respond to the glucose liberated
 from sucrose by the catabolic action of oral sucrase.

In B6 and T1r3 KO mice, the relative magnitude of the CPIR to glucose, sucrose, and fructose varied
 independently of the relative acceptability of the same sugars. Likewise, in B6 mice, 1 M fructose elicited a
 robust CT nerve response but no CPIR. The most parsimonious explanation for these observations is that
 the taste system of mice contains two functionally distinct signaling pathways for sugars. One requires an
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 intact T1r2+T1r3 to operate. It provides input to the gustatory cortex and ventral forebrain (40, 41) and
 mediates the attraction to sugars (e.g., glucose, sucrose, and fructose) and nonnutritive sweeteners. The
 other signaling pathway does not require an intact T1r2+T1r3 to operate. It provides inputs to the dorsal
 vagal complex (5, 34, 44, 55), responds to glucose and sucrose, and mediates CPIR and perhaps other
 cephalic-phase responses. Given that the T1r2+T1r3-independent pathway did not alter ingestive behavior,
 it follows that this pathway also did not generate a salient taste sensation. The existence of these two taste
 signaling pathways provides further support for the existence of multiple categories of taste processing,
 even within the same taste quality (40, 41).

Future studies need to determine the nature of the two hypothetical sugar transduction mechanisms in taste
 cells. At this point, we know that the majority of T1r3-expressing taste cells also express functional K
 channels (56). If K  channels mediate CPIR, then we predict that they would generate a different output
 signal than the T1r2+T1r3-activated transduction mechanism. In support of this possibility, studies of
 immune cells show that the coexistence of multiple transduction mechanisms in the same cell creates the
 opportunity to generate a diversity of output signals (19).

Perspectives and Significance

There are two important implications of the T1r2+T1r3-independent sugar pathway. One is that if this
 pathway exists in humans, then it should provide opportunities for the development of new treatments for
 controlling blood sugar. For instance, given the critical role of CPIR in glucose homeostasis, new therapies
 could be developed to modulate the strength of the CPIR. The second implication stems from the common
 assumption that mice with genetic deletions of T1r2, T1r3, or T1r3+T1r3 cannot taste sugars because they
 are not attracted to them during brief-access taste tests. Our results show that this assumption is incorrect.
 Even though the glucose and sucrose solutions failed to elicit appetitive licking in the so-called sugar-
ageusic T1r3 KO mice, they nevertheless elicited a taste-mediated and physiologically significant CPIR.

It is likely that a portion of the CT nerve responses that we observed in the B6 and T1r3 KO mice reflected
 activity in the T1r2+T1r3-independent glucose/sucrose pathway. More work is needed to determine
 whether CPIR in mice is mediated exclusively by input from this nerve, as appears to be the case in rats
 (48), or whether input from the greater superficial petrosal and glossopharyngeal nerves also contributes.
 Given that glucose stimulates the release of GLP-1 from taste bud cells (21), it is also possible that taste
 cell-derived GLP-1 contributed to the CPIR.

In closing, we acknowledge two caveats in our study. We limited testing to relatively high concentrations of
 sugars, as in most prior rodent studies (11, 18, 47, 48). While future experiments need to examine lower
 concentrations, it is notable that these high concentrations have ecological relevance, e.g., glucose and
 sucrose together constitute between 8 and 44% of the total mass of many fruits (e.g., dates, rowal, jackfruit,
 mangos, apricots, and pineapple); and glucose constitutes >30% of the total mass of honey
 (http://ndb.nal.usda.gov/ndb/nutrients/index) (53). We also limited testing to mice that were naïve to sugar
 solutions, as we did not want our results to be confounded by potential conditioning effects (36, 39, 54, 58).
 Although the concentration of sucrose and glucose was low in the chow diet (3.7 and 0.2% by weight,
 respectively), it is possible that prior intake of this diet conditioned the observed sugar-induced CPIR.
 Future studies should determine whether dietary exposure to sugars alters the magnitude of sugar-induced
 CPIR.
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Figures and Tables

Fig. 1.

Plasma insulin levels in B6 and T1r3 knockout (KO) mice following oral (i.e., licking; A) or intragastric (B) administration
 of 2.8 M (50%) glucose (dosage = 2 mg/g mouse). *Insulin levels increased significantly (P < 0.01; one-sample t-test)
 above baseline within 5 min of the glucose challenge. Symbols represent means ± SE; n = 6 mice per mouse group and
 administration technique.

Fig. 2.
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Glucose tolerance in B6 and T1r3 KO mice following oral (i.e., licking; A) or intragastric (B) administration of 2.8 M
 (50%) glucose (dosage = 2 mg/g). *Plasma glucose levels differed significantly (P < 0.05, unpaired t-test) between mouse
 groups. Symbols represent means ± SE; n = 6 mice per mouse group and administration technique.

Fig. 3.

Plasma insulin levels at baseline (i.e., 0 min) and 5 min after initiating licking for one of three sugar solutions (1 M glucose,
 1 M fructose, and 1 M sucrose) in B6 and T1r3 KO mice. Each mouse took 4.3 licks/g mouse from each solution. *Plasma
 insulin levels increased significantly (P < 0.05, paired t-test) above baseline within 5 min. Bars indicate means ± SE; n =
 6–14 per sugar for B6 and T1r3 KO mice.

Fig. 4.
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Negative control experiments to determine whether licking alone or the sham gavage treatment altered plasma insulin
 levels. A: plasma insulin levels in B6 and T1r3 KO mice after licking for water vs. sitting in the cage (n = 4–6 mice per
 mouse group and treatment group). B: plasma insulin levels in B6 mice after the sham gavage treatment + licking for 1 M
 glucose vs. licking for 1 M glucose alone (n = 6–8 mice per treatment group). *Insulin levels increased significantly
 between 0 and 5 min (P < 0.02; paired t-test).

Fig. 5.

Licking by B6 and T1r3 KO mice for a sugar solution or water during 5-s trials. During each 30-min test session, mice were
 offered 2 sipper tubes serially. The tubes dispensed 1 M glucose or water (A), 1 M fructose or water (B), and 1 M sucrose
 or water (C). We compared the mean (±SE) number of licks per 5-s trial for the sugar solution vs. water, separately for
 each mouse group and sugar (*P < 0.05; paired t-test); n = 9 animals per mouse group; each mouse was tested with all 3
 sugars in a counterbalanced design.

Fig. 6.
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Chorda tympani (CT) nerve responses of B6 and T1r3 KO mice to lingual stimulation with various concentrations of
 glucose, fructose, and sucrose. A: relative responses reflect the ratio of the integrated response to a sugar solution divided
 by that to 0.1 M NH Cl. We tested 10 B6 and 11 T1r3 KO mice with glucose; 11 B6 and 18 T1r3 KO mice with fructose;
 and 7 B6 and 7 T1r3 KO mice with sucrose. We compared the magnitude of response across mouse groups, separately for
 each concentration, using Bonferroni's multiple comparison tests. *Significant mouse group differences at a given
 concentration (P < 0.05). B: typical whole nerve integrated CT nerve responses to 0.1 M NH Cl and different
 concentrations of glucose, fructose, and sucrose in B6 and T1r3 KO mice.
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