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Suitability of potyviral recombinant
virus-like particles bearing a
complete food allergen for
immunotherapy vaccines
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Zulema Gonzalez-Klein1,2, Marina Amores-Borge1,2,
Carmen Yuste-Calvo1, Maria Garrido-Arandia1,2, Lucía Zurita1,
Vanesa Esteban3, Jaime Tome-Amat1, Araceli Diaz-Perales1,2*

and Fernando Ponz1*

1Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid – Instituto
Nacional de Investigación y Tecnología Agraria y Alimentaria / Consejo Superior de Investigaciones
Científicas (UPM–INIA/CSIC), Universidad Politécnica de Madrid, Madrid, Spain, 2Department of
Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de
Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain, 3Department of Allergy
and Immunology, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Universidad
Autónoma de Madrid (UAM), Madrid, Spain
Virus-like particles (VLPs) have been gaining attention as potential platforms for

delivery of cargos in nanomedicine. Although animal viruses are largely selected

due to their immunostimulatory capacities, VLPs from plant viruses constitute a

promising alternative to be considered. VLPs derived from Turnip mosaic virus

(TuMV) have proven to present a tridimensional structure suited to display

molecules of interest on their surface, making them interesting tools to be

studied in theragnostic strategies. Here, we study their potential in the treatment

of food allergy by genetically coupling TuMV-derived VLPs to Pru p 3, one of the

most dominant allergens in Mediterranean climates. VLPs-Pru p 3 were

generated by cloning a synthetic gene encoding the TuMV coat protein and

Pru p 3, separated by a linker, into a transient high-expression vector, followed by

agroinfiltration in Nicotiana benthamiana plants. The generated fusion protein

self-assembled in planta to form the VLPs, which were purified by exclusion

chromatography. Their elongated morphology was confirmed by electron

microscopy and their size (~400 nm), and monodispersity was confirmed by

dynamic light scattering. Initial in vitro characterization confirmed that they were

able to induce proliferation of human immune cells. This proliferative capability

was enhancedwhen coupledwith the natural lipid ligand of Pru p 3. The resultant

formulation, called VLP-Complex, was also able to be transported by intestinal

epithelial cells, without affecting the monolayer integrity. In light of all these

results, VLP-Complex was furtherly tested in a mouse model of food allergy.

Sublingual administration of VLP-Complex could effectively reduce some

serological markers associated with allergic responses in mice, such as anti-

Pru p 3 sIgE and sIgG2a. Noteworthy, no associated macroscopic, nephritic, or

hepatic toxicity was detected, as assessed by weight, blood urea nitrogen (BUN)

and galectin-3 analyses, respectively. Our results highlight the standardized
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production of allergen-coated TuMV-VLPs in N. benthamiana plants. The

resulting formula exerts notable immunomodulatory properties without the

need for potentially hazardous adjuvants. Accordingly, no detectable toxicity

associated to their administration was detected. As a result, we propose them as

good candidates to be furtherly studied in the treatment of immune-

based pathologies.
KEYWORDS

virus-like particles, antigen delivery, food allergy, immunotherapy, plant
biotechnology, turnip mosaic virus, Pru p 3
GRAPHICAL ABSTRACT
Introduction

In nanobiotechnology, virus-like particles (VLPs) are

increasingly becoming an important set of nanoparticles useful

for a high number of applications. VLPs are very similar to

virions but lack the corresponding encapsidated nucleic acid.

Globally, both types of particles are usually referred to as viral

nanoparticles (VNPs). Plant-derived VLPs in particular are the

subject of important developments in several areas (1). Within

plant VLPs, particles with a high aspect ratio can be found, both

rigid and flexuous ones. Rod-type particles derived from tobacco

mosaic virus (rigid) or potato virus X (flexuous) have received

most of the attention in this context (2), but VLPs derived from

turnip mosaic virus (TuMV), a flexuous rod-type potyvirus, have

also shown an important potential for nanobiotechnological

applications. Thus, chemically or genetically functionalized

TuMV VLPs have been exploited for applications as diverse as

antibody sensing, enzyme nano-immobilization, antimicrobials,

or biofabrication (3).
02
In nanomedicine, VLPs have been widely used as

pharmacological formulations against Alzheimer’s (4),

arthritis (5), atherosclerosis (6) and cancer (7–9) as well as

infections, such as malaria, papillomavirus, and the ongoing

SARS-CoV-2 pandemic, among others (10, 11). VLPs can be

used as delivery platforms to transport cargos inside their

structures specifically to the desired target, since their self-

assembly capacity can be tightly controlled to adopt several

architectures of interest (12–14). In addition, the viral coat can

be attached to the cargo by both chemical fusion or genetic

engineering, resulting in the production of vehicles displaying

multiple subunits of the active component on their surface

(15). As a result, higher effective doses of the compound are

concentrated in a small area, enabling the activation of the

immune system without the need of potentially toxic adjuvants

with undesirable side effects, although adjuvants could also be

included in the formulation if needed (16, 17). In addition,

nanostructures with highly repeated domains are well-known

activators of the human immune system, since epitopes
frontiersin.org
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displayed in an organized repetitive form induce strong

activation of the B cell repertoire (18–20), as well as

dendritic cells (21).

Food allergy has been increasing in prevalence over the past

decades, with an estimation of around 5% of the global

population suffering from it, doubling this figure when
Frontiers in Immunology 03
focusing on infants (22). The World Health Organization and

the European Academy of Allergy and Clinical Immunology

have calculated the very high economical costs derived from the

prevention and treatment of allergies, and even higher when

related to unexpected reactions due to hidden allergens (23).

Thus, regardless of the obvious advances in immunotherapy
B C D

E

A

FIGURE 1

Production of VLP-Pru p 3. (A) Schematic representation of the synthetic genetic constructs coding for the recombinant fusion proteins to be
expressed in plants. CACC sequence for directional cloning into the Gateway Entry vector. ATG initiation codon. Pru p 3 peach allergen
sequence. Linker sequence to provide physical separation of Pru p 3 and CP. Two different linkers were tried. CP TuMV coat protein sequence.
STOP codon. The relative lengths of the different modules in the constructs are not represented at scale. (B) Tertiary structure of the CP-Pru p 3
subunit as modelled by I-TASSER. (C) Quaternary structure of VLP-Pru p 3. (D) Poisson-Boltzmann electrostatic potential mapped onto the
outer surface of VLP and VLP-Pru p 3. (E) Schematic diagram of VLP-Pru p 3 production and purification.
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treatments (24), the general recommendation from clinicians is

still to avoid the contact with the allergen sources (25). The

molecules in the food responsible for allergy triggering in

susceptible individuals are the allergens, most of which are

proteins and/or lipoproteins (26–28). Over the last few years,

increasing attention is being paid to the application of

nanotechnology (nanoparticles) to specific applications such as

al lergen detect ion, diagnosis and al lergen-specific

immunotherapy (AIT) (29–32).

AIT is the only treatment that can eradicate the allergic

phenotype in a patient. In contrast, its use is not extended

through food allergenic patients since better benefit/risk ratios

need to be reached before introducing them in clinical routine

practices (25, 33, 34). One of the main disadvantages these

formulations face nowadays is the fact that AITs are usually

produced using extracts purified from the allergenic source,

which makes it difficult to standardize the actual amount of

allergen administered to the patient. Besides, the presence of

multiple allergens in extracts cannot be discarded, increasing the

probability of undesired cross-reactivity and side effects (35, 36).

In this work, we introduce the design, standardized production,

and characterization of an allergen-coated TuMV-based VLP

(Figure 1), and we study its potential application as a novel AIT

formulation in food allergy management, taking Pru p 3 as a

model, one of the most characterized food allergens from peach

(27, 37, 38).

Pru p 3 is a 9 kDa basic protein belonging to the Lipid

Transfer Protein (LTP) family of allergens. This family is

characterized by the presence of a hydrophobic tunnel in the

protein capable of binding several lipids in vitro, although in

nature these proteins are always found with the same ligand

(39, 40). Their folded structure presents four disulphide bridges

that confers the protein high thermal stability and pH resistance,

being able to maintain its functionality at high temperatures and

extreme pH (both basic and acid) (28, 39). Pru p 3 is the major

allergen from peach (41). However, patients sensitized to it can

also develop allergic reactions when consuming other fruits from

the Rosaceae family, especially apple, apricot and plum (42).

Clinically, allergic reactions to LTPs can include a variety of

symptoms, ranging from moderate manifestations (urticaria,

oral allergy syndrome, vomiting…) to life-threatening

anaphylactic responses (27). All these symptoms appear as

consequence of the existence of specific anti-LTP IgE (sIgE) in

the patients sera (43), which gets attached to high affinity

receptors (FcƐRI) present in mast cell and basophils’ surface.

Cross-linking of IgE and cognate allergens (in this case, LTPs) in

the surface of effector cells leads to the release of

proinflammatory mediators (histamine, leukotrienes,

prostaglandins…) that are responsible for the clinical

symptoms previously described (44). For this reason,

measurement of sIgE levels in sera constitutes a routine
Frontiers in Immunology 04
method commonly used by physicians to diagnose LTP allergy

(27). In addition, other immunoglobulin subtypes, such as sIgG1

and sIgG2a, can also be usually identified in murine models of

the disease (41).

Pru p 3 is found in nature in complex with its ligand, an

alkaloid derivative bound to phytosphingosine, also known as

camptothecin-phytosphingosine (CPT-PHS) ligand (39, 40).

Previous works have shown the importance of the carried

ligands in the sensitization phase of allergy development, both

to LTPs and other proteins (45, 46). The deep characterization of

Pru p 3 mechanism of action using in vitro, in vivo, and in silico

approaches has not only helped us to understand the

mechanisms underlying food allergy sensitization, but also to

use Pru p 3 as a model to study LTP allergy (45, 47). Thus, Pru p

3 is an excellent allergen of reference for nanobiotechnological

developments based on the use of VLPs. We have approached

such developments through the exposure of Pru p 3 on the

external surface of the TuMV VLP via genetic fusion, linked by a

linker. The recombinant protein has been expressed in plants to

prompt self-assembly within the agroinfiltrated plant cells. The

formed VLPs have been characterized and their potential both

for sensing allergen-specific antibodies and AIT have

been explored.
Results

Construction, production, and
purification of recombinant CP-Pru p 3

The synthetic gene construct to be expressed in plants for

TuMV coat protein (CP) fused to Pru p 3 (CP-Pru p3)

(Figure 1A) was cloned in a pEAQ expression vector, and

agroinfiltrated in N. benthamiana plants using Agrobacterium

tumefaciens, in parallel with the construct expressing the

unmodified TuMV CP for its use as control. In order to

analyze the stability of the structure and the possible

physicochemical consequences of fusing Pru p 3 to it, an in

silico modelling was performed. The initial structure obtained

was minimized by means of 10 ns molecular dynamics

simulations (Figure 1B). As shown in Figure 1C, Pru p 3 is

arranged on the TuMV surface of the nanoparticles and produce

a change in the molecular surface of the virion, but also in the

distribution of the electrostatic potential (Figure 1D). The

presence of Pru p 3 produces an increase in the positive

electrostatic regions of the VLPs surface that could modify the

protein-protein interactions exerted by the nanoparticle.

Two weeks after agroinfiltration, leaves were collected and

frozen at -80 °C until use. VLPs were purified as described in the

Methods section (Figure 1E). Two different linkers were tried

(flexible and helicoidal), aimed to provide physical separation
frontiersin.org
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between Pru p 3 and the CP, and different results were obtained

with each of them. In fact, the aspect of the leaves infiltrated with

the different constructs suggested that their expressions and

productions in the plant tissue were quite different

(Supplementary Figure 1). ELISA analyses showed that the

different linkers tested had a relevant effect on the expression

levels of the CP-Pru p 3 protein (Figures 2A, B). Thus,

absorbance readings with the monoclonal antibody against

potyvirus CP, were clearly positive for the wild-type CP

construct and the construct incorporating the flexible linker

(LF) at any time analyzed, but just at, or barely over, background

levels for the helicoidal linker (LH) (Figure 2A). When the

polyclonal anti-Pru p 3 was used, the constructs with both

linkers were positive, but the flexible one gave much higher
Frontiers in Immunology 05
readings (Figure 2B). In light of these results, the CP-Pru p 3

with flexible linker was the chosen construct to be characterized

in the following assays.
VLP-Pru p 3 characterization

After purification, CP-Pru p 3 yields were 10-30 mg/100 g of

agroinfiltrated leaves. SDS-PAGE and immunoblotting analysis

of the produced VLP-Prup3 showed the presence of a protein

with lower mobility than the wild-type CP, and compatible

with the theoretical molecular weight, with positive signal

when blotted against anti-TuMV and anti-Pru p 3

antibodies (Figure 2C).
B

C D E

F

A

FIGURE 2

Characterization of VLP-Pru p 3 production. ELISA analyses of extracts from Nicotiana benthamiana leaves, using (A) anti-Potyvirus, or (B) anti-
Pru p 3 antibodies. Readings at 405 nm are shown of leaves collected at 7, 9, or 13 days post-agroinfiltration (dpa). Red line (background noise)
was calculated as the three-fold absorbance of non-infiltrated leaves. (C) Western blot analyses from exclusion chromatography fractions from
VLP and VLP-Pru p 3 agroinfiltrates. (D, E) Representative transmission electron microscope images of VLP-Pru p 3. (F) Representative analysis
of VLP-Pru p 3 size and dispersion by DLS. The assay was repeated weekly for 6 consecutive weeks to assess stability of the formulation
through time.
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Assembly of CP-Pru p 3 subunits into VLP-Pru p 3 was

assessed by transmission electron microscopy, which confirmed

the presence of VLPs in the preparations (Figures 2D, E).

Particles were quite homogeneous (monodisperse), although

shorter (~400 nm) than the typical length (~720 nm) of

TuMV virions, wild-type CP VLPs, or other TuMV-based

recombinant constructs (48–50). Dynamic light scattering

(DLS) analysis confirmed these results (Figure 2F), as well as

the homogeneity of the VLP population (average polydispersity

index > 0.9).
Frontiers in Immunology 06
Complex displayed in VLP scaffolds
increases its immunostimulatory capacity
in vitro

In order to assess the correct folding of Pru p 3 in the

VLP assemblies, VLP-Pru p 3 were incubated with CPT-PHS

ligand, which was chemically synthetized as previously

descr ibed (40) , thus forming VLP-Complex. After

dialyzing to ensure the removal of ligand excess, VLP-

Complex was analyzed by thin layer chromatography
B

C

A

FIGURE 3

In vitro effects of VLP-Complex over immune cells. (A) Assessment of VLP-Complex formation by TLC. Lipidic fraction was detected by
emission under UV light, due to CPT activity. (B) Proliferation assay of human PBMCs from healthy volunteers (n = 4), stimulated with Complex,
VLP-Pru p 3 or VLP-Complex. After 5 days, cell numbers were determined by flow cytometry and SI was calculated as described in Methods.
Data are presented as mean (SD, Kruskal-Wallis test with Dunn’s correction for multiple comparisons). **P < 0.01. (C) Effects of VLP, VLP-Pru p 3
and VLP-Complex on monocyte apoptosis by Annexin V-PI detection. To quantify the toxicity of the production, they were incubated with THP1
(cells of monocyte origin) for 16 hours. After that, annexin V or PI were added to quantify cell mortality. Four technical replicates were
performed for each stimulus. Representative results are shown.
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(TLC), which confirmed that the complex had been

formed (Figure 3A).

Previous reports indicate that complex formation is vital to

induce an immunological response against Pru p 3, using both in

vitro and in vivo approaches. Accordingly, complex formation

guarantees NF-kB activation in monocytes (40) and promotes

allergic sensitization in experimental mice more efficiently than

Pru p 3 alone (46). In addition, stimulation of human peripheral

blood mononuclear cells (PBMCs) with complex induces

stronger proliferation ratios when compared to non-

complexed Pru p 3 stimulation (45). To assess if these results

could be reproduced with VLP-based formulations, PBMCs

from healthy volunteers were cultured with VLP-Pru p 3 and

VLP-Complex. As shown in Figure 3B, complex induced a two-

fold proliferation of PBMCs when referred to unstimulated

controls, similar to previous reports (45). Whereas VLP-Pru p

3 also induced the same SI (stimulation index), VLP-Complex

induced a much stronger proliferation ratio (seven-fold SI when

referred to controls). This result suggests that the display of

complex in the surface of VLP scaffolds enhances its

immunostimulatory capacity. Noteworthy, this was not
Frontiers in Immunology 07
accompanied by an increase in its immunotoxicity, since

monocytes cultured with VLP-Complex did not incorporate

neither annexin V nor propidium iodide (PI), as assessed by

flow cytometry (Figure 3C). This suggests they did not induce

neither apoptosis nor necrosis in the studied cell line in those

conditions. Altogether, these results make the TuMV VLP-

Complex a good candidate to be studied in-depth for its

possible application in drug designing for immune-

based pathologies.
VLPs-Complex are transported by Caco-
2 cells without affecting epithelial
integrity

To use VLP-Complex in nanotherapeutic formulations, their

ability to be assimilated and transported by human epithelia

must be first studied. As shown in Figure 4A, VLP-Complex was

detected inside Caco-2 cells 2 h after stimulus addition, by

immunofluorescence and confocal microscopy. To assess if a

Caco-2-based epithelium could transport the formulation from
B C

A

FIGURE 4

In vitro effects of VLP-Complex on epithelial cells. (A) Detection of VLP-Complex inside Caco-2 cells by immunofluorescence. Blue: DAPI, red:
Pru p 3, green: VLP. Bar = 10 µm. (B) Detection by ELISA of VLP and VLP-Complex transported through a monolater of Caco-2 cells (in
Transwell™ format), using anti-VLP antibodies. *P < 0.05. (C) Monolayer integrity assessment by TEER measurement. All assays were performed
in four technical replicates. Data are presented as mean (SD, Mann-Whitney test).
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an apical to a basolateral side, these cells were grown in

Transwell® format as previously described (51). Complex, VLP

and VLP-Complex were added to the apical side of the

monolayer, and transport ratios of these formulations to the

basolateral side were quantified by ELISA. 24 h after being added

to the apical side, ~50% of complex had been transported

through the epithelial barrier, which was similar to the

percentage of VLP-Complex transported in the same period

(~60%; Figure 4B). Transport of VLP-Complex was significantly
Frontiers in Immunology 08
greater than that of VLP alone (~30%). Noteworthy, in all cases

transepithelial electrical resistance (TEER) values remained

unaffected 24 h after stimulus addition (Figure 4C).

VLPs-Complex alter the serological
immune profiling of allergic mice

Once the immunological activity and safety of VLP-Complex

were shown in vitro, we sought to characterize these parameters in
B C D

E F

A

FIGURE 5

In vivo effectivity of VLP-Complex. (A) Schematic diagram showing the experimental procedures followed to sensitize and treat C3H mice
(Control n = 5; Allergic n = 5; Allergic + VLP-Complex n = 9). Six consecutive weeks of sensitization were followed by six consecutive weeks of
VLP-Complex sublingual treatment. After resting for one week, mice were euthanized by CO2 suffocation and blood was collected by cardiac
puncture. Levels of antigen specific (Pru p 3 or VLP) (B) sIgE, (C) sIgG1, or (D) sIgG2a were assessed by ELISA. Each mouse was analyzed in
triplicate. Data are presented as mean (SD, Mann-Whitney test). *P < 0.05, **P < 0.01. (E) Representative images and (F) quantification of skins
and hybridized with anti-CD45 antibody (red). Nuclei (blue) stained with DAPI. 546-labelled anti-goat IgG was used as an isotype control.
Quantification of CD45+ cell infiltration was calculated as the number of CD45+ per mm2 (n = 5/group; at least 3 sections were separately
stained from each mouse at distal depths of the tissue and 3-5 images were taken per section). Data are presented as mean (SD. Mann-Whitney
test). **P<0.01. Bar = 20 µm.
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vivo. We chose Pru p 3 allergy as a model of inflammatory

pathology and we developed a mouse model of the disease, based

on previously published reports (45, 46). After sensitization,

allergic mice received VLP-Complex sublingually as AIT, thrice

per week for six consecutive weeks (Figure 5A). One week after the

last AIT administration, mice were euthanized and levels of

serological anti-Pru p 3 antibodies were measured as indicators

of the allergic state of the mice (45). As expected, allergic mice

developed significant high levels of anti-Pru p 3 sIgE, sIgG1 and

sIgG2a antibodies, (Figure 5B–D). VLP-Complex administration

altered this serological profile, by significantly reducing sIgG2a

levels in allergic specimens in almost a two-fold ratio (Figure 5D).

We also observed a downward tendency in sIgE levels (P = 0.06),

the most well-known biomarker associated with allergic

symptomatology (52) (Figure 5B), although anti-Pru p 3 sIgG1

remained unaltered (Figure 5C).

In addition, mice sensitized epicutaneously to Pru p 3 are

known to present significantly greater levels of CD45+ cells in this

organ thannaïve controls (46).However, after sublingual treatment

with VLP-Complex, CD45+ infiltration was effectively reverted

towards control levels, as assessed by immunofluorescence and

confocal microscopy as previously described (46) (Figures 5E, F).

This result suggests that sublingual administration of VLP-Complex

can drive changes in the immune populations of peripheral organs,

such as the skin. Nonetheless, more in-depth studies should be

conducted in the future to determinewhich immunepopulations are

being affected and how this affects the global immunological state of

the allergic specimen.

VLP-Complex did not induce any
detectable signs of toxicity in mice

As well known, safety is a critical point to check in drug

development. Therefore, we performed several studies to

analyzed VLP-Complex toxicity. Remarkably, sublingually

administered VLP-Complex did not induce production of

antibodies targeting the CP itself (Figures 5B–D). This result

might be an indicator of the innocuity of the VLP platform in

this context, that would act as an effective carrier for the

presented molecule, but without exerting notable adverse

effects in vivo. In accordance with this observation, there was

no reduction in the weight of mice receiving VLP-Complex

(Figure 6A), as an indicative of their good health status over the

procedure. Besides, levels of BUN (blood urea nitrogen) also

remained unaltered after VLP-Complex administration, and in

all cases were lower than the established threshold in impaired

renal function conditions (50 mg/dL) (53), thus denoting no

associated kidney toxicity (Figure 6B). Finally, detection of

galectin-3 in liver was performed, although no changes in its

expression and intracellular distribution could be observed by

means of immunofluorescence and confocal microscopy

(Figure 6C), denoting no associated liver toxicity (54).
Frontiers in Immunology 09
Discussion

The way allergens are formulated in AIT-based vaccines has

proven to determine the efficacy obtained with these

formulations (55). Although it is desirable to present allergens

in a context that favors anti-allergic responses, such as in VLP

formulations, sometimes the complexity of the resultant

constructs forces researchers to change the allergen structure

to include only one or two IgE-binding regions, rather than the

complete allergen itself. This might compromise the efficacy of

some formulas, since they are skewed to the considered epitope

in each case (56). The work described in this paper deals with the

production of TuMV-based VLPs displaying a complete food

allergen (Pru p 3) on its surface, as well as its validation as a

formula to successfully induce the presentation of the allergen to

the organism.

The production of the VLP-Pru p 3 formula by

agroinfiltration of N. benthamiana plants proved to be

successful . VLP formation was confirmed by both

transmission electron microscopy and DLS approaches.

Particles were proved to be monodisperse, most of them with

a relatively small size in the range of ~400 nm, which is slightly

smaller than that previously described for the virus (720 nm) (3).

Reduction in VLP size when compared to original virions has

been previously described in the literature for rod-shaped

constructions. For example, while Papaya Mosaic Virus

(PapMV) virions have a canonical length of 500 nm (57),

Denis et al. reported that their size is sharply reduced to 150

nm (30% of their original length) in absence of genetic material

(58). This length was furtherly decreased to 70 nm and 100 nm

after being coupled to influenza’s M2e and HA11 peptides,

respectively (58, 59), suggesting that final size is also affected

by the antigen being coupled. Despite this shift in length, the

PapMV-M2e VLPs displayed notable protective effects against

influenza infection in mice, including stimulation of the

antibody response and an increase of 50% in the survival rate

of the infected mice (58). Thus, at least for plant viruses, it seems

unlikely that a reduction in VLP size can alter the downstream

application they are designed for, although this must be studied

on a case-by-case basis. For TuMV-derived VLP-Complex, the

size reduction did not prevent the formulation to induce the

serologic conversion of the treated mice, as shown in Figures 5B–

D. Also, it should be borne in mind that the fact that Pru p 3

coupling could affect VLP size was not completely unexpected,

given the large size of the polypeptide (~90 residues) when

compared to other antigens that had been previously used in the

past with these VLPs, all of them less than 20 residues long

(49, 50).

TuMV-derived nanoparticles genetically functionalized with

Pru p 3 could be obtained for their characterization and further

applications without many complications. This is a relatively

remarkable result, considering the functionalization site in the
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viral CP, and the structural characteristics of the allergen. The

insertion of the synthetic Pru p 3 gene was at the CP N-terminal

domain, within an amino acid stretch which could not be
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structurally solved by cryoelectronic microscopy (60). This is

usually due to a high degree of flexibility and disorder in the

domain which, in the case of viral proteins, has been often
B

C

A

FIGURE 6

In vivo toxicity of VLP-Complex. (A) Weight evolution of mice during the six consecutive weeks receiving VLP-Complex (Allergic n = 4; Allergic
+ VLP-Complex n = 8; Control n = 4; Control + VLP-Complex n = 10). (B) Determination of blood urea nitrogen levels from Control (n = 10)
and VLP-Complex (n = 10) mice. Each mouse was analyzed in triplicates. Data are presented as mean (SD, Mann-Whitney test). (C) Detection of
galectin-3 in paraffined livers from Control (n = 3), Allergic (n = 3), Control + VLP-Complex (n = 3) and Allergic + VLP-Complex (n = 3) mice. As
a positive control of hepatic stress, livers from control specimens were treated for 72 h with LPS (1 ng/µL) + palmitate (100 ng/µL), following
paraffinization and immunofluorescence as described in Methods. Five images were taken from each mouse. Representative images are shown.
Blue: DAPI, green: galectin-3. Bar = 20 µm.
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related to assembly requirements (61). Pru p 3 crystal structure

(60) revealed a highly ordered globular conformation with four

disulphide bridges, which is a quite different structural situation.

Our previous experience with genetically fused structured small

proteins or peptides had shown the incapability to assemble

VLPs (49, 62), but this was not the case for Pru p 3, a protein

larger than others previously tried. We still do not have an

obvious explanation for this discrepancy, although the fact that

Pru p 3 was physically separated from the CP by a linker most

likely contributed to the alleviation of possible structural

tensions. The differential results obtained with the two linkers

assayed tend to reinforce this view, since the most structured

one, the helical, performed notably worse than the flexible one.

In addition to the correct coupling of the VLP assemblies, it

was confirmed that Pru p 3 was as well adequately folded. As a

member of the LTP family, the 3D structure of Pru p 3 includes a

hydrophobic tunnel which accommodates lipids (28, 40). The

correct formation of this tunnel is vital for the protein to

establish a stable interaction with its natural CPT-PHS ligand,

with a dissociation constant in the range of µM (40). Our results

show that VLP-Pru p 3 particles are able to bind the CPT-PHS

ligand (thus forming VLP-Complex), which suggests that the

tunnel is correctly formed and that Pru p 3 presents an LTP-

characteristic topology. This is crucial to guarantee that the

allergen will be exposed to the immune system in a similar

fashion as it is found naturally in the food, preserving its IgE-

binding regions and its immunogenic activity (63). In order to

guarantee that VLPs would have access to the immune system,

we first studied their ability to be transported by epithelial

tissues. Due to their size, we initially hypothesized that VLPs

would be poorly transported. However, our results with Caco-2

monolayers show that up to 25% of the VLPs can cross the

barrier after 6 h of incubation with the cells. This relatively high

transport ratio of the nanoparticles might be explained due to

their filamentous morphology, as opposed to icosahedral viruses.

Rod-shaped particles display very low diameters (13-15 nm) (64)

despite their large length (in our case, 400 nm), which might

facilitate their transport by the paracellular route, rather than by

transcytosis (65). In fact, rod-shaped VLPs have previously

shown some advantages over icosahedral structures, such as

greater accessibility to tumor environments in anti-cancer

treatments (2). It should be remarked that these high transport

ratios of VLP-based formulas were obtained without a

significant decrease in TEER values after VLP addition. This

observation shows that: a) VLP-based formulations, at the

concentrations studied, exert no toxicity over epithelial cells,

so they constitute safe candidates to be used in nanotherapeutic

formulations; and b) the obtained transport ratios are not an

artifact due to epithelial impairment. Altogether, these results

confirmed that VLPs can cross epithelial barriers and that the

allergen delivered on their surface is correctly folded. One

limitation of this study is that we have not been able to
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determine which receptor mediates the entry of TuMV-

derived VLPs in Caco-2 cells. In fact, we do not know if this

interaction is indeed established through a specific surface

molecule (such as in the case of cowpea mosaic virus and

vimentin), or if TuMV particles are able to display nonspecific

cell entry, as it happens with many wild-type plant viruses (1).

Nonetheless, determining this would be interesting to fine tune

VLP biodistribution in vivo.

We next sought to evaluate the immunogenicity of the

formula by incubation of human PBMCs with VLP-Pru p 3.

Under these conditions, PBMCs exerted a proliferation ratio

increased by 2-fold when compared to unstimulated controls.

Since Pru p 3 has been described to induce stronger proliferative

responses when coupled to its lipid ligand (45, 46), we sought to

test if the addition of CPT-PHS (i.e., VLP-Complex) could

enhance the aforementioned proliferative response. Indeed,

this new formulation exhibited an enhanced proliferation,

increased by 3-fold when compared to VLP-Pru p 3 alone.

This result may be explained due to the ligand activity itself

(40, 45, 46), for example, due to its immunostimulatory

properties when it is phosphorylated by human enzymes (40).

Based on the satisfactory results derived from the in vitro

assays, a pilot preclinical testing was launched to study the use of

VLP-Complex as an AIT for food allergy treatment in a food

allergic mouse model. Since the decrease in allergen specific IgE

levels has been proposed as a surrogate marker for AIT

effectivity (66), we measured the levels of this biomarker in the

blood of allergic mice receiving the formulation. We observed a

downward tendency in specific-Pru p 3 IgE in these mice,

suggesting an initial remission of the allergic phenotype, which

was confirmed as statistically significant in the case of the sIgG2a

isotype. This supports the election ofVLP-Complex as a promising

candidate to be studied in-depth to treat LTP allergy. However,

levels of anti-Prup3 sIgG1 remainedunaltered afterVLP-Complex

treatment. It has been reported that most of the high affinity sIgE-

secreting plasma cells derive from sIgG1+ memory B cells, which

undergo class-switch recombination after exposure to the cognate

allergen (67, 68). In contrast, sIgE+ memory B cells in peripheral

blood from allergic patients are scarce (69). Thus, the persistently

high sIgG1 levels after VLP-Complex administration might be

suggesting an important limitation of the current formula, i.e., its

inability to efficiently remove long-lasting memory sIgG1+

memory B cells from the organism. Nonetheless, more studies

must be conducted before making any assumptions about how

VLP-Complex administration affects the B cell compartment in

vivo. Understanding that interaction is currently a priority

objective, as it will help to refine the formulation to obtain full

serological reconversion in the treated mice.

Other viruses have been used as scaffolds to develop AIT

formulations, as it has been recently reviewed by Bachmann et al.

(55). Cucumber mosaic virus (CuMV) VLPs have been modified

to include an epitope derived from tetanus toxin (TT), making
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the resultant CuMVtt more immunogenic (4). When

functionalized with cat or peanut allergens, this platform has

proven to be a successful tool to alleviate allergic reactions to

these compounds in mouse models of the disease (4, 70). The

authors suggest that the mechanism of action of this therapy

relies on the generation of protective IgG antibodies that

antagonize the perilous effects of elevated IgE in the organism

(70). In a similar fashion, Potato virus Y VLPs have been coupled

to cat allergens to generate an AIT formulation that favors an

increase in allergen-specific protective antibodies in healthy

experimental mice (71).

In contraposition, our results have been obtained without

the use of adjuvants or modifications in the TuMV coat sequence

to enhance its immunogenicity (such as the TT epitope), which

could trigger undesirable side effects, thus reducing patient

adherence to treatment (16). In fact, early toxicity studies

suggest that, although they are highly immunogenic in vitro,

VLPs-Complex do not induce cell death and can pass through

the epithelial monolayer without damaging it. Besides, as shown

in Figure 4B, after 6 h of incubation with intestinal epithelial

cells, 50% of VLP-Complex is secreted to the basolateral side.

Thus, half-life of the formula in the epithelial mucosa is very

short. In this line, monocytes cultured with the formulation

stained negative with annexin V and PI, as assessed by flow

cytometry analyses. When a cell enters in apoptosis, it starts to

express phosphatidylserine in the external domain of its cellular

membrane (72). Annexin V has well-known affinity for this

phospholipid and, thus, detection of surface annexin V by flow

cytometry has been extensively used as a surrogate marker for

apoptosis (73). On the other hand, PI has affinity for nucleic

acids and, thus, it can bind to nucleic DNA. However, under

steady conditions PI cannot cross the cellular membrane and,

thus, living cells do not incorporate it. Only when the cell has

entered into late apoptotic responses, also known as necrosis, PI

gets access to the nucleus and attaches to the DNA. Thus,

detection of PI by flow cytometry is used as a surrogate

marker for necrotic responses (74). In our case, none of these

compounds attached to monocytes after treatment with VLPs or

VLP-derived formulations, which might be an indicative of their

innocuity in these cells, at least for the concentration studied. In

this line, when administered sublingually to mice, no liver

damage or kidney toxicity was detected, which suggests that

accumulation in these organs, if present, is minimal. This is

supported by the fact that well-known nephro- and hepatotoxic

drugs, such as cisplatin and paracetamol respectively, induce an

increase of BUN and galectin-3 levels as fast as 72 h post-

administration in rodents (75, 76). However, none of these

markers were elevated in mice treated with VLP-Complex

under our dosage and posology.

On the other hand, the mechanism of action of VLP-

Complex seems to differ from the one proposed for other AIT

formulations. In our case, this mechanism does not seem to rely

on the production of protective antibodies, but rather on the re-
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education of the immune system that prompts a reduction in

allergen specific IgE and IgG2a levels in the organism. There is

not enough data yet to confirm if the differences observed

between the formulas rely on the VLPs themselves or are

dependent on the route of administration chosen. Anti-peanut

CuMVtt and anti-cat Potato virus Y VLPs were administered

subcutaneously to the mice (70, 71). Nonetheless, our results

were obtained with a sublingual administration, a route that has

shown good adherence ratios in patients with respiratory

allergy (77).

In any case, it should be borne in mind that the molecular

mechanism by which VLP-Complex interacts with the immune

system has not been fully described yet. Generally, the

immunological characteristics of VLPs are dependent on

repetitive and particular structures and the induction of innate

immunity through the activation of pathogen-associated

molecular pattern recognition receptors (78). In addition, it

has been described that biomolecules present in physiological

fluids (such as plasma) can adsorb to the surface of VLPs,

altering their biochemical properties and modifying the way in

which they interact with the organism. This phenomenon, called

protein corona, is dependent on each VLP intrinsic

characteristics and, thus, it should be studied individually to

determine how it affects each VLP-based formulation that has

been described up to now. For example, differences in surface

charge could explain alterations in the serological profile

induced by the formulations (79).

Nonetheless, the immunological mechanisms behind the

serological reconversion observed in mice, as well as studies

about the long-term effects of tolerance maintenance, should be

conducted and discussed in future publications. We cannot

discard that, regarding results derived from those studies,

changes in dosage and posology of the formulation could be

applied in order to optimize it. Addition of adjuvants in the

future to overcome possible limitations cannot be discarded,

either. However, the results described here justify the launch of

larger scale preclinical models that might give answers to

these questions.
Conclusions

In vaccine manufacture, production platforms must be

simple. Here we demonstrate that Pru p 3 can be genetically

fused to the CP of TuMV produced in plants. In summary, our

results show that TuMV-based VLPs have proven to be a

promising antigen-presenting platform. Specifically, our VLP-

Complex formulation has exerted immunoregulatory properties,

both in vitro and in vivo, without showing associated immune,

hepatic, or nephritic toxicity. Given that its low-scale production

has been standardized, and that there is an urgent need to

improve existing AIT formulations to make its translation to

clinical routine feasible, we believe that these VLP-Complex
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constitute a promising candidate to be furtherly studied. In

addition, its production in N. benthamiana plants makes their

production relatively easy to scale up, thus guaranteeing their

large-scale production through molecular farming strategies.
Methods

Pru p 3 cloning in the expression vector.
Plant growing and agroinfiltration

A synthetic gene containing the cDNA sequence of Pru p 3

fused to the CP gene of TuMV was ordered from GeneArt

(ThermoFisher Scientific) and cloned in the pEAQ-HT-DEST1

expression vector (80). Both sequences (Pru p 3 and CP) were

connected by one of two linkers (flexible or helicoidal) designed

to provide physical separation between both parts of the

fusion protein.

The pEAQ constructs were expressed in plants of Nicotiana

benthamiana by agroinfiltration of the corresponding

Agrobacterium tumefaciens (LB 4404 strain), for the

production of the TuMV-derived VLPs (49).
Protein production, purification and
assembly verification

Agroinfiltrated leaves of Nicotiana benthamiana were

recollected and crashed in 0.25M potassium phosphate buffer,

pH 7.5, 0.5 M NaCl. The extract was mixed thoroughly with

chloroform and after centrifugation 10 minutes at 3500 rpm, the

aqueous phase was dialyzed in 0.5M ammonium acetate buffer.

VLPs were purified using filtration chromatography (Sephacryl

S-200, GE Healthcare; 0.5M NH4 Acetate buffer). The

production of the fusion protein (CP-Pru p 3) or TuMV wild-

type CP was assessed by ELISA, SDS-PAGE and Western blot.

All these quality controls of expression and production were

carried out as previously described (49, 81). For the techniques

involving the use of antibodies (ELISA, Western blot) the

identity of the protein expressed was assessed using antibodies

against Potyvirus (SRA 27200; Agdia) and antibodies produced

against Pru p 3 (51).

VLP assembly was assessed in plant extracts as described

previously (50). Grids were examined on a transmission electron

microscopy (JEM JEOL 1010, Tokyo, Japan) in an external

service (TEM, ICTS-CNME, Madrid, Spain). Samples were

immunodecorated with a polyclonal anti-Pru p 3 antibody.

Additionally, VLP-Pru p 3 assemblies were analyzed with a

Zetasizer Nano ZS by DLS (82). Dispersant was ultrapure water

with a temperature of 25°C, a viscosity of 0.8872 mPa·s and a

refractive index of 1.33. Sample temperature was set at 25 °C and

equilibrium time was set at 120 s. Measurements were performed
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angles (13°, 90° and 173°). 5 consecutive measurements were

made for each sample, in triplicates. Results were analyzed with

ZS XPLORER 2.2.0.147 software and graphed with GraphPad6

(GraphPad Software Inc., La Jolla, CA, USA).
Structure modelling

CP-Pru p 3 subunit was modelled by protein threading using

the I-TASSER server (https://zhanggroup.org/I-TASSER/) (83–

85). Quaternary structure of VLP-Pru p 3 assemblies was

obtained by structural superposition of modelled CP-Pru p 3

subunits using Chimera software (http://www.rbvi.ucsf.edu/

chimera) (86). TuMV (PDB entry 6T34) was used as a scaffold

(64). System was minimized by means of Molecular Dynamics

simulations using the CHARMM 3.1 force field and the

multicore CUDA version of NAMD 2.13 in the Tesla V100

GPU of the high-performance computing CBGP in an

isothermal-isobaric ensemble. It was immersed in periodic

rectangular solvation boxes with a spacing distance of 20 Å

and water molecules added according TIP3P model. Ions were

added providing 0.150 M salt concentration. Optimization was

performed along 5000 minimization steps, followed by

equilibration of water for 100 ps at 2 fs time steps at 298 K

and 1 atm with all atoms, except those of water (fixed for 50000

steps). Lastly, simulation ran during 10 ns. Results were

processed and analyzed with VMD 1.9.3 and molecular

graphics were prepared and rendered with Pymol 2.3.2.
In vitro stimulation of immune cells by
VLP-based formulations

To determine if VLP-based therapies can induce immune cell

proliferation, PBMCs from different non-allergic volunteers were

isolated using a Lymphoprep density gradient. PBMCs were then

seeded in flat-bottom 96-well plates at a concentration of 2·105 cells/

mL and incubated with VLP-Pru p 3 or VLP-Complex (20 ng/µL

VLP; 5 ng/µL Pru p 3 or complex). Complex (5 ng/µL) was used as a

positive control to induce proliferation. After 5 days (37°C, 5%CO2),

cellular concentrationwas calculatedusing aBDAccuri cytometer. SI

for each stimuluswas calculated as the variation of cell concentration

over time normalized with the variation of the control.

To evaluate the immunotoxicity of the formulations, human

monocytes (THP1 cells; In vivogen) were seeded in flat-bottom

96-well plates at a concentration of 1·106 cells/mL and incubated

w i th th e s ame s t imu l i a s d e s c r i b ed above . 10 -

hidroxycamptothecin (0.25 ng/µL) was used as a positive

control to induce apoptosis. After 24 h, cells were stained with

annexin V-FITC (1:100, Merck) and PI (1:100, Merck) for 10

min (RT). Samples were analyzed using a BD Accuri cytometer
frontiersin.org

https://zhanggroup.org/I-TASSER/
http://www.rbvi.ucsf.edu/chimera
http://www.rbvi.ucsf.edu/chimera
https://doi.org/10.3389/fimmu.2022.986823
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pazos-Castro et al. 10.3389/fimmu.2022.986823
and results were processed using FCS Express 7 Plus software.

Unstained samples were used as background controls.
Immunolocalization of VLP-Complex in
intestinal epithelial cells

Caco-2 cells (ATCC HTB-37; human intestinal epithelium)

were seeded into poly-L-lysine-treated, 2 cm2 round coverslips

(ThermoFisher), at a concentration of 2·105 cells/cover in 250 µL

of supplemented DMEM. After 48 h of growth (37°C, 5% CO2),

VLP-Complex was added (36 ng/µL VLP; 9 ng/µL complex) and

incubated for 2 hours at 37°C. After extensive washing with PBS,

cells were fixed with 4% formaldehyde (ThermoFisher) for 10

min (RT). Nuclei were stained by treatment with PBS 0.1%

Triton 0.72 mMDAPI for 7 min and blocking was performed for

45 min (RT) with 1% BSA. Samples were then incubated with

anti-TuMV antibodies (CAB 18700; Agdia) and anti-Pru p 3, for

1h (RT). Finally, specimens were mounted with ProLong Gold

Antifade Mountant (ThermoFisher). Images were obtained with

a Zeiss LSM 880 confocal microscope, using 405 and 561 nm

laser excitations. Graphical material was analyzed with ZEN

3.1 software.
Transport assay

Transwell™ plates (24-wells) were seeded with Caco-2 cells

as previously described (51). TEER was measured to assess

monolayer integrity, before and one week after stimuli

addition. VLP or VLP-Complex (20 ng/µL VLP; 5 ng/µL

Complex) were added to the apical side of the monolayer, and

FBS-free basolateral media were collected at different time

points. After being dialyzed in 0.1 M ammonium acetate O/N

(4°C) using Spectra/Por® 3.5 kDa membranes (Spectrum Labs),

samples were freeze-dried and resuspended in equal volumes of

PBS. Samples were then analyzed by ELISA, by coating 96-well

polystyrene microtiter plaques (Corning® Costar, Merck) with

the resuspension O/N (4°C). Subsequently, wells were blocked

with Casein Blocking Buffer (Merck) for 1 h (RT) and incubated

with anti-TuMV antibody for another hour (RT), followed by

extensive washing with PBS and 1 h incubation with anti-rabbit-

HRP. Signal was developed with 1-Step Ultra TMB ELISA

(ThermoFisher) and the reaction was stopped with 2N HCl.

Absorbance (450 nm) was measured with a SPECTROstar Nano

microplate reader (BMG LABTECH).
Animals

Female specific pathogen free C3H mice (6-to-8-week-old)

were purchased from Charles River (L’Arbresle, France). All
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immediately after its arrival to our facilities. They were fed ad

libitum with a Pru p 3-free diet (Labdiet Eurodent Diet 22%

pellet for rodents). All the procedures were carried at the IIS-

Fundación Jiménez Díaz (FJD, Madrid, Spain).
In vivo Pru p 3 allergy model

Mice were sensitized epicutaneously with complex [Pru p 3

and its associated lipid ligand (40)], based on previously

published reports (45, 46). Briefly, abdominal fur was removed

(once per week, for 6 consecutive weeks) by application of

depilatory cream. Immediately after each depilation, mice were

anesthetized with inhaled isoflurane and placed in supine

position. Complex (100 µg in 50 µL PBS) were added in the

depilated area, until dry (~45-60 min). Age- and sex-matched

depilated, non-sensitized animals were used as controls.
In vivo VLP-Complex administration

Posology of VLP-Complex consisted in 3 weekly doses of 80

µg VLP (20 µg complex), for 6 consecutive weeks. Briefly, allergic

and control mice were anesthetized by ketamine:xylazine

intraperitoneal injection and placed in supine position.

Therapy was administered sublingually, in 20 µL 0.5M

ammonium acetate. Age- and sex-matched allergic animals

received 20 µL 0.5M ammonium acetate as control treatment.

Weight was recorded at the beginning of each week. One week

after the last VLP-Complex administration, mice were

euthanized by CO2 inhalation. Blood samples were taken post-

mortem by cardiac punction, and sera was isolated by

centrifugation (10 min, 3000 g). For immunofluorescence

analyses, liver biopsies were collected and included in paraffin.
Serologic profiling

Sera were analyzed by ELISA, to detect both anti-TuMV or

anti-Pru p 3 specific antibodies. For sIgE detection, 384-well

ELISA plates were coated with VLPs/Pru p 3 (5 µg/mL) for 2 h at

37°C, followed by blocking (1h, RT) with 1% BSA. Sera (1:4

dilution) were incubated O/N at 4°C, followed by extensive

washing and incubation with anti-IgE-HRP antibody (1:2000;

PA1-84764; Invitrogen). For sIgG1 and sIgG2a evaluation, 96-

well ELISA plates were coated with the same antigens and

blocked with Casein Blocking Buffer (Merck) for 1 h (RT).

Sera (1:25 dilution) were incubated O/N at 4°C, followed by

extensive washing and incubation with anti-IgG1 (1:5000; A90-

105A; Bethyl) or anti-IgG2a (1:5000; A90-107A; Bethyl)

antibodies. After washing, incubation with anti-goat-HRP
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antibody was performed. For all cases, signal was developed as

described in the Transport assay section.

In addition, BUN was measured as a biomarker for

nephrotoxicity, using the Urea Nitrogen Colorimetric

Detection Kit (Invitrogen), following provider’s instructions.

For this analysis, sera were used at a 1:20 dilution. Absorbance

(450 nm) was measured with a SPECTROstar Nano microplate

reader (BMG LABTECH).
Hepatotoxicity assessment by galectin-3
detection in liver

Paraffined liver biopsies (7 µm sections) were cut using a

microtome (Leica). After deparaffination and rehydration,

specimens underwent antigen retrieval by heating at 87°C for

10 min in 0.12% Tris 0.037% EDTA 0.05% Tween (pH 9.0).

After 15 min of cool-down at RT, samples were washed, and

nuclei were stained with PBS 0.1% Triton 0.72 mM DAPI for 7

min. Blocking was performed for 1 h (RT) with 10% BSA, and

anti-galectin-3 antibody (1:100; SAB4501746-100UG; Merck)

was added for 1 h (RT). After extensive washing with PBS,

secondary anti-rabbit-546 antibody was added for 1h (RT).

Finally, specimens were mounted with ProLong Gold Antifade

Mountant (ThermoFisher). Images were obtained with a Zeiss

LSM 880 confocal microscope, using 405 and 561 nm laser

excitations. Graphical material was analyzed with ZEN

3.1 software.
Statistical analyses

Statistically significant differences were assessed by

GraphPad6 using Mann-Whitney test, except where noted. In

all cases, P values < 0.05 were considered significant.
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SUPPLEMENTARY FIGURE 1

Nicotiana benthamiana leaves agroinfiltrated with the different

constructs. Leaves infiltrated with CP or Pru p 3-LF-CP (flexible linker)

construct show clear bleaching patches, absent or almost absent in the
Pru p 3-LH-CP (helicoidal linker) construct.
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