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Pulse TrainTM control scheme is presented and applied to a

boost integrated flyback rectifier/energy storage dc-dc (BIFRED)

converter operating in discontinuous conduction mode (DCM),

which avoids the light-load high-voltage stress problem. In

contrast to the conventional control techniques, the principal idea

of Pulse Train technique is to regulate the output voltage using

a series of high and low energy pulses generated by the current

of the inductor. The applicability of the proposed technique to

both the input and magnetizing inductances of BIFRED converter

is investigated. Analysis of BIFRED converter operating in

DCM as well as the output voltage ripple estimation are given.

Experimental results on a prototype converter are also presented.
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I. INTRODUCTION

Switching power converters are desired to enjoy
profitable features such as: wide range of output
voltage regulation, small size, low implementation
cost, and simple control scheme. It is well proved
that it is not simple to achieve all these features at the
same time. Boost integrated flyback rectifier/energy
storage dc-dc (BIFRED) converter appears to enjoy
most of the desired features. It achieves a high level of
performance by forcing each energy storage element
to change its state as independent as possible from the
other elements [1].
As its name suggests, BIFRED converter is an

integration of boost and flyback converters. Due
to its topological complications, achieving line and
load regulation in BIFRED converter is not as easy
a task as in classical topologies such as buck, boost
or flyback converters. Excessive voltage across
the energy storage capacitor under variable load
conditions appears to be the major disadvantage of
this topology. To alleviate this problem, different
solutions have been suggested in the literature.
Authors of [2] present a variable-frequency control
method that reduces the voltage stress. Reference
[3] presents simultaneous phase shift control and
duty ratio control to make the output voltage and
the voltage across the energy storage capacitor be
independently controllable. References [4] and [5]
suggest a design in which the flyback part of BIFRED
also operates in discontinuous conduction mode
(DCM). In this solution, due to the operation of both
stages of BIFRED in DCM, the circuit characteristics,
such as voltage transfer ratio, become load dependent,
therefore it is extremely difficult to provide a wide
output voltage regulation range or a fast dynamic
response using classical control methods such as
pulsewidth modulation (PWM).
The Pulse Train control technique is proposed here

to regulate the output voltage of BIFRED converter.
The Pulse Train control scheme makes both inductors
of BIFRED converter operate in DCM; therefore, it
enjoys a low voltage stress on the storage capacitor.
Furthermore, it is simple and provides a very fast
dynamic response regardless of the value of the output
power [6—8]. Pulse Train control scheme regulates the
output voltage based on the presence and absence of
power and sense pulses and reduces the voltage stress
across the energy storage capacitor. This method is
commercially developed in iW2202, which is an 8-pin
IC [9] for dc-dc and off the line ac-dc applications.
Pulse Train is cost effective and robust against the
variations of the parameters of the converter.
Section II describes BIFRED converter operating

in DCM-DCM. The formulation of DCM-DCM
BIFRED is derived in Section III. Section IV presents
the application of Pulse Train to both the input and
magnetizing inductances of BIFRED converter along
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Fig. 1. Circuit diagram of BIFRED converter.

with the simulation results. Output voltage ripple is
studied in Section V. Experimental results of applying
Pulse Train technique to BIFRED converter are
presented in Section VI. Finally, Section VII draws
conclusions and presents an overall evaluation of this
new control technique.

II. BIFRED CONVERTER

The BIFRED converter was initially developed
from integration of a boost converter, operating
in DCM, with a flyback converter, operating in
continuous conduction mode (CCM) [1]. Fig. 1 shows
the circuit diagram of BIFRED topology. Inserting
a diode in front of an isolated SEPIC (single-ended
primary inductance converter) would result in the
same topology [5, 10].
In this converter the input inductor independently

operates in DCM and the energy storage capacitor is
in the series path of energy flow. However, the voltage
across the energy storage capacitor has a strong
dependency on the output load and suffers from high
voltage stress at light loads. Reference [5] introduces
a new operational mode for this converter, where both
boost and flyback converters operate in DCM. With
this new mode of operation, large load-dependent
voltage variations of the energy storage capacitor no
longer exist. Fig. 2 shows four different operating
modes of BIFRED converter operating in DCM-DCM.
These operating modes can briefly be described as
follows.
Mode I: At the beginning of this mode, switch

S is turned on; therefore, both switch S and diode

Fig. 2. Four different operational modes of BIFRED converter operating in DCM-DCM. (a) Mode I (S: on, D1: on, D2: off).

(b) Mode II (S: off, D1: on, D2: on). (c) Mode III (S: off, D1: off, D2: on). (d) Mode IV (S: off, D1: off, D2: off).

D1 conduct. Input voltage source energizes the input
inductor L1. At the same time, magnetizing inductance
of the transformer L2 receives the energy stored in
energy storage capacitor C1 through the switch S.
On the secondary side of the transformer, due to the
negative voltage appearance across diode D2, it gets
reverse biased and output capacitor C2 transfers some
of its energy to load R.
Mode II: This mode initiates when switch S is

turned off. Therefore, the current of the input inductor
L1 flows through the energy storage capacitor C1
and the primary side of the transformer delivering
its energy to capacitor C1. Inductor L1 is completely
deenergized at the end of this interval. Secondary
diode D2 is forward biased, which allows the output
capacitor to be charged through the secondary
winding of the transformer.
Mode III: This mode starts when the input current

reaches zero. Switch S and diode D1 do not conduct
while secondary diode D2 conducts. Therefore,
output capacitor C2 receives all of the energy of
the magnetizing inductance of the transformer L2.
Throughout this whole interval, the energy state of
input inductor L1 remains at zero while the energy
state of the energy storage capacitor C1 stays at
a constant positive level. This mode ends when
magnetizing inductor L2 is completely deenergized.
Mode IV: In this mode, switch S and diodes D1

and D2 do not conduct while the output capacitor
delivers energy to the load. During this interval,
the energy state of inductors L1 and L2 stay at zero
while the energy state of the energy storage capacitor
C1 remains at a constant positive level. This mode
finishes when the switch is turned on again.
Fig. 3 depicts the typical waveforms of the voltage

and current signals of BIFRED converter operating
in DCM-DCM. As this figure suggests, d1 is the duty
ratio of switch S conduction period in mode I, d2 is
the duty ratio of input inductor L1 deenergizing period
in mode II, and d3 is the duty ratio of secondary diode
d2 conduction period in modes II and III.
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Fig. 3. Typical waveforms of voltage and current signals of

BIFRED converter operating in DCM-DCM.

III. FORMULATION DERIVATION OF BIFRED
CONVERTER

Current of the input inductor IL1 begins the
switching period at zero and increases during the first
subinterval with a constant slope given by the applied
input voltage divided by the value of inductance. Peak
input inductor current IL1,max is equal to the constant
slope multiplied by the length of the first subinterval:

IL1,max =
d1TVin
L1

: (1)

Likewise, for the descending current of the input
inductor in the second subinterval, by considering
the reflected output voltage to the primary side of the
transformer and the voltage across the energy storage
capacitor C1, one obtains

IL1,max =
d2T(VC1 + nVC2 ¡Vin)

L1
: (2)

Writing the same equation for inductor L2 in the first
subinterval yields

IL2,max =
d1TVC1
nL2

: (3)

Furthermore, in the second and third subintervals,
based on the descending slope of the magnetizing
inductor of the transformer L2, we can write

IL2,max =
d3TVC2
L2

: (4)

Due to the capacitor charge balance in the equilibrium
mode, including the first and the second subintervals
in which the energy storage capacitor conducts, one
obtains

d1
IL2,max
n

= d2IL1 ,max: (5)

Likewise for capacitor C2, based on the average value
of the current passing through diode D2, we obtain

1

2
d3IL2,max+

1

2
nd2IL1,max =

VC2
R
: (6)

Substitution of (1), (2), and (3) in (5) to eliminate VC1
and d2 yields

nd21T
2V2in

L1
= nL2I

2
L2,max

+ d1TIL2 ,max(nVC2 ¡Vin):

(7)

Substitution of (1), (4), and (5) in (6) to eliminate d2
and d3 yields

RL2I
2
L2,max

+Rd1TVC2IL2,max = 2TV
2
C2
: (8)

Solution of (7) and (8) for VC2 leads to the quadratic
equation of

AV2C2 ¡BVC2 ¡C = 0 (9)

where A= (2nT=R), B = (T2d1V
2
in=L2)

¢
¡q
(d21=4)+ (2L2=RT)¡ (d1=2)

¢
, and C =

(nd21T
2V2in=L1).

Based on the solution of (9), we can approximate
the input to output voltage transfer ratio of BIFRED
converter operating in DCM-DCM (M = Vo=Vin) as

M =
d1
4n

Ãs
2RT

L2
+
8n2RT

L1
+

s
2RT

L2

!
: (10)

The precise value of the voltage transfer ratio,
which is the numeric solution of (9) (solid line) and
its approximation based on (10) (dashed line) are
sketched in Fig. 4 for different values of the load
resistance.
The voltage across the energy storage capacitor

can also be calculated after finding the output voltage
based on the solution of (9) for VC2. In Fig. 5,
normalized value of the voltage across the energy
storage capacitor, using the input voltage, is sketched
as a function of load resistance for different values
of the duty cycle. As we can see in this figure, the
voltage across the energy storage capacitor increases
when the load resistance decreases. This increment is
less than the case when BIFRED converter operates in
DCM-CCM [5].
Duty ratios d2 and d3, as well as d1+d2 as a

function of d1 are depicted in Fig. 6. This result
is based on the solution of (9) and (1)—(6). At the
point where d1+d2 reaches one, the input inductor
will no longer operate in DCM. Furthermore at the
point where d2 and d3 cross each other, magnetizing
inductance of the transformer will no longer operate at
DCM. It is desirable that these two points happen for
the same value of d1. This can be done by choosing
the right values for input inductor L1 and magnetizing
inductance L2. As can be observed from Fig. 6, the
converter needs to operate for the duty ratios of d1
less than the above-mentioned cross points.
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Fig. 4. Precise (solid line) and approximated (dotted line) values

of voltage transfer ratio as function of d1. (a) R = 20 −.

(b) R = 10 −.

Fig. 5. Normalized value of voltage across C1. (a) d1 = 0:1.

(b) d1 = 0:2. (c) d1 = 0:3.

Fig. 6. (a) d2. (b) d3. (c) d1 +d2 as a function of d1.

Fig. 7. Block diagram of Pulse Train control technique.

We need to note that our calculations in Section III
are valid if and only if d3 > d2. Therefore, the best
design criteria is to designate the values of L1 and
L2 in a way to make sure that CCM of L1 and L2
starts at the same point where d2 = d3. In this way,
choosing smaller values for d1 guarantees that both
of the inductors operate in DCM as well as d3 > d2.
Furthermore, magnetizing inductance L2 nearly
operates in critical conduction mode.

IV. PULSE TRAIN CONTROL SCHEME

Pulse Train control algorithm regulates the
output voltage based on the presence and absence
of power pulses, rather than employing PWM [6—8].
Fig. 7 depicts the block diagram of the Pulse Train
regulation scheme. At the beginning of each switching
interval, samples of output voltage are taken. If
the output voltage is higher than the desired level,
low-power sense pulses are generated sequentially
until the desired voltage level is reached. On the other
hand, if the output voltage is lower than the desired
level, instead of sense pulses, high-power power
pulses are generated.
The time duration of power and sense pulses

are the same; but, due to the longer on time of the
switch during a power pulse, compared with a sense
pulse, more power will be delivered to the load. The
ratio between the on-time duration of the switch
in a power pulse and the on-time duration of the
switch in a sense pulse (k) can be chosen by making a
compromise between the output voltage ripple and the
power regulation range from full power to low power.
Pulse Train employs cycle-by-cycle waveform analysis
and hence enjoys fast dynamic response.
Fig. 8 depicts current waveform of the input

inductor of BIFRED converter after Pulse Train is
being applied. At the beginning of each switching
cycle, based on the difference of the output voltage
with the desired voltage level, it will be determined
whether a power or a sense pulse needs to be
generated. Operating in constant peak current mode
control, in a power pulse, the switch remains on
and the current of the input inductor is allowed to
increase until it reaches a designated peak level
(Imax). At this point, the switch turns off and the next
cycle starts when the current of the input inductor
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Fig. 8. Power and sense pulse cycles.

Fig. 9. Simulation results of Pulse Train control of input inductor of BIFRED converter.

reaches zero. A sense pulse has the same period
as the preceding power pulse; but the switch turns
off when its current reaches Imax=k. Since the input
current ramps linearly with the on time of the switch,
the switch on-time duration of a sense pulse is 1=k
times as the switch on-time duration of a power
pulse. Hence, a sense pulse transfers only 1=k2 time
as much energy as a power pulse. The controller
measures the time duration of the power pulses and
makes the subsequent sense pulses to have the same
time duration; hence the switching frequency of the
converter is fairly constant when the load changes.
Fig. 9 shows the simulation results of applying this

control method on a BIFRED converter with Imax =
1 A, k = 4, L1 = 200 uH, L2 = 125 uH, vin = 30 V, and
Vref = 15 V. For this specific value of the output power
demand, the control scheme generates three power
pulses and one sense pulse in each regulation cycle.
We already discussed that the current of the

magnetizing inductance needs to reach zero later than
the current of the input inductor (d3 > d2). Because
of this fact, employment of Pulse Train technique
will cause the magnetizing inductor current to be
continuous sometimes (Fig. 9). The circuit parameters
can be designed in such a way that d3 is slightly
greater than d2 over a wide load variations. Therefore,

the operation of the magnetizing inductance will be
very close to the critical conduction mode.
Pulse Train technique can be applied to the

magnetizing inductance of the transformer as well.
In this application, instead of the current of input
inductor L1, primary and secondary currents of the
transformer are measured and compared with Imax to
generate power and sense pulses. Fig. 10 depicts the
simulation results of the application of Pulse Train
technique on the magnetizing inductance L2. In this
case, both of the inductors operate in DCM.

V. OUTPUT VOLTAGE RIPPLE

Assuming that the output voltage is at its desired
level (VC2 = Vref), we can rewrite (7) as

AI2L2,max+BIL2,max¡C = 0 (11)

where A= nL2, B = d1T(nVref¡Vin), and C =
nL1I

2
L1,max

.
Solving (11) for IL2,max and using (3) and (5) to

find VC1 and d2, when IL1,max = Imax, we can calculate
the average value of the current passing through D2:

IDav =
1
2d3IL2,max+

1
2nd2IL1,max: (12)
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Fig. 10. Simulation results of Pulse Train control of magnetizing inductance of BIFRED converter.

Fig. 11. (a) ¢VO,P and (b) ¡¢VO,S as functions of load

resistance.

The total changes of the output voltage after applying
a power pulse can be estimated as

¢VO,P =
T

C2

µ
IDav ¡

Vref
R

¶
: (13)

Likewise, solving (11) for a sense cycle (IL1,max =
Imax=k) leads us to the total changes of the output
voltage after applying a sense pulse (¢VO,S). ¢VO,P
and ¡¢VO,S as a function of load resistance R and
is sketched in Fig. 11. As we can observe, the
control scheme tries to regulate the output voltage
by generating the right number of sense and power
pulses in each regulation cycle. We can observe that
as the output power increases, ¢VO,P decreases; but
¡¢VO,S increases. This fact implies that at a higher

TABLE I

Sense and Power Pulse Pattern Prediction in One Regulation

Cycle

R ¢VO,P ¡¢VO,S Predicted Pattern

20 0.381 0.164 3*P-7*S

13 0.271 0.274 1*P-1*S

10 0.137 0.408 3*P-1*S

output power level, the control strategy prefers to have
more power pulses rather than sense pulses in each
regulation cycle and vice versa in light loads. The
value of the output load resistance at which the two
graphs cross each other is the value of load, which
requires one power pulse associated with one sense
pulse in each regulation cycle. Considering different
values for the load resistance, different patterns of
high and low power cycles can be extracted using
Fig. 11. Table I shows some examples of the pattern
of power and sense pulses.
According to Table I, for instance when R = 10,

we have ¢VO,P ¼ 1=3 ¤¡¢VO,S which predicts for this
value of load, in each regulation cycle, the converter
generates one sense pulse associated with each three
power pulses. Therefore, first we calculate ¢VO,P
and ¡¢VO,S (equation (13)) associated with each
value of R, then we find two integers as this equation
holds

® ¢¢VO,P = ¯ ¢ ¡¢VO,S (14)

where ® and ¯ represent the number of power and
sense pulses in each regulation period.
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Fig. 12. Measured (a) input current (0.6 A/div) and

(b) output voltage ripple (0.1 V/div) for 60% of full load.

Fig. 13. Measured (a) input current (0.6 A/div) and

(b) output voltage ripple (0.1 V/div) for step load change of 30%

to 60% of full load.

VI. EXPERIMENTAL RESULTS

The Pulse Train controller, iW2202 [9], was
employed to implement a prototype BIFRED
converter. The prototype DCM-DCM BIFRED
converter was designed and implemented to provide
an output of 12 V. Other parameters of the circuit
were almost equal to the simulation parameters.
The experimental results of Pulse Train control

method applied to the input inductor of BIFRED
converter are shown in Figs. 12 and 13. Fig. 12
depicts the input inductor current and the output
voltage ripple for the value of load equal to 60%
of the full load, whereas Fig. 13 shows the same
waveforms for a 30% to 60% step load change. The
vertical arrow marks the time instant at which the step
change is applied.

VII. CONCLUSIONS

DCM-DCM BIFRED converter has the advantage
of low voltage level across the energy storage
capacitor and, therefore, less voltage stress across the
input diode and switch. This converter has found its
way into many applications. To address the challenge
of designing controllers for this type of converters,
this paper has introduced Pulse Train control theory.
This control method has several advantages over
conventional techniques, such as robustness, accuracy,
and fast transient response. Simulation as well as
experimental results completely match with the
theoretical concept.
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