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Abstract

The employment of 2D models to investigate the properties of 3D flows in porous media 

is ubiquitous in the literature. The limitations of such approaches are often overlooked. 

Here, we assess to which extent 2D flows in porous media are suitable representations of 

3D flows. To this purpose, we compare representative elementary volume (REV) scales 

obtained by 2D and 3D numerical simulations of flow in porous media. The stationarity of 

several quantities, namely porosity, permeability, mean and variance of velocity, is evalu-

ated in terms of both classical and innovative statistics. The variance of velocity, strictly 

connected to the hydrodynamic dispersion, is included in the analysis in order to extend 

conclusions to transport phenomena. Pore scale flow is simulated by means of a Lattice 

Boltzmann model. The results from pore scale simulations point out that the 2D approach 

often leads to inconsistent results, due to the profound difference between 2D and 3D 

flows through porous media. We employ the error in the evaluation of REV as a quanti-

tative measure for the reliability of a 2D approach. Moreover, we show that the accept-

ance threshold for a 2D representation to be valid strongly depends on which flow/transport 

quantity is sought.
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1 Introduction

Upscaling procedures are based on a bottom-up approach, where the analysis of flow and 

transport features at the pore scale is conducted through both physical (Narsilio et al. 2009; 

Tallakstad et  al. 2009) and numerical models (Raeini et  al. 2014b; Blunt 2001; Spanne 

et al. 1994; Porta et al. 2013). Laboratory experiments mostly investigate bulk quantities 

such as porosity, permeability, dispersion coefficients. Physical models to characterize the 

pore dynamics, and employ microfluidic devices (Li et  al. 2017; Saleh et  al. 1992), are 

therefore restricted to 2D geometries. Numerical models have been largely employed to 

investigate pore scale dynamics, both in real (Mostaghimi et al. 2013; Blunt et al. 2002; 

Adler et  al. 1992) and in synthetic geometries (Ghassemi and Pak 2011; Koponen et  al. 

1998; de Anna et al. 2017; Khirevich et al. 2011; Matyka et al. 2008; Nabovati and Sousa 

2007). The issue is also related to percolation theory, such that the percolation threshold 

and the universal exponents depend on the space dimension; a comparison between the 

conductivities of Sierpinski carpets (2D) and Menger sponges (3D) was performed in the 

past (Adler 1986; Lemaitre and Adler 1990), and significant differences between them 

were found.

One of the main sources of uncertainty in groundwater contamination studies lies in the 

modelling of boundaries. A viable way to enhance the reliability of the models employed 

in risk assessment studies is to enlarge the spatial and time domains accordingly, in order to 

lower the influence of the boundary conditions on the region of interest. Large-scale mod-

elling of flow and transport in porous media is therefore drawing a considerable amount of 

attention. These models employ various levels of upscaling of the dynamics acting at pore 

(and subpore) scale (Raeini et al. 2014a; Ling et al. 2018).

Dimensional contraction is applied in almost all fields of physical analysis in order to 

exploit uniformity along one or more directions. Two-dimensional simulations of flow in 

porous media have been often preferred over 3D ones due to their lower computational 

burden, and this choice may become mandatory when a large number of simulations are to 

be carried out in order to obtain statistically significant figures for the quantity of interest 

(QoI). Dimensional contraction of physical phenomena can be usually carried out along 

directions which show negligible variations of QoIs. Yet, this hypothesis is seldom veri-

fied for the case of flow and transport in porous media and 2D models have been widely 

proposed and employed to simulate flow in both synthetic domains and in ones obtained 

as sections of 3D porous matrices. The validity of such models has been extensively ques-

tioned (Koponen et al. 1997; Goudarzi et al. 2018). Nevertheless, they still play a major 

role in the modelling community. Several works have pointed out that 2D models are likely 

to fail in reliably reproducing the flow field in 3D porous geometries (Mostaghimi et al. 

2013; Koponen et al. 1997; Goudarzi et al. 2018; Knudsen et al. 2002; Saomoto and Kata-

giri 2015; Duda et al. 2011; Li et al. 2005). The threshold of validity of 2D approaches is 

arbitrary and much dependent on the purpose of the study.

In this paper we show to which extent a 2D numerical model can be employed for the 

REV assessment of a 3D domain, i.e. identify a representative scale for upscaling proce-

dures of a synthetic 3D porous medium with comparable porosity. Contrasting predictions 

of REVs stemming from distinct statistical realizations (2D and 3D) of the same porous 

media reveal different flow dynamics. Moreover, incorrect REV estimations lead to inaccu-

rate predictions of flow and transport features. To this purpose, we focus on the estimation 

of REV for several quantities of interest, such as porosity, permeability, mean velocity and 

velocity variance. We show that the REV obtained through the 2D model is much larger 
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than the reference (3D) one: this reveals the profound difference between 2D and 3D flows 

through porous media. Both 2D and 3D simulations are carried out by means of a flexible, 

yet accurate numerical solver based on the Single Relaxation Time (SRT) Lattice Boltz-

mann Method (LBM) (Prestininzi et  al. 2016) to determine the flow field in the porous 

media.

The structure of the paper is as follows: in Sect. 2 we briefly introduce the LBM, the 

algorithms adopted for the generation of the porous media and the scaling employed in 

the simulations; in Sect. 3 we present results and discussion of the 2D and 3D simulations; 

Sect. 4 is dedicated to conclusions, perspectives and recommendations, which are drawn 

based on the outcome of the study.

2  Methods

We consider porous media composed by randomly placed, equal, hard spheres and disks 

in 3D cubic, and 2D square domains, respectively. We employ the LBM as a numerical 

flow solver to reproduce the Darcy’s experiment numerically. Its ability to accurately pre-

dict flow paths, permeability, hydraulic conductivity is well documented in the literature 

(Zhang et al. 2000; Pan et al. 2001) and no further validation is here assumed to be needed. 

LBM simulations are employed to model flow in porous media, where packings are gener-

ated by means of a sphere packing generator program. Since the LB dynamics is inher-

ently time-varying, a transient is necessary for the system to reach a steady state complying 

with constant boundary conditions. Steady state control is based on stationarity of the fluid 

velocity. Once the system has reached the steady state, it is analysed in terms of permeabil-

ity, mean velocity and velocity variance.

Porosity can be estimated prior to the simulation, since it is a purely geometric param-

eter, independent of flow. Porosity � is defined as the ratio of the volume of voids to the 

total volume of the domain. The single phase creeping flow through a porous medium is 

described by the Darcy’s law (Bear 2013), and the permeability k is calculated as

where q is the specific discharge, i.e. the mean velocity over the cross-sectional area open 

to flow, � is the kinematic viscosity of the fluid, |g| is the intensity of the driving force � 

defined as � =

��

�
 that is the ratio between the macroscopic pressure gradient �� and the 

density of the fluid � . The REV investigation on the velocity field is carried out in terms of 

first and second-order statistics (mean and variance). The average value of the velocity 

magnitude |v| in the void space is computed as

where

with u, v and w the flow velocity components and i, j and k stand for the discrete position 

along x, y and z directions, respectively.

(1)k =

�

|g|
q,

(2)|v| = 1

NxNyNz

Nx∑

i=1

Ny∑

j=1

Nz∑

k=1

|�|ijk,

(3)|�|ijk =
√

u2

ijk
+ v2

ijk
+ w2

ijk
,
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The velocity variance �2

v
 has a pivotal role in determining hydrodynamic dispersion, 

since it is related to the length scale over which the dispersion phenomenon occurs and 

to the dispersion coefficient D, in particular

Dagan (2012), where L is the characteristic medium length and �2

v
 is evaluated as

Two approaches are employed to estimate the REV for the aforementioned quantities. Both 

employ the evaluation of the generic quantity of interest �
m
 within each subvolume m, 

whose characteristic length scale is L
m
 . Permeability k

m
 of the mth subvolume is then evalu-

ated by means of km =

�

|g|
qm , where only q depends on m, since both the viscosity and the 

driving force are kept constant. In this study, the point-centred cube geometry, for which all 

subvolumes progressively and symmetrically grow from the centre in all directions, is cho-

sen since the results are not affected by boundary effects associated with the generation of 

the porous sample for randomly placed obstacles (Preller 2011). In the first approach, the 

REV estimation relies on a visual assessment and on a subjective judgment based on plot-

ting the value of �
m
 against L

m
 and determining the REV value, estimated here as the mini-

mum length scale L
m
 at which a stationary behaviour, also referred to as plateau (Costanza-

Robinson et al. 2011). The second approach determines the REV value as the one inducing 

a given residual variability for the quantity � within the domain, i.e. it allows a quantifica-

tion of the variability associated to the chosen REV. To this purpose, we employ two statis-

tics, the Relative Error (RE) and the Convergence Criterion (CC). The first one, employed 

by (Li et al. 2009), compares the residual variation of a quantity � at step m with its mean 

value around m. It is defined as

The second statistics is a cumulative quantity that measures the variability of the quantity � 

up to the mth step and is defined as

where the standard deviation �
�,m =

�

1

m−1

∑m

i=1
(�

i
− �

m
)2 and the mean value for the 

quantity �
m
=

1

m

∑m

i=1
�

i
 are both evaluated for the truncated series up to the mth subvol-

ume. The quantitative approach sets a threshold value � , and determines the REV as the 

smallest domain size m for which each statistics falls below � . The RE values can show 

extensive fluctuations, irregular at times, even for large values of m, and therefore we here 

include the evaluation of the CC statistics, which, as a cumulative quantity, shows a 

smoother behaviour. The choice of a threshold for CC (or equivalently for RE) induces a 

variability due to a residual non-stationarity of order O(CC) (or O(RE)). It is clear that, 

while such source of uncertainty can be made arbitrarily small by setting a lower value for 

(4)D = L

�
2

v

|�|

(5)�
2

v
=

1

NxNyNz − 1

Nx∑

i=1

Ny∑

j=1

Nz∑

k=1

(|�|ijk − |v|)2.

(6)RE
m
= 2

|
|
|

�
m+1

− �
m−1

�m+1 + �m−1

|
|
|
.

(7)CC
m
=

�
�,m

�
m

,
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� , its choice needs to weigh the required accuracy of the whole study with the available 

computational resources.

2.1  Generation of numerical domains

2.1.1  3D domain

The 3D numerical specimen for the simulation is generated by means of a previously 

developed algorithm for hard-sphere packing generation and packing post-processing 

(Baranau and Tallarek 2014). The algorithms supported by the method for the packing gen-

eration (the Lubachevsky–Stillinger, Jodrey–Tory, and “force biased”) are able to generate 

a packing of spheres in a cubic box by specifying the box size, the number of spheres and 

their diameters as input parameters. At the beginning of the generation, the spheres are 

randomly located without overlapping in a box with periodic boundary conditions. During 

the packing generation, the spheres have uniform expansion and elastic collisions. Finally, 

a jammed packing with the highest jamming density is achieved, resulting in a steady 

configuration where any spheres’ motion is hindered (Donev 2006). The 3D specimen is 

described in terms of the coordinates of the centres of the spheres and their diameters. The 

packing is said to be monodisperse if all the spheres have the same diameter.

2.1.2  2D domain

The structure of a 2D domain for the simulation of porous media flows cannot be a packing 

structure, i.e. disks cannot be tangent, in order to let the fluid flow. Moreover, 2D domains 

can be seldom obtained by slicing a 3D packing, since such procedure introduces geometri-

cal distortions (e.g. a slice of a monodisperse 3D specimen results in a 2D polydisperse 

one). Here, we employ an algorithm to generate the 2D specimen for the simulation where 

the following input parameters are specified: the total number of disks, the diameter, here 

equal for each disk, the minimum distance between two disks and the side length of the 

squared domain. The algorithm employs an iterative mechanism to add new disks until the 

coordinates for the total number of disks are generated.

2.2  The LBM solver

The Lattice Boltzmann Method describes the flow by means of a finite set of probability 

density functions fi(�, t) which give the probability to find a fluid particle with a given 

particle velocity �
i
 , at a given position � and at a given instant of time t. The probability 

density functions evolve according to the Lattice Boltzmann Equations (8), obtained by 

discretizing the Boltzmann kinetic equation with respect to space, time and particle veloc-

ity (Succi 2001). Thanks to its intrinsic simplicity, the LBM is particularly competitive for 

complex flows (e.g. flows in complex domains, multiphase flows, etc.). The Navier–Stokes 

equation can be obtained from the Lattice Boltzmann Equations by applying the Chapman-

Enskog expansion (Succi 2001) and it is possible to show that the macroscopic quantities 

(fluid density and velocity), obtained as statistical moments of the probability density func-

tions, are equivalent to those that one would obtain by solving the Navier–Stokes equa-

tions, under the condition that the Mach number of the flow (the ratio of the flow and the 

sound velocity) is small (Succi 2001). The Lattice Boltzmann Equations assume the form



320 E. Marafini et al.

1 3

where Q is the number of discrete particle velocities. The LHS of Eq.  8 represents the 

streaming phase, while the RHS contains the Bhatnagar–Groos–Krook approximation of 

the collisional term and the forcing term. In Eq. (8), f
eq

i
 is the equilibrium distribution 

function; � is the relaxation time, which is related to the kinematic viscosity by 

� = c
2

s
(� −

1

2
) , with c

s
= e

0
∕
√

3 the lattice speed of sound for the adopted velocity sets, 

defined in (Succi 2001). Finally, Δt is the time interval, defined in term of the grid spacing 

Δx as Δt =
Δx

e
0

 , once the characteristic particle velocity e
0
 is introduced; F

i
 are the compo-

nents of the external forces along directions delineated by the lattice velocities as 

F
i
=

�
i
� ⋅ �

i

c2

s

 , where � is the driving force for unit mass (Eq. 1), �
i
 are the weighting fac-

tors, see (Succi 2001) for their definition. The density � and the macroscopic velocity � of 

the fluid are defined in terms of the particle distribution functions by

2.3  Setup of simulations

Firstly, the spatial domain is discretized by choosing the number of nodes correspond-

ing to the reference length. If not further specified, the reference length is assumed to 

be the sphere/disk diameter D. The unit length in the discrete space is referred to as 

“lattice unit”, lu. Then, boundary conditions are assigned: the spheres/disks bounda-

ries are modelled as no-slip impervious surfaces, by means of the bounce-back tech-

nique (Succi 2001); periodic conditions are imposed at all domain boundaries. Initial 

conditions are of fully saturated domain, at rest. An orthogonal coordinate system with 

coordinates (x, y, and z for the 3D case) is used. The flow motion is obtained by the 

application of an external mass force, aligned with the x direction. The relaxation time 

� plays an important role in the simulation setup, since it is strictly connected to the 

Reynolds number Re =
Ul

1

3
(�−

1

2
)
 . The flow in the porous medium is characterised by 

Re ≪ 1 . Then, we define l as a reference length for the void space and select it as a 

fraction of the disk/sphere’s diameter (e.g. l = D∕5 ) and U as the reference velocity in 

the pore ( U = 10−5
÷ U = 10−4 lattice unit per time step of the simulation). The values 

of the kinematic viscosity and � can be obtained for a given value of the Reynolds 

number. It can be shown that with the assumed values of l, � , U, the Knudsen number 

Kn, defined as the ratio of the mean free path 
�

c
s

 to the characteristic length scale l 

(Prestininzi et al. 2016), is small enough to ensure convergence of Eq. (8) to the cor-

rect hydrodynamic model (Montessori et al. 2015; Pazdniakou and Adler 2013).

(8)fi(� + �iΔt, t + Δt) − fi(�, t) = −
1

�

[fi(�, t) − f
eq

i
(�, t)] + ΔtFi i = 0, ..., Q − 1

(9)� =
∑

i=1

fi(�, t);

(10)� =
1

�

∑

i=1

�ifi(�, t).



321Suitability of 2D modelling to evaluate flow properties in 3D…

1 3

3  Results and discussion

The estimation of the REV is carried out using the values of CC and RE for porosity, per-

meability, mean velocity and velocity variance. A threshold value of � = 0.15 is used to 

identify the REV, i.e. we expect the quantity of interest to vary within 15% around the mean 

value in a specimen larger than the REV. For the purpose of this study, the choice of the 

threshold value is arbitrary and does not influence the outcome of the analysis. Although 

the choice of the threshold value clearly affects the REV estimation, it does not alter the 

results of this work, which is aimed at comparing REVs yielded by different models, 

obtained assuming the same threshold value. In each specific application, the value of � 

reflects the level of accuracy that the modeller wants to achieve with respect to the QoIs. 

The generated 2D domain, whose main features are listed in Table 1, is shown in Fig. 1. 

Moreover, the autocorrelation function of the longitudinal velocity is calculated with the 

aim of ensuring that distances among disks do not induce long-range dependence in the 

flow field.

The increment L
m+1

− L
m

 in the size of progressive subsections is 100 lu for the 

2D case, so that each subsection encloses a meaningful number of disks in addition to 

the previous one. The outcome of the REV calculation for the 2D case using the first 

approach and the CC method is shown in Fig. 2. For the sake of clarity, it is appropri-

ate to recall that, here, the first approach results in the calculation of the quantity within 

each subvolume (visual assessment). The blue lines in Fig. 2 reach a plateau after ini-

tially large oscillations, except for the permeability (panel [c]) which still significantly 

fluctuates for box sizes approaching the entire domain. The convergence of CC for per-

meability (panel [c]) is significantly slower compared to that of other quantities: if the 

threshold value for CC is set to 0.15 then the REV for permeability is larger than the 

entire domain. Red traces, that quantify such fluctuations, show decreasing monotonous 

Table 1  Geometry and 
discretization of the 2D domain

Domain size Cell size Number of disks Disks’ diameter

104 ×  104  lu2 1  lu2
75 × 103 30 lu

Fig. 1  2D porous matrix domain (10,000 × 10,000  lu2) to investigate the REV size of the main quantities of 
interest, with a close-up look at the squared section in the centre of the domain (500 × 500  lu2)
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behaviours, after an initial peak is reached and slight oscillations. Yet panel [c] shows 

that the permeability CC remains above the chosen threshold. Such value for the resid-

ual variation leads to the conclusion that a REV for permeability cannot be identified 

with � = 0.15 , i.e. the permeability REV is larger than the entire domain. This is con-

sistent with previous studies (Mostaghimi et al. 2013), that have recognized that perme-

ability generally requires larger REVs than other quantities, e.g. porosity, due to its slow 

convergence (Zhang et al. 2000; Costanza-Robinson et al. 2011).

The adopted threshold value entails a residual variability that, depending on the pur-

pose of a specific application, could be considered too high to carry out robust inves-

tigations of flow and transport quantities. Despite being purposely large in this study, 

in order not to excessively constraint the allowed residual variation of different quanti-

ties, it leads to the conclusion that permeability REV estimation requires more than 333 

disks (or equivalently 10000 lu).

With reference to the behaviour of the mean velocity and its variance (left side plots 

in panel [b] and [d], respectively), it is evident that the 2D approach is prone to deceive 

the modeller by producing a “false” stationary plateau. Indeed both quantities seem to 

achieve a reasonably stable value between 20 and 60 diameters (or equivalently between 

600 and 1800 lu), before dropping and then slowly growing again. In Fig. 3 we sampled 

to show how the permeability is heavily location and scale dependent.

Figure  4 shows the 3D domain whose main features are listed in Table  2. The 

spheres’ centre coordinates are generated by means of the packing generation algorithm 

Fig. 2  2D case: assessing the REV size for bulk quantities: porosity (a), mean velocity (b), permeability 
(c), velocity variance (d) and their CC, versus domain size and number of diameters
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described in Sect. 2.1.1, whereas the spheres’ diameter is scaled to match the 2D poros-

ity value within an approximation due to the spatial discretization.

Here, the increment L
m+1

− L
m

 in the size of progressive subvolumes is 20 lu, in order 

to encompass a significant number of spheres at each step. The REV analysis for 3D 

specimen using the first approach and the CC method is shown in Fig. 5. The general 

trend of the graphs resembles that one of the 2D counterpart. With reference to Fig. 5, 

it is clear that the velocity variance is the quantity which requires the largest domain to 

attain stationarity. Such result does not contradict the previous observation that the per-

meability REV is the largest since, to the best of our knowledge, the analysis on velocity 

variance has never been performed yet. Besides, it has a lower convergence, compared 

Fig. 3  Permeability variation 
within the domain. The value of 
permeability has been calculated 
at six distinct subdomains. The 
sizes of the subdomains are com-
parable to the ones commonly 
employed to discretize porous 
media for numerical simulations: 
1000 × 1000  lu2 yellow square; 
2000 × 2000  lu2 cyan square

Fig. 4  3D porous matrix made of 
hard spheres. The extent of such 
domain has been chosen on the 
REV assessment

Table 2  Geometry and discretization of the 3D domain

Domain size Cell size Number of spheres Sphere’s diameter

500 × 500 × 500  lu3 1  lu3 5 ×  103 29 lu
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to the mean velocity chart, as a matter of fact, this is expected for higher statistical 

moments, since the variance is the second-order statistical moment around the mean.

As a reference, the packing in Fig. 4, 250 × 250 × 250 lu3 , is the estimated REV for a 

15% residual variation for the velocity variance.

It is supposed usually that simulations carried out for the 2D case can be helpful for 

any kind of prediction of quantities related to 3D flow and transport phenomena in porous 

media. The outcome of such procedure is that, in order to obtain reasonably accurate quan-

titative predictions ( CC < 15% ), numerical or physical models should employ a spatial 

domain larger than the one investigated, i.e. more than N = 333 disk diameters (or equiva-

lently 10000 lu) for each direction (see Fig. 2, panel [c]). We would like to stress that this 

estimate is likely to be considered as a lower bound, since the assumed acceptable residual 

variation may be too large for robust predictions.

The comparison between the 2D and the 3D cases using both CC and RE methods (see 

Fig.  6) shows how the two specimens, which share a comparable porosity (the porosity 

difference being 1.7% ), lead to consistently different estimates in both of REV sizes and 

therefore of effective parameters.

It is worth underlining that the aim of this work is to show that the REV obtained 

through the 2D model is much larger than the reference (3D) one, instead of comparing 

different quantitative methods. In particular, Fig. 6 highlights that porosity (panel [a]) and 

mean velocity (panel [b]), no matter what convergence criterion is chosen, require consid-

erably smaller REV to attain stationarity, compared to permeability (panel [c]) and velocity 

Fig. 5  3D case: see Fig.  4 for detailed description. For the 3D case the velocity variance is the quantity 
requiring the largest REV ( 250 × 250 × 250lu

3 or equivalently 8 diameters)
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variance (panel [d]). This reveals that a REV analysis is likely to benefit from the adop-

tion of different threshold values for each QoIs. Such behaviour clearly shows the quan-

tities of interest should drive the definition of the threshold necessary for the identifica-

tion of the REV. In particular, the permeability and the velocity variance, once a threshold 

value is chosen, require a much higher REVs to converge, compared to porosity and mean 

velocity. With regard to CC graphs in panel [d], the number of diameters required to reach 

convergence for velocity variance REV in 2D is one order of magnitude higher than that 

needed in 3D ( 10
2 vs 10

1 , respectively). Using both methods (RE and CC) each graph in 

Fig. 6 (except for the geometric variable) shows that the 3D domain falls below the chosen 

threshold (0.15) within fewer number of diameters compared to 2D case. Even though the 

RE method gives different REV values than the CC method, they both lead to the same 

conclusion: the 2D REV is too large and cannot correctly characterize the corresponding 

3D sample. With the aim of comparing REV values for these methods, we defined the 

variable

for the flow quantities (permeability, mean velocity and velocity variance). Its values are 

shown in Table 3, where the REV
2D

 and REV
3D

 are those associated to the minimum length 

scale in 2D and 3D corresponding to a residual variability of the QoI equal to � . When the 

value for CC (or RE) does not fall below the threshold value, the REV is considered to be 

(11)� =

REV
2D

REV
3D

Fig. 6  Quantitative approach for the REV estimation: Convergence Criterion and relative errors methods. 
The comparison of the considered quantities of interest between the 2D and 3D cases is illustrated in a 
semi-log plane



326 E. Marafini et al.

1 3

greater than the sample size. Instead, when the value never grows above the threshold the 

value � is not reported (any domain size would include the REV). The values of � clearly 

point out that the 2D REV, if it exists (i.e. when it is smaller than the entire specimen), 

would be roughly 10 times larger than the 3D REV.

It is worth highlighting that the conclusions of this study, though present in their embry-

onic and sparse forms in other studies (Mostaghimi et al. 2013; Zhang et al. 2000; Cos-

tanza-Robinson et  al. 2011), are here robustly supported by a set of ad-hoc simulations. 

The recent availability of highly accurate numerical tools, such as the ones employed in 

this study, would encourage the contemporary scientific and technical community to tackle 

the study of pore scale dynamics in complex porous matrices. Due to the high computa-

tional burden required by the 3D simulations, the modeller would make do with a more 

affordable 2D representation, the search for a REV through 2D simulations, possibly lead-

ing to incorrect conclusions. There is the risk that such scenario would end up in the identi-

fication of the REV either as the largest domain computationally affordable, or as a smaller 

one, both solutions leading to a possibly large source of uncertainty stemming from the 

neglected residual variability.

Finally, we would like to point out that the outcome of this study not only applies to 

numerical models, but also to their physical counterparts. Indeed the resort to 2D lumped 

experiments resembling 3D flows may be exposed to the same sort of issues. This is nowa-

days even more compelling due to the widespread of microfluidics models, which offer the 

possibility to easily measure pore scale quantities, but are almost always 2D setups.

4  Summary and conclusions

In this study high resolution numerical simulations of pore scale flows are used to assess to 

which extent the properties of a 3D creeping flow through porous media can be represented 

by its 2D counterpart. To this purpose, we show that the estimation of the REV size for 

several quantities yields remarkably different values for the 2D and the 3D cases.

The adopted procedure consists in the generation of two monodispersed numerical spec-

imens of comparable porosity, made of randomly placed disks (2D) and spheres (3D).

Then a creeping flow is simulated through both specimens, employing a numerical 

solver based on the SRT LBM.

The REV assessment is performed for several quantities, namely porosity, permeability, 

mean velocity and velocity variance. Each quantity is evaluated within a series of progres-

sively growing subdomains in order to investigate their convergence behaviour.

Two criteria have been used in this study as quantitative approach for the REV esti-

mation: Convergence Criterion and Relative Error statistics. They employ an acceptance 

threshold whose value depends on the acceptable residual variability of the quantity at 

hand. Both criteria lead to a REV estimation by the 2D model much larger than 3D one. 

Table 3  � values for the flow quantities (permeability, mean velocity and velocity variance) using the CC 
and RE statistics for the determination of REV, where � = REV

2D
∕REV

3D

permeability mean velocity velocity variance

� (CC) > 100 − 12.2

� (RE) > 100 > 100 8.5
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The analysis so far conducted reveals to some extent the difference between 2D and 3D 

flows through porous media, at least for the monodispersed matrices cases analysed in this 

work.

Some conclusions are drawn. The great discrepancy in the flow field obtained in a 

2D porous matrix and that in 3D one also reflects in peculiar patterns of the visual REV 

assessment (in this study the first approach) for some flow related quantities: they exhibit 

deceitful stationary plateaux, which are prone to support inaccurate estimates of the REV, 

when a quantification of the variability associated to the chosen REV is not performed (in 

this study the second approach).

The employment of 2D simulations (or experiments in 2D setups) in order to investi-

gate 3D flow related quantities is seldom a correct choice: indeed a flow path through a 

2D porous medium has a significantly lower number of geometrical degrees of freedom 

compared to the 3D one. This difference in tortuosity results in a REV for any flow related 

quantity which is much larger than the 3D counterpart. The situation is expected to be 

exacerbated in the more realistic cases of polydisperse media.

The 2D simulation employing domains encompassing the 2D REV can be even more 

computationally demanding than the 3D ones. In particular the ratio between the REV in 

the 2D and the 3D case has been evaluated for the flow quantities (permeability, mean 

velocity and velocity variance) for both statistics (CC and RE). Such values clearly point 

out that the 2D REV, when smaller than the investigated specimen , would roughly be 10 

times larger than the 3D REV. Finally it is worth pointing out that the REV assessment is 

not only influenced by the spatial dimension (2D or 3D), but it is also dependent on the aim 

of the study, in other words on the investigated quantity of interest. In particular, in trans-

port problems one would expect to obtain a larger REV for the velocity variance rather 

than a smaller one for the porosity REV if interested in pore structure analysis.
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