Suitability of Scaled SOI CMOS for High-Frequency Analog Circuits

N. Zamdmer, J.-O. Plouchart, J. Kim, L.-H. Lu, S. Narasimha, P. A. O'Neil, A. Ray, M. Sherony, L. Wagner

IBM Microelectronics Semiconductor Research and Development Center, IBM T. J. Watson Research Center

What is our objective?

• Low-cost CMOS Systems-on-a-chip combining high-speed analog and low-power digital components.

How will we achieve it?

- FET scaling will improve small-signal characteristics and noise.
- SOI will lower parasitic capacitance and substrate coupling.
- Integrated, diversified devices will address specific applications.
- "Scaled" interconnect will support high-performance passives.

FET scaling: the effect on digital and analog performance

Logic delay decreases with decreasing gate length... (J. Sleight, IEDM 2001)

...but what about small-signal transconductance? (H. S. Momose, TED 2001)

NFET small-signal parameters in the 45 to 75 nm Lpoly range

unity current-gain frequency (fT), transconductance (gm) and input capacitance (Cin) vs. Lpoly

Technology Group

@ One winks IDM On an anation 0000

NFET effective gate silicide sheet resistance in the 45 to 75 nm Lpoly range

What sheet resistance is required for high f_{max} over the next few years? $f_{max} \sim f_t/2(2\pi f_t R_g C_{gd})^{1/2}$ for $f_{max} > 250$ GHz at $f_t = 250$ GHz, W = 2 µm, L = 40 nm, $C_{gd} = 0.3$ fF/µm: $R_s < 16 \Omega$ /square

NFET RF noise

Technology Group

For comparison, the Agilent PHEMT ATF-36077.

Benefits of SOI: low parasitic capacitance

NFET diffusion capacitance at 10 GHz

Due to folded gate layout, effective areal diffusion capacitance is twice the above slope = $0.041 \text{ fF}/\mu\text{m}$, equivalent to 840 nm SiO₂

Benefits of SOI: low substrate coupling

NFET output conductance at 6 GHz

In current bulk FET models (BSIM), a substrate RC network is used to capture feedback from drain to channel.

The above shows that such feedback is negligible for normal drain areas in SOI.

Non-issue in SOI: floating-body-induced jitter

Simulated eye diagram of the output of a differential pair

Negligible jitter: time scales of analog waveforms (< 100 ns) are much smaller than body recovery times (~ 1 ms)

CMOS versatility: targeting applications through integration of diversified devices

Variation	Application
multiple oxides	reduced 1/f noise, standby-power control
addition of body-contacts (SOI)	reduced 1/f noise, increased output resistance, improved power gating
multiple V _t s	MTCMOS power-saving circuitry
multiple extension/halos	asymmetric devices with increased output resistance, higher breakdown voltage

1/f noise in body-contacted, thick-oxide SOI NFETs

0.13-μm generation SOI offers 33% less noise for the same width, at about half the channel length of 0.18-μm, thick-oxide bulk (K. W. J Chew, CICC 2001; showed thin-oxide had comparable 1/f noise).

High-performance inductors in standard microprocessor interconnect

standard BEOL: multi-level, multi-pitch, copper, low-k, large total stack height - ideal for inductors

Conclusion

- Demonstrated well-behaved small-signal parameters and gate resistance ,and 196 GHz ft at Lpoly < 50 nm.
- Demonstrated silicon FET noise figure comparable to III-V PHEMT.
- Demonstrated low parasitic capacitance and low substrate coupling of SOI technology at high frequency (~ 10 GHz).
- Demonstrated how particular devices in a diversified technology can target specific functions: low 1/f noise.
- Demonstrated high-Q and high-inductance-density inductors in a standard microprocessor interconnect.

Technology Group

• Through simulation, showed that floating-body-induced transients have little effect on high speed waveforms.

