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Abstract

Background: To achieve an acceptable signal-to-noise ratio (SNR) in PET images, smoothing filters (SF) are usually

employed during or after image reconstruction preventing utilisation of the full intrinsic resolution of the

respective scanner. Quite generally Gaussian-shaped moving average filters (MAF) are used for this purpose. A

potential alternative to MAF is the group of so-called bilateral filters (BF) which provide a combination of noise

reduction and edge preservation thus minimising resolution deterioration of the images. We have investigated the

performance of this filter type with respect to improvement of SNR, influence on spatial resolution and for

derivation of SUVmax values in target structures of varying size.

Methods: Data of ten patients with head and neck cancer were evaluated. The patients had been investigated by

routine whole body scans (ECAT EXACT HR+, Siemens, Erlangen). Tomographic images were reconstructed (OSEM

6i/16s) using a Gaussian filter (full width half maximum (FWHM): Γ0 = 4 mm). Image data were then post-

processed with a Gaussian MAF (FWHM: ΓM = 7 mm) and a Gaussian BF (spatial domain: ΓS = 9 mm, intensity

domain: ΓI = 2.5 SUV), respectively. Images were assessed regarding SNR as well as spatial resolution. Thirty-four

lesions (volumes of about 1-100 mL) were analysed with respect to their SUVmax values in the original as well as in

the MAF and BF filtered images.

Results: With the chosen filter parameters both filters improved SNR approximately by a factor of two in

comparison to the original data. Spatial resolution was significantly better in the BF-filtered images in comparison

to MAF (MAF: 9.5 mm, BF: 6.8 mm). In MAF-filtered data, the SUVmax was lower by 24.1 ± 9.9% compared to the

original data and showed a strong size dependency. In the BF-filtered data, the SUVmax was lower by 4.6 ± 3.7%

and no size effects were observed.

Conclusion: Bilateral filtering allows to increase the SNR of PET image data while preserving spatial resolution and

preventing smoothing-induced underestimation of SUVmax values in small lesions. Bilateral filtering seems a

promising and superior alternative to standard smoothing filters.
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Background

Quite often, the practically achievable statistical accuracy

of PET data is not sufficient to utilise the full intrinsic spa-

tial resolution of the respective system. Rather, it is usually

necessary to perform data smoothing either during image

reconstruction or afterwards to achieve a reasonable sig-

nal-to-noise ratio (SNR). Typically, Gaussian-shaped

moving average filters (MAF) are used for this purpose.

While improving the SNR and, therefore, facilitating iden-

tification and delineation of sufficiently large low intensity

structures, these filters at the same time reduce the spatial

resolution of the images, thus deteriorating detectability

and quantification accuracy of small lesions. Therefore,

the spatial width of the MAF has to be carefully chosen to

yield a good compromise between improvement of SNR

and reduction of spatial resolution. Obviously, a complete

satisfactory choice regarding the degree of smoothing is

not always possible. Especially in dynamic studies, in single
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gates of a respiratory-gated study, and in scans of obese

patients SNR can be very low initially and a good SNR can

only be obtained by substantially compromising spatial

resolution.

The problem arises since the MAF filters indiscrimi-

nately smooth over noise-induced intensity fluctuations

in homogeneous areas as well as over real intensity dif-

ferences (“edges”) in the image.

Therefore, locally adaptive image filters, which are able

to detect and maintain edges while still smoothing over

noise-induced (small scale, low intensity) fluctuations,

could be an interesting alternative to MAF filtering. We

have investigated a special example of this type of filters,

the so-called bilateral filter (BF). Such filters are typically

used in 2D image processing and were first introduced by

Tomasi and Manduchi [1]. BF have already been used in

medical imaging, notably in MRI [2-4] and ultrasound

imaging [5,6]. Their potential usefulness has also been

recognised in the field of Nuclear Medicine [7], and bilat-

eral filtering has been proposed for improvement of itera-

tive image reconstruction in PET [8]. However, to the best

of our knowledge, performance of bilateral filtering in the

PET image domain has not yet been systematically

evaluated.

In this study, we investigated bilateral filtering of PET

image data with respect to its effect on the SNR, the spa-

tial resolution and, especially, the quantification of tracer

uptake with the maximum of the SUV in the respective

lesion, SUVmax. Results were compared to those obtained

after MAF filtering of the same data.

Materials and methods

The BF

A BF W consists of a product of two separate filters, one

acting in the spatial domain (WS), one acting in the inten-

sity domain (WI). Choosing Gaussian shapes for both

components [9], the BF is given as:

W(m, n) = WS(Pm − Pn) · WI(Im − In) = exp

(

−
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where m is the index of the currently considered target

voxel at position Pm with intensity Im, and n enumerates

the neighbouring voxels. The filter width of both compo-

nents is controlled by the two free parameters sS and sI
representing the respective standard deviations of the

Gaussians. Filtering of any target voxel m is obtained as

usual by replacing its current intensity value Im with

∑

n
W(m, n) · In

∑

n
W(m, n)

(2)

where the sum runs over all neighbouring voxels n

with intensity In covered by the chosen filter width. In

contrast to the spatial part of the filter alone, the

weighting assigned to a certain voxel n does not only

depend on the spatial distance to the target voxel, but

also on the differences of their respective intensities.

This intensity-dependent part WI can be viewed as mod-

ulating the given spatial part WS in such a way that the

resulting BF has a different shape for each target voxel

m. The filter has two free parameters, namely the stan-

dard deviations sS and sI. These parameters, or the cor-

responding full widths at half maximum Γ (Γ ≈ 2.35 s),

define which distances to the target voxel are considered

large: “distant” voxels (in space or intensity) are not con-

tributing significantly to the averaging process. Only

“close” voxels (in space and intensity) are effective in

the averaging process in Equation 2.

Consequently, to preserve the edges of a certain target

structure in the image data, the width of the intensity-

dependent part of the filter (controlled by the parameter

ΓI) has to be comparable to (or smaller than) the intensity

difference between that target and its background.

If suitable parameters ΓM, ΓI are used, only nearby vox-

els with intensities close to that of the target voxel will

contribute to the averaging. It is exactly this behaviour

which leads to the edge preserving properties of BF.

Figure 1 illustrates the locally adaptive nature and edge

preservation mechanism of the BF in the 2D case of a

single slice from a phantom measurement of a hot sphere

plus warm background. The BF kernel is shown for seven

selected positions along a (slightly off centre) cross sec-

tion through the sphere. Note, how the kernel adjusts its

shape while approaching and traversing the object. At

each position, the intensity dependence of the filter

ensures that pixels whose intensities differ sufficiently

from the intensity of the target pixel are effectively

excluded from the averaging process. Immediately at the

object edge the averaging is more or less switched off

completely (or rather: reduced to inclusion of pixels

along the circumference), thus preserving a sharp object

boundary.

Patient group, data acquisition and data processing

The patient group included ten patients with head and

neck cancer (nine men and one woman, mean age 56 ±

7.3 years) which had been scheduled for tumour staging

with whole-body FDG-PET.

The PET scans were performed with an ECAT EXACT

HR+ (Siemens, Erlangen) using a routine acquisition proto-

col (2D acquisition, 8 min emission, 4 min transmission

per bed position). Data acquisition started 1 h after injec-

tion (290-330 MBq FDG). Tomographic images were

reconstructed from the projection data using the standard

attenuation-weighted OSEM reconstruction provided with

the system (6 iterations, 16 subsets, Gaussian filter with

FWHM: Γ0 = 4 mm). In the following, these images are

referred to as original images. The data were postprocessed
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with a Gaussian MAF (FWHM: ΓM = 7 mm) and BF (para-

meters: ΓS = 9 mm, ΓI = 2.5 SUV), respectively. The BF

parameters were chosen in such a way that a comparable

SNR is obtained in the filtered data with BF and MAF,

respectively. SNR was quantified as described in the follow-

ing section. Thirty-four lesions (volumes of about 1-100

mL) were analysed with respect to their SUVmax values in

the original as well as in the MAF and BF-filtered images.

MAF and BF filtering was performed with the software

ROVER (ABX GmbH, Radeberg, Germany).

Image analysis

In the following, we use the expression SNR = μ/s for

computing the SNR, where s is the standard deviation

of the voxel intensities in a homogeneous ROI and μ is

the corresponding mean value. Furthermore, the noise

level is defined as the inverse of the SNR (i.e. as the

ratio s/μ).

To estimate the noise level in the image data, two

spherical 3D ROIs were positioned in approximately

homogeneous central regions of the liver (ROI volume:

33 mL) and the lung (ROI volume: 27 mL) as indicated

in Figure 2. ROI position was chosen identical in the

original and filtered image data. For each study the

noise level was then determined in the original image as

well as in the MAF and BF-filtered data. For each lesion

the SUVmax was determined in the original images as

well as in the filtered images. Lesion volumes were

derived by manual delineation of the lesions in the MAF

processed data (which were preferred to the original

image data by the evaluating physician) using the

software ROVER (ABX GmbH, Radeberg, Germany).

This software was also used for further ROI-based data

analysis.

Phantom measurement

To estimate the spatial resolution of the differently pro-

cessed image data and to test the stability of BF, we per-

formed a measurement with a water-filled cylinder

phantom containing six spherical inserts (volume range

0.5-26.5 mL) at a target to background ratio of 7. The

phantom data were acquired in list mode using an in-

house solution [10]. This allowed retrospective variation

of the effective acquisition time for generation of image

data with different noise levels. Two different noise

levels (as measured in a large ROI remote from the

sphere inserts) where evaluated: 28%, which is compar-

able to the noise level in the liver encountered in our

patient data, and a distinctly higher noise level of 38%.

The reconstructed phantom data were then postpro-

cessed with MAF and BF in the same way as the patient

data but using three different values for ΓI (2.0, 2.5 and

3.0 SUV, respectively).

The spatial resolution of the phantom data was deter-

mined according to the method described in full detail in

[11]: first, the image data for each sphere (plus some

neighbourhood) were expressed in the form A(rn), where

A is activity concentration, n enumerates the included

voxels and rn is the distance of the respective voxel to the

centre of the sphere. A(rn) thus represents the measured

radial activity profile across the considered sphere aver-

aged over all directions. The spatial resolution of the

Figure 1 Illustration of locally adaptive behaviour of BF. The b/w image (top) shows the original image (hot sphere plus warm background).

The blue dots denote selected positions (labelled a-g) for which the 2D BF kernel is computed and shown as colour-coded image (small

weights: blue, large weights: red) at the bottom. Note how the kernel adjusts itself to the selected target position, including only neighbouring

pixels of similar intensity in the averaging procedure.
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imaged sphere was then determined by least squares fit-

ting the analytical profile formula F(r)–resulting from

convolution of an isotropic Gaussian point spread func-

tion with a homogeneous sphere–to the measured radial

profile data A(rn). The recovery coefficient for each

sphere was finally computed as the ratio of the fitted pro-

file at the sphere centre, F(0), and the known actual activ-

ity concentration in the given sphere. The recovery

coefficients obtained for the differently filtered image

data were then compared.

Results

The phantom measurements yielded the following values

for the spatial resolution of the image data: (6.5 ± 0.3)

mm for the original image, (6.8 ± 0.5) mm for the BF-fil-

tered data and (9.5 ± 0.5) mm after MAF filtering. Com-

pared to the original data, the reduction of the spatial

resolution of the MAF-filtered data is obvious while BF

essentially maintains the original resolution. Figure 3

shows the resulting recovery curves for both analysed

noise levels. The recovery curves of the BF processed

data follow essentially the curve of the original data. Only

for the smallest sphere (0.47 mL), where the signal recov-

ery in the original data is already reduced to about 50%,

the recovery coefficient of the BF processed data differs

substantially from that of the original data. There is only

a very small difference of the performance of BF for the

two investigated noise levels: signal recovery in the small

spheres decreases slightly with increasing noise. How-

ever, this decrease is not specific for BF but can be

equally seen in the original data and with MAF. Figure 4

shows exemplary transaxial slices of the phantom data.

On the left the original image at a noise level of 28% is

shown. The BF-processed data (ΓS = 9 mm, ΓI = 2.5

SUV) are shown in the middle and the MAF processed

data are shown on the right. Both filters reduce the noise

level significantly (from 28 to 13% (MAF) and 14% (BF),

respectively). The reduced resolution of the MAF-pro-

cessed data is clearly visible as is the massive drop of sig-

nal recovery in the small spheres.

Figure 5 shows representative coronal sections from two

patient investigations. The original data are shown in the

first column, the BF-filtered data in the middle and the

MAF-filtered data on the right. The improvement of SNR

after filtering is obvious as are the differences in spatial

resolution after MAF and BF filtering, respectively. Table 1

shows derived noise levels for all data sets before and after

filtering with MAF and BF, respectively. The noise level in

the original images was (30.0 ± 6.9)% in the liver and (36.2

± 6.2)% in the lung. After filtering noise levels were

reduced to (15.7 ± 4.1)% (MAF) and (18.9 ± 3.7)% (BF) in

the liver and to (20.1 ± 4.1)% (MAF) and (17.8 ± 3.7)%

(BF) in the lung, i.e. with the chosen filter parameters both

filters reduced the noise by about a factor of two in com-

parison to the original data. The SUVmax evaluation for all

34 lesions in this patient group is shown in Figure 6. The

changes in SUVmax after filtering with MAF and BF,

respectively, are plotted against the lesion volume (using a

logarithmic scale for the latter to better differentiate small

lesions). The reduction in SUVmax is below 10% in 32 out

of 34 lesions for BF. The two remaining lesions exhibited a

very small elevation of target over background (∆ SUV ≈

A B

Figure 2 Example of ROIs in liver (A) and lung (B) used for the determination of the noise level.
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1.5), which reduces the ability of BF to differentiate

between noise and true signal, see Discussion. The SUV

reduction is much larger for MAF than for BF. Overall, a

SUVmax reduction of (4.6 ± 3.7)% (range 0-18%) for BF and

(24.1 ± 9.9)% (range 9.2-44.5%) for MAF is observed in

comparison to the unfiltered data. The reduction of the

SUVmax in the MAF data is clearly size dependent and

becomes substantial for small lesions, while there is no sys-

tematic size dependency of the reduction in the BF data.

Table 2 shows the derived SUVmax for all investigated

lesions.

Discussion
Bilateral filtering for edge-preserving noise reduction

has been first proposed by Tomasi and Manduchi [1].

Its principal virtues have widely been recognised in

2D image processing [9,12,13] and, more recently, in

medical imaging as well [2-6], but applications in

Nuclear Medicine in general and PET in particular

seem to have been missing up to now (we have found

only one exception [14], where BF was mentioned as a

preprocessing step for a new image segmentation

algorithm).

In this study, we have investigated the suitability of

bilateral filtering for postprocessing of PET image data.

In this first assessment, we have focused on the influ-

ence of bilateral filtering on SUVmax quantitation in

FDG PET of head and neck cancer patients. This para-

meter is of substantial relevance in quantitative assess-

ment of focal lesions in oncological PET in general.

 

Figure 3 Recovery coefficients of differently sized spheres in a warm background (sphere/background = 7) before and after filtering

at two different noise levels. Left: noise level 28%. Right: noise level 38%. MAF, moving average filter (ΓM = 7 mm); BF, bilateral filter (ΓS = 9

mm). For BF, three different settings for the width of the intensity-dependent part of the filter are used (see plot legend). A general slight

decrease of signal recovery in small spheres at the higher noise level can be observed, but the increased noise does not have a specific (more

pronounced) effect on BF.

Figure 4 Single transaxial slice from the phantom measurements with a background noise level of 28%. original image (A), BF-filtered

data (ΓS = 9 mm, ΓI = 2.5 SUV) (B) and MAF-filtered data (ΓM = 7 mm) (C).
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The main result of this investigation is the fact that

bilateral filtering with a suitable fixed choice of filter

parameters is indeed able to provide a relevant improve-

ment of the SNR (by about a factor of two) without sig-

nificantly compromising the spatial resolution of hot

focal lesions in comparison to the original data: in phan-

tom measurements we found only a negligible reduction

of resolution with BF by about 5%. To achieve the same

degree of noise reduction with standard moving average

filtering, however, one has to accept a decrease in spatial

resolution of nearly 50%. With conventional smoothing

filters one always faces this well-known trade-off

between noise reduction and resolution loss. In clinical

routine the standard procedure is to integrate a certain

degree of smoothing either directly into the image

reconstruction workflow or to perform the required

image smoothing as a postprocessing step. Complete

omission of image smoothing usually is not an option,

since too high image noise would mask relevant low

intensity lesions and generally hampers the diagnostic

evaluation of the images by the physician. Given this

necessity for improvement of the SNR, our results indi-

cate that bilateral filtering is a superior alternative to the

standard smoothing filters.

Evaluation of the performance of bilateral filtering in a

group of patients from clinical routine implies that our

investigation does suffer from the absence of a true gold

standard: we only compared SUVmax values after filtering

(with MAF and BF, respectively) with those obtained in

the original data, which in turn are not necessarily guar-

anteed to be correct. Regarding MAF filtering, our results

confirm the well-known fact that image smoothing with

MAF filters reduces spatial resolution, therefore increases

partial volume effects and consequently compromises

Figure 5 Representative coronal sections from two patient investigation: original image: (A), BF-filtered data (B) and MAF-filtered data (C).

The SUVmax for the small lesions marked by the arrow was 6.9 (A), 6.5 (B) and 4.5 (C) at the top and 7.3 (A), 6.9 (B) and 5.1 (C) at the bottom.

Table 1 Observed relative noise level (%) in the liver and in the lung

Study # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 Mean ± Std.Dev.

Liver orig. 37 31 30 29 19 22 23 34 40 35 30.0 ± 6.9

MAF 19 17 13 16 9 11 11 19 21 21 15.7 ± 4.1

BF 23 19 13 18 11 15 11 25 28 26 18.9 ± 3.7

Lung orig. 31 33 43 33 32 30 32 42 38 48 36.2 ± 6.2

MAF 15 17 24 18 19 17 18 21 24 28 20.1 ± 4.1

BF 13 14 21 16 17 16 16 19 21 25 17.8 ± 3.7
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quantification accuracy, especially in small lesions (and

ultimately prevents detection of lesions near the resolu-

tion limit). Quantification errors in small lesions (relative

to the values derived in the original data) easily

approached 30-40% in our investigation when using

MAF, see Figure 6. After BF filtering, however, we

observed in 32 out of 34 lesions only a slight reduction of

SUVmax (mean ± std. dev.: (4.6 ± 3.7)%) but this small

reduction of the SUVmax is probably explainable by the

achieved noise reduction in the interior of the lesion

which necessarily reduces the value of the maximum

voxel. This effect decreases the known bias of SUVmax

values [15] caused by selecting the single hottest voxel of

the lesion. In this sense it is very well possible that the BF

filtered SUVmax value is a better estimate of the true SUV

than the value derived from the original data, but verifi-

cation of this conjecture would of course require further

investigation. This contrasts to the consequences of MAF

filtering where the indiscriminate reduction of spatial

resolution massively decreases signal recovery in small

lesions. This is the reason for the strong size dependence

of the SUVmax reduction after MAF filtering demon-

strated in Figure 6. The effect can also be appreciated in

Figure 5 where the blurring and concomitant signal

reduction in the small lesions is obvious (quantitatively it

amounts to 35% (top) and 30% (bottom) in these exam-

ples). Moreover, reduction of spatial resolution and

blurring of the object boundaries by MAF filtering does

of course also affect quantitation of larger lesions where

SUVmax alone often is not a suitable measure and para-

meters like lesion volume and SUVmean are more

relevant.

In this study, we have chosen a Gaussian BF with fixed

parameters ΓS = 9 mm and ΓI = 2.5 SUV. As with any fil-

ter, this choice will not be ideal for all applications but it

seems quite well suited for the image characteristics

(noise level, target to background contrast, spatial resolu-

tion) usually found in oncological PET. Our phantom

studies, moreover, have shown that results are neither

sensitive to a variation of ΓI between values of 2 and 3

SUV nor to a modest variation in noise level. (The slight

decrease of signal recovery in small spheres is not specific

to BF but is equally present in the original data and with

MAF and implies a slightly reduced reconstructed resolu-

tion at the higher noise level which would be a limitation

of the iterative image reconstruction.) Nevertheless, the

performance of BF in other studies than head and neck is

not covered by this study and the suitability of the chosen

filter parameters in a different setting would have to be

checked in each case.

The relatively large spatial width of the filter is only

effective in overall homogeneous image regions, i.e.

regions where intensity variations are well below ΓI: the

combined filter weight W(m, n) already decreases to 50%

BF
MAF

volume (ml)

d
e
v
ia

ti
o
n

o
f

S
U

V
m

a
x

fr
o
m

o
ri

g
.

(%
)

100101 502052

0

-10

-20

-30

-40

-50

Figure 6 Changes in SUVmax in 34 lesions after filtering with MAF and BF, respectively. Data are expressed as percentage of change

relative to the SUVmax values derived in the unfiltered images. Note logarithmic scale of abscissa.
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of the value defined by the spatial part WS(Pm - Pn) of the

filter alone when the intensity difference relative to the

target voxel becomes equal to 0.5 · ΓI. Loosely speaking

this reduces the “effective width” of the complete filter

for such neighbouring voxels by a factor of two. The

value chosen for ΓI thus discriminates in a smooth man-

ner between intensity differences (relative to the target

voxel) which are considered as “noise” or “signal”. How-

ever, this intensity-based discrimination will only work as

long as the local target to background contrast is not too

small. This limitation is exemplified by the two lesions

where the reduction of the SUVmax exceeded 10% (see

Figure 6). These lesions exhibited a low target to back-

ground contrast of about 2 and, more important, only a

small SUV elevation above background of about 1.5 SUV

units. For these lesions, the discrimination between

“noise” and “signal” works not very well and the BF pro-

duces results for these lesions which are similar to

(although not as bad as) those obtained by MAF filtering.

This reduced performance of the BF in small lesions

exhibiting at the same time only a small elevation above

the surrounding background could theoretically be

avoided by choosing a smaller value of ΓI. However, if ΓI
is reduced too much, even noise-induced intensity

changes would be interpreted as “edges” and the filter

would effectively be switched off. The chosen parameter

value thus is always a compromise between edge preser-

vation and noise reduction. It should be noted, however,

that for one, performance even in these cases is better

(signal recovery still higher) than for a MAF filter of

comparable noise reduction and, moreover, that the pro-

blem actually only arises for lesions which at the given

SNR are hardly identifiable at all in the data. On the

other hand, MAF filtering of small lesions always causes

substantial problems, independent of their target to back-

ground ratios.

In view of the fact that the SUVmax is still the most

often used quantitative PET parameter for therapy

response assessment [16] its reduction in the MAF-fil-

tered data is especially problematic. In this setting (ther-

apy response control), the SUVmax might be assessed

several times before, during and after therapy. Only if the

lesion does not change in size MAF-filtered data will pro-

vide correct information regarding fractional changes of

tracer uptake since in this case the systematic signal

reduction due to the (increased) recovery effect will be

constant. This is no longer true, however, if the lesions’

size decreases under therapy. In such a case the increased

recovery effects after MAF filtering can lead to a spurious

decrease of the derived SUVmax values which does not

correspond to an actual reduction of tracer uptake.

While these effects do always occur near the limit of the

given spatial resolution, they are obviously aggravated by

the use of MAF filtering. The edge-preserving properties

of the BF thus constitute a major advantage over MAF

filtering. We therefore believe that it is worthwhile to

more thoroughly evaluate this promising tool in the

future to determine its full potential as well as its limita-

tions for different types of studies and tomographs.

Conclusion
Bilateral filtering exhibits superior properties in compari-

son to the smoothing filters routinely applied for noise

reduction in PET. Bilateral filtering allows to increase the

SNR of PET image data while preserving spatial resolution

at object boundaries, thus maintaining the quantitative

accuracy of SUVmax values even in small lesions. There-

fore, it seems worthwhile to investigate more thoroughly

the potential of this filter as a replacement of the standard

Table 2 SUVmax in the original images and after image

filtering for all investigated lesions

Lesion Volume (mL) SUVmax orig. SUVmax MAF SUVmax BF

1 1.2 6.3 4.1 5.9

2 1.9 5.0 2.8 4.7

3 1.9 5.8 3.3 5.6

4 2.4 4.0 2.3 3.5

5 2.9 5.4 3.7 5.1

6 3.2 23 17 22

7 3.4 6.9 4.5 6.5

8 3.7 7.0 4.8 6.6

9 3.7 7.3 5.1 6.9

10 4.3 17 14 17

11 4.4 9.8 7.7 9.5

12 4.7 17 11 16

13 4.8 6.8 5.6 6.2

14 5.1 13 8.8 12

15 5.2 3.3 2.5 2.7

16 5.5 18 15 17

17 6.4 5.8 3.6 5.6

18 6.9 6.8 4.5 6.2

19 7.0 20 15 20

20 7.5 20 16 20

21 8.4 8.4 6.3 8.0

22 11 13 9.5 12

23 11 12 9.1 12

24 14 6.8 5.4 6.3

25 23 18 15 17

26 29 8.7 7.4 8.1

27 30 21 19 20

28 34 11 9.3 11

29 49 17 16 17

30 56 27 24 27

31 62 10 8.4 9.5

32 81 14 11 14

33 99 16 14 16

34 103 26 23 26
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smoothing filters and for improving the image quality of

diagnostic PET.
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