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Abstract

We introduce a class of suitable weak solutions to the Navier-Stokes system of
equations governing the motion of a compressible viscous fluid. These solutions sat-
isfy the relative entropy inequality introduced by several authors, and, in particular,
they enjoy the weak-strong uniqueness property.

1 Introduction

In a very interesting recent paper, Germain [12] obtained several results concerning a
so-called weak-strong uniqueness property of solutions to the Navier-Stokes system of
equations of a compressible fluid. Motivated by Dafermos [3], and several recent results
by Berthelin and Vasseur [1], and Mellet and Vasseur [22], he considered a class of weak
solutions satisfying the relative entropy inequality and shows that the latter may be
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used to deduce various weak-strong uniqueness results in this class of solutions. In the
present paper, we introduce an intrinsic definition of suitable weak solution in the spirit
of Germain, and, in particular, we establish global-in-time existence within the class of
suitable weak solutions for any finite energy initial data.

Let Ω ⊂ R3 be a bounded regular domain, and let QT ≡ (0, T ) × Ω. We consider an
initial-boundary value problem for the Navier-Stokes system in the form:

∂t% + divx(%u) = 0 in QT , (1.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu) in QT , (1.2)

with

S(∇xu) ≡ µ
(
∇xu +∇xu

t − 2

3
divxuI

)
+ ηdivxuI, (1.3)

supplemented with the standard no-slip boundary condition

u = 0 on (0, T )× ∂Ω, (1.4)

together with the initial conditions

%(0, ·) = %0, (%u)(0, ·) = %0u0 in Ω. (1.5)

The symbol % = %(t, x) denotes the mass density and u = u(t, x) the velocity of the fluid.
Furthermore, S is the viscous stress, and p = p(%) is the barotropic pressure. The viscosity
coefficients µ and η satisfy

µ > 0, η ≥ 0.

Existence of weak solutions in the spirit of Leray [20] was established in a seminal
work by P.-L.Lions [21] on condition that p(%) ≈ %γ, with γ ≥ 9/5. This result was later
extended in [8] to a class of physically relevant adiabatic coefficients γ > 3/2, including,
in particular, the isentropic pressure law of a monoatomic gas p(%) = a%5/3. Note that
existence of global-in-time smooth solutions for any choice of (large) initial data is an
outstanding open problem, even in the two-dimensional case; see, however, Vaigant and
Kazhikhov [29].

Similarly, the problem of uniqueness within the class of weak solutions seems ex-
tremely difficult, see Hoff [14], [15] for the case of small initial data. Even for the appar-
ently “simpler” incompressible system uniqueness in the class of weak solutions is largely
open, at least in the physically relevant three-dimensional setting, see Fefferman [6], La-
dyzhenkaya [18]. On the other hand, there is a significant amount of work concerning
conditional regularity and the property of weak-strong uniqueness in both incompressible
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and compressible case. Following the pioneering results by Prodi [26] and Serrin [27] many
authors established regularity of the weak solutions to the incompressible Navier-Stokes
system under various complementary assumptions. We refer to Galdi [10], Germain [12],
Lemarié-Rieusset [19], and the references quoted therein.

The problem of weak-strong uniqueness for the compressible system (1.1 - 1.5) was
first studied by Desjardins [4] in the class of solutions with bounded density. Recently,
Germain [12] obtained several weak-strong uniqueness results for problem (1.1 - 1.5) under
the extra hypothesis that p(%) = a%γ, and

∇x% ∈ L2γ(0, T ; L( 1
2γ

+ 1
3)
−1

(Ω)), (1.6)

where Ω is a torus T 3 or the whole space R3. More specifically, he shows that a weak
solution satisfying (1.6) coincides with a hypothetical strong solution of the same problem
as long as the latter exists. The main tool of Germain’s approach is the so-called relative
entropy inequality involving both the weak and the hypothetical strong solution. Germain
also realized that the rather restrictive hypothesis (1.6) is needed only to justify the
formal calculation leading to the relative entropy inequality. Accordingly, he suggests an
alternative approach, incorporating the entropy inequality directly in the proper definition
of weak solution.

The main goal of the present paper may be stated as follows:

• We introduce an intrinsic definition of suitable weak solutions to the Navier-Stokes
system (1.1 - 1.5) satisfying, in particular, the relative entropy inequality with re-
spect to any hypothetical strong solution to the problem.

• We propose an explicit approximation scheme and show existence of global-in-time
suitable weak solutions for any finite energy initial data.

• We discuss basic properties of suitable weak solutions, in particular, the problem of
weak-strong uniqueness and conditional regularity issues.

Thus, in contrast with Germain’s result [12], we provide an intrinsic definition of suitable
weak solution and show its existence for any finite energy initial data. Moreover, our def-
inition is independent of existence of hypothetical smooth solutions and easily adaptable
to various classes of domains and boundary conditions. Last but not least, we provide
an explicit construction of suitable weak solutions by means of a family of approximate
problems, therefore showing stability of the approximate solutions that may be relevant
in numerical implementations.
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The paper is organized as follows. In Section 2, we recall the well-known concept
of renormalized weak solutions to problem (1.1 - 1.5) and introduce the suitable weak
solutions. An approximation scheme to construct the suitable weak solutions is proposed
in Section 3. Basic properties of the suitable weak solutions and several applications of
the the existence theory are discussed in Section 4.

2 Weak and suitable weak solutions

We start with the nowadays standard definition of renormalized weak solution to the
Navier-Stokes system, cf. P.-L.Lions [21].

Definition 2.1 We say that %, u represent renormalized weak solution to problem
(1.1 - 1.5) if:

•

% ≥ 0, % ∈ L∞(0, T ; Lγ(Ω)) for a certain γ > 3/2, u ∈ L2(0, T ; W 1,2
0 (Ω; R3)),

p(%) ∈ L1((0, T )× Ω);

• equation of continuity (1.1) is satisfied in the sense of renormalized solutions (see
DiPerna and P.-L.Lions [5]),

∫ T

0

∫

Ω

(
(b(%) + %) ∂tϕ + (b(%) + %)u · ∇xϕ +

(
b(%)− b′(%)%

)
divxuϕ

)
dx dt (2.1)

= −
∫

Ω
(b(%0) + %0)) ϕ(0, ·) dx

for any test function ϕ ∈ C∞
c ([0, T )× Ω) and any b ∈ C∞[0,∞), b′ ∈ C∞

c [0,∞);

• momentum equation (1.2), together with the no-slip boundary condition (1.3), is
satisfied in the sense of distributions,

∫ T

0

∫

Ω

(
%u · ∂tϕ + %(u⊗ u) : ∇xϕ + p(%)divxϕ

)
dx dt (2.2)

=
∫ T

0

∫

Ω
S(∇xu) : ∇xϕ dx dt−

∫

Ω
%0u0 · ϕ(0, ·) dx

for any test function ϕ ∈ C∞
c ([0, T )× Ω; R3).
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As a matter of fact, the weak solutions constructed in [8], [21] also satisfy the entropy
(sometimes called also energy) inequality

∫

Ω

(
1

2
%|u|2 + H(%)

)
(τ, ·) dx +

∫ τ

0

∫

Ω
S(∇xu) : ∇xu dx dt ≤ (2.3)

∫

Ω

(
1

2
%0|u0|2 + H(%0)

)
dx for a.a. τ ∈ (0, T ),

where

H(%) ≡ %
∫ %

1

p(z)

z2
dz.

Solutions satisfying (2.3) may be constructed on any bounded domain in R3, without
any assumption concerning regularity of ∂Ω, see [9].

Following Germain [12] we introduce a function

E(%, r) = H(%)−H ′(r)(%− r)−H(r).

Let r = r(t, x), U = U(t, x) be smooth functions defined on [0, T ]× Ω,

r > 0 on [0, T ]× Ω, U|∂Ω = 0. (2.4)

Suppose that %, u is a smooth solution of the Navier-Stokes system (1.1 - 1.5). A rather
tedious but straightforward computation, specified in detail in Section 3, yields the fol-
lowing integral inequality

∫

Ω

(
1

2
%|u−U|2 + E(%, r)

)
(τ, ·) dx+

∫ τ

0

∫

Ω
[S(∇xu)− S(∇xU)] : ∇x(u−U) dx dt (2.5)

≤
∫

Ω

(
1

2
%0|u0 −U(0, ·)|2 + E(%0, r(0, ·))

)
dx +

∫ τ

0
R (%,u, r,U) dt for a.a. τ ∈ (0, T ),

where

R (%,u, r,U) =
∫

Ω

(
%
(
∂tU + u∇xU

)
· (U− u) + divxS(∇xU)(u−U)

)
dx (2.6)

+
∫

Ω

(
(r − %)∂tP (r) +∇xP (r) · (rU− %u)− divxU

(
%
(
P (%)− P (r)

)
− E(%, r)

))
dx,

and
P = H ′.

For

r =
1

|Ω|
∫

Ω
%0 dx, U ≡ 0
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relation (2.5) reduces to (2.3). This motivates the following definition:

Definition 2.2 We shall say that %, u represent a suitable weak solution to the
Navier-Stokes system (1.1 - 1.5) if:

• the functions %, u are renormalized solution to (1.1 - 1.5) in the sense of Definition
2.1;

• the integral inequality (2.5) holds for any smooth functions r, U satisfying (2.4).

3 Global existence of suitable weak solutions

The main result of this paper reads as follows.

Theorem 3.1 Let Ω ⊂ R3 be a bounded domain of class C2+ν, ν > 0. Suppose that the
pressure p is continuously differentiable on [0,∞), and

p(0) = 0, p′(%) > 0 for all % > 0, lim
%→∞

p′(%)

%γ−1
= a > 0 (3.1)

for a certain γ > 3/2. Let the initial data %0, u0 satisfy

%0 ≥ 0, %0 6≡ 0, %0 ∈ Lγ(Ω), %0|u0|2 ∈ L1(Ω).

Then the Navier-Stokes system (1.1 - 1.5) possesses a suitable weak solution %, u in
the sense of Definition 2.2.

Remark 3.1 Regularity of the boundary is not essential. The same result can be
shown for a general class of domains in the spirit of [9].

Remark 3.2 Hypothesis (3.1) is not optimal, the result can be extended to a fairly
general class of pressure-density state relations as long as p is an increasing function of
%.

The rest of this section is devoted to the proof of Theorem 3.1.
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3.1 Approximation scheme

We construct the suitable weak solution by means of the three-level approximation scheme
proposed in [7, Chapter 7], [25, Chapter 7]. Specifically, we consider a family of finite
dimensional spaces Xn, n = 1, 2, . . . consisting of smooth vector valued functions defined
on Ω satisfying the no-slip boundary condition (1.4).

Equation of continuity is regularized by means of vanishing viscosity,

∂t% + divx(%u) = ε∆x% in QT , (3.2)

supplemented with the homogeneous Neumann boundary conditions

∇x% · n = 0 on (0, T )× ∂Ω, (3.3)

and the initial condition
%(0, ·) = %0,δ in Ω (3.4)

where %0,δ is a smooth, strictly positive function, satisfying the appropriate compatibility
conditions.

Momentum equation (1.2) is replaced by a family of Faedo-Galerkin approximations

d

dt

∫

Ω
%u ·w dx =

∫

Ω

(
%[u⊗ u] : ∇xw + p(%)divxw + δ%βdivxw

)
dx (3.5)

−
∫

Ω

(
S(∇xu) : ∇xw + ε∇x% · ∇xu ·w

)
dx,

with the initial condition
∫

Ω
%u(0, ·) ·w dx =

∫

Ω
%0,δu0,δ ·w dx (3.6)

for any w ∈ Xn. Here, exactly as in [7, Chapter 7], ε > 0, δ > 0 are small parameters
and β > 4 is a suitable constant.

As shown in [7, Chapter 7], [25, Chapter 7], problem (3.2 - 3.6) possesses a (unique)
regular solution %n, un for any fixed n. Specifically,

un ∈ C1([0, T ]; Xn), %n, ∂t%n,∇x%n,∇x∇x%n Hölder continuous on [0, T ]× Ω,

and
0 < min

x∈Ω
%n(t, x) ≤ max

x∈Ω
%n(t, x) < ∞ for all t ∈ [0, T ].
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3.2 Approximate relative entropy inequality

Our goal is to derive an approximate variant of relation (2.5). To this end, consider
smooth functions rm, Um satisfying (2.4), and, in addition,

Um ∈ C1([0, T ]; Xm), m > 0 fixed.

Furthermore, we set
gm = ∂trm + divx(rmUm), (3.7)

and

fm = ∂tUm + Um · ∇xUm +∇xP (rm)− 1

rm

divxS(∇xUm), (3.8)

where

P (%) = H ′(%), P ′(%) =
p′(%)

%
for all % > 0. (3.9)

Subtracting (3.7) from (3.2), we get

∂t[%n − rm] + divx

(
[%n − rm]Um

)
+ divx

(
%n[un −Um]

)
= ε∆x%n − gm. (3.10)

Moreover, the quantity un −Um may be taken as a test function in (3.5) to obtain

∫

Ω
∂t(%nun) · [un −Um] dx (3.11)

=
∫

Ω

(
%n[un ⊗ un] : ∇x[un −Um] + p(%n)divx[un −Um] + δ%β

ndivx[un −Um]
)

dx

−
∫

Ω

(
S(∇xun) : ∇x[un −Um] + ε∇x%n · ∇xun · [un −Um]

)
dx

as soon as n ≥ m. Consequently, after a bit tedious but straightforward manipulation,
relations (3.7 - 3.11) give rise to

∫

Ω
%n

(
∂t[un−Um]+un ·∇x[un−Um]

)
·[un−Um]+∇x

(
p(%n) + δ%β

n − p(rm)
)
·[un−Um] dx

(3.12)

= −
∫

Ω
[S(∇xun)− S(Um)] : ∇x[un −Um]− rmfm · [un −Um] dx

+
∫

Ω
(rm − %n)

(
∂tUm + Um · ∇xUm

)
· [un −Um] dx

+
∫

Ω
%n[Um − un] · ∇xUm · [un −Um] dx
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−ε
∫

Ω

(
∆x%nun · [un −Um] +∇x%n · ∇xun · [un −Um]

)
dx,

where, in accordance with (3.2), (3.7),

%n

(
∂t[un −Um] + un · ∇x[un −Um]

)
· [un −Um] (3.13)

= ∂t

(
1

2
%n|un −Um|2

)
+ divx

(
1

2
%nun|un −Um|2

)
− ε

2
∆x%n|un −Um|2.

Next, since

(rm − %n)
(
∂tUm + Um · ∇xUm

)
· [un −Um]− rmfm · [un −Um]

= (rm − %n)
(

1

rm

divxS(∇xUm)− 1

rm

∇xp(rm)
)
· [un −Um]− %nfm · [un −Um],

we may rewrite (3.12) as

d

dt

∫

Ω

1

2
%n|un −Um|2 dx +

∫

Ω
[S(∇xun)− S(∇xUm)] : ∇x[un −Um] dx (3.14)

+
∫

Ω
%n

(
∇xP (%n)−∇xP (rm)

)
· [un −Um] dx + δ

∫

Ω
∇x%

β
n · [un −Um] dx

=
∫

Ω
%n[Um − un] · ∇xUm · [un −Um] dx

+
∫

Ω

((
rm − %n

rm

)
divxS(∇xUm) · (un −Um)− %nfm · (un −Um)

)
dx

+ε
∫

Ω
∇x%n ·Um · ∇x[un −Um] dx.

Furthermore, by virtue of (3.10), we have

∫

Ω
%n

(
∇xP (%n)−∇xP (rm)

)
·[un−Um] dx = −

∫

Ω
(P (%n)− P (rm)) divx (%n[un −Um]) dx

=
∫

Ω
(P (%n)− P (rm)) (gm − ε∆x%n) dx +

∫

Ω
(P (%n)− P (rm)) divx ([%n − rm]Um) dx

+
∫

Ω
(P (%n)− P (rm)) ∂t (%n − rm) dx.

Following Germain [12] we write

E(%, r) = E(s, r) = H(s + r)−H ′(r)s−H(r), where s ≡ %− r;
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whence

∂E(%, r)

∂s
= P (%)− P (r),

∂E(%, r)

∂r
= P (%)− P (r)− P ′(r)(%− r),

and, consequently,

∫

Ω
(P (%n)− P (rm)) gm dx =

∫

Ω

∂E

∂s
(%n, rm)gm dx, (3.15)

∫

Ω
(P (%n)− P (rm)) divx ([%n − rm]Um) dx (3.16)

=
∫

Ω

(
∂E

∂s
(%n, rm)∇x[%n − rm] ·Um + [%n − rm]

∂E

∂s
(%n, rm)divxUm

)
dx

∫

Ω
∇xE(%n, rm) ·Um dx−

∫

Ω

∂E

∂r
(%n, rm)∇xrm ·Um dx

+
∫

Ω
(%n − rm)

∂E

∂s
(%n, rm)divxUm dx =

∫

Ω

∂E

∂r
(%n, rm)divx(rmUm) dx

+
∫

Ω
divxUm

(
∂E

∂s
(%n, rm)(%n − rm) +

∂E

∂r
(%n, rm)rm − E(%n, rm)

)
dx,

and, finally, ∫

Ω
(P (%n)− P (rm)) ∂t (%n − rm) dx (3.17)

=
d

dt

∫

Ω
E(%n, rm) dx−

∫

Ω

∂E

∂r
(%n, rm)∂trm dx.

Summing up (3.15 - 3.17) we conclude that

∫

Ω
%n

(
∇xP (%n)−∇xP (rm)

)
· [un −Um] dx (3.18)

=
d

dt

∫

Ω
E(%n, rm) dx +

∫

Ω

(
∂E

∂s
(%n, rm)gm − ∂E

∂r
(∂trm + divx(rmUm))

)
dx

+
∫

Ω
divxUm

(
∂E

∂s
(%n, rm)(%n − rm) +

∂E

∂r
(%n, rm)rm − E(%n, rm)

)
dx

−ε
∫

Ω
(P (%n)− P (rm)) ∆x%n dx

=
d

dt

∫

Ω
E(%n, rm) dx +

∫

Ω
P ′(rm)(%n − rm)gm dx
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+
∫

Ω
divxUm

(
∂E

∂s
(%n, rm)(%n − rm) +

∂E

∂r
(%n, rm)rm − E(%n, rm)

)
dx

−ε
∫

Ω
(P (%n)− P (rm)) ∆x%n dx.

Relations (3.14), (3.18) give rise to

d

dt

∫

Ω

(
1

2
%n|un −Um|2 + E(%n, rm)

)
dx +

∫

Ω
[S(∇xun)− S(∇xUm)] : ∇x[un −Um] dx

(3.19)

+δ
∫

Ω
∇x%

β
n · [un −Um] dx

=
∫

Ω
%n[Um − un] · ∇xUm · [un −Um] dx−

∫

Ω
P ′(rm)(%n − rm)gm dx

+
∫

Ω

((
rm − %n

rm

)
divxS(∇xUm) · (un −Um)− %nfm · (un −Um)

)
dx

−
∫

Ω
divxUm

(
∂E

∂s
(%n, rm)(%n − rm) +

∂E

∂r
(%n, rm)rm − E(%n, rm)

)
dx

+ε
∫

Ω

(
∇x%n ·Um · ∇x[un −Um] + (P (%n)− P (rm)) ∆x%n

)
dx,

where ∫

Ω
∇x%

β
n · [un −Um] dx =

∫

Ω
%β

ndivxUm dx−
∫

Ω
%β

ndivxun dx (3.20)

=
∫

Ω
%β

ndivxUm dx +
1

β − 1

d

dt

∫

Ω
%β

n dx− εβ

β − 1

∫

Ω
∆x%n%β−1

n dx

=
∫

Ω
%β

ndivxUm dx +
1

β − 1

d

dt

∫

Ω
%β

n dx + εβ
∫

Ω
%β−2

n |∇x%n|2 dx,

∫

Ω

((
rm − %n

rm

)
divxS(∇xUm) · (un −Um)− %nfm · (un −Um)

)
dx (3.21)

=
∫

Ω
divxS(∇xUm) · (un −Um) dx

−
∫

Ω
%n

(
∂tUm + Um · ∇xUm +∇xP (rm)

)
· (un −Um) dx,

and
−

∫

Ω
P ′(rm)(%n − rm)gm dx

−
∫

Ω
divxUm

(
∂E

∂s
(%n, rm)(%n − rm) +

∂E

∂r
(%n, rm)rm − E(%n, rm)

)
dx

11



= −
∫

Ω
P ′(rm)(%n − rm)gm dx

−
∫

Ω
divxUm

(
%n (P (%n)− P (rm)) (%n, rm)− rmP ′(rm)(%n − rm)− E(%n, rm)

)
dx

= −
∫

Ω

(
∂tP (rm) + Um · ∇xP (rm)

)
[%n − rm] dx

−
∫

Ω
divxUm

(
%n (P (%n)− P (rm)) (%n, rm)− E(%n, rm)

)
dx.

Summarizing the previous estimates we conclude that

d

dt

∫

Ω

(
1

2
%n|un −Um|2 + E(%n, rm)

)
dx +

∫

Ω
[S(∇xun)− S(∇xUm)] : ∇x[un −Um] dx

(3.22)

+
δ

β − 1

d

dt

∫

Ω
%β

n dx ≤
∫

Ω
divxS(∇xUm) · (un −Um) dx

−
∫

Ω
%n

(
∂tUm + un · ∇xUm

)
· (un −Um) dx,

−
∫

Ω

(
∂tP (rm)[%n − rm] +∇xP (rm) · [rmUm − %nun] dx

−
∫

Ω
divxUm

(
%n (P (%n)− P (rm))− E(%n, rm)

)
dx

+ε
∫

Ω

(
∇x%n ·Um · ∇x[un −Um] +∇xP (rm) · ∇x%n

)
dx− δ

∫

Ω
%β

ndivxUm dx.

Thus, at least formally, relation (3.22) coincides with (2.5), (2.6) modulo the extra terms
proportional to ε, δ, respectively.

3.3 Convergence

The limit in the approximate relative entropy inequality follows step by step the existence
proof in [7, Chapter 7], [25, Chapter 7]. More specifically:

• We perform the limit for %n → %ε, un → uε for n → ∞ in the Faedo-Galerkin
approximations.

• The functions rm and Um are replaced by any smooth r and U by means of a density
argument.

• The limits %ε → %δ, uε → uδ for ε → 0, and %δ → %, uδ → u for δ → 0 are
performed, successively.
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Note that the above programme can be carried over as relation (3.22) for Um ≡ 0,
rm = 1

|Ω|
∫
Ω %n dx reduces to the standard entropy inequality (2.3) yielding the uniform

estimates:
{√%u}n,ε,δ bounded in L∞(0, T ; L2(Ω; R3)), (3.23)

{%}n,ε,δ bounded in L∞(0, T ; Lγ(Ω)), (3.24)
{
∇xu +∇t

xu−
2

3
divxuI

}

n,ε,δ
bounded in L2((0, T )× Ω; R3×3), (3.25)

independent of n, ε, and δ. Moreover, there are uniform bounds in terms of ε and δ
necessary to get rid of all ε, δ dependent quantities in (3.22) in the limit ε, δ → 0,
specifically,

ε
∫ T

0

∫

Ω
|∇x%n|2 dx ≤ c, ε

∫ T

0

∫

Ω
|∇x%ε|2 dx ≤ c,

and the refined pressure estimates of the form

∫ T

0

∫

Ω

(
δ%β+1

ε +%γ+1
ε dx

)
dt ≤ c,

∫ T

0

∫

Ω

(
δ%β+ν

δ +%γ+ν
δ dx

)
dt ≤ c for a certain ν > 0. (3.26)

Moreover, the key idea of the existence theory for the compressible Navier-Stokes
system asserts that

%n → %ε, %ε → %δ, %δ → % a.a. on QT ,

which, together with the uniform bounds established, enables us to perform the corre-
sponding limits in the approximate entropy inequality (3.22), see [7, Chapter 7] for details.

Theorem 3.1 has been proved. As a matter of fact, the above procedure yields the
relative entropy inequality (2.5) in a “stronger” differential form, namely

∂t

∫

Ω

(
1

2
%|u−U|2 + E(%, r)

)
(τ, ·) dx +

∫

Ω
[S(∇xu)− S(∇xU)] : ∇x(u−U) dx (3.27)

≤ R (%,u, r,U) .

Unlike (2.5), however, validity of (3.27) is conditioned by certain regularity of the bound-
ary ∂Ω, cf. Kukučka [17].

4 Applications

To begin we identify the lowest level of admissible smoothness of the test functions r, U
in the relative entropy inequality (2.5), (2.6). To this end, we suppose that the pressure
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p satisfies hypothesis (3.1); whence any suitable weak solution in the sense of Definition
2.2 belongs to the regularity class (3.23 - 3.26).

Thus, for the left hand side (2.5) to be well defined, the functions r, U must belong
at least to the class

r ∈ Cweak([0, T ]; Lγ(Ω)), U ∈ Cweak([0, T ]; L2γ/γ−1(Ω; R3)), (4.1)

∇xU in L2((0, T )× Ω; R3×3), U|∂Ω = 0. (4.2)

Similarly, a short inspection of the integrals appearing in (2.6) yields

∂tU ∈ L1(0, T ; L2γ/(γ−1)(Ω, R3))⊕ L2(0, T ; L6γ/(5γ−6)(Ω, R3)), (4.3)

∇2
xU ∈ L1(0, T ; L2γ/(γ−1)(Ω, R3×3×3))⊕ L2(0, T ; L6γ/(5γ−6)(Ω, R3×3×3)), (4.4)

and
∇xU ∈ L1(0, T ; L∞(Ω, R3)). (4.5)

Moreover, the function r must be bounded below away from zero, and, similarly to (4.3),
(4.4),

∂tP (r) ∈ L1(0, T ; Lγ/(γ−1)(Ω))⊕ L2(0, T ; L6γ/(5γ−6)(Ω)), (4.6)

∇xP (r) ∈ L1(0, T ; L2γ/(γ−1)(Ω; R3))⊕ L2(0, T ; L6γ/(5γ−6)(Ω; R3)). (4.7)

Note that

∂tP (r) = P ′(r)∂tr, where P ′(r) =
p′(r)

r
≈ rγ−2 for r >> 1.

It is easy to see that the relative entropy inequality (2.5), (2.6) can be extended to U,
r satisfying (4.1 - 4.7) by means of a simple density argument.

4.1 Weak-strong uniqueness

Our aim is to show that a suitable weak solution coincides with a strong solution of the
Navier-Stokes system emanating form the same initial data provided the latter exists.
More specifically, we assume that %̃, ũ is a weak solution of the Navier-Stokes system in
the sense of Definition 2.1 enjoying extra regularity properties, namely

0 < % ≤ %̃(t, x) ≤ %, |ũ(t, x)| ≤ u for a.a. (t, x) ∈ QT , (4.8)

∇x%̃ ∈ L2(0, T ; Lq(Ω; R3)), ∇2
xũ ∈ L2(0, T ; Lq(Ω; R3×3×3)), q > max{3, 3

γ − 1
}. (4.9)
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To begin, we observe that, by virtue of the standard embedding relations,

ũ ∈ L2(0, T ; W 1,∞(Ω; R3)), (4.10)

and that

q >
6γ

5γ − 6
for γ >

3

2
.

Moreover, equations (2.1), (2.2) are satisfied in a strong sense, specifically,

∂t%̃ ∈ L2(0, T ; Lq(Ω)),

and
∂tb(%̃) +∇xb(%̃) · ũ + b′(%̃)%̃divxũ = 0 a.a. in QT

for any Lipschitz b. Similarly,

∂tũ ∈ L2(0, T ; Lq(Ω; R3)),

and

∂t%̃ + ũ · ∇xũ +∇xP (%̃) =
1

%̃
divxS(∇xũ) a.a. in QT .

As a matter of fact, hypothesis (4.9) implies (4.8) provided the initial distribution
of the density %̃0 is bounded below away from zero on Ω. Indeed, by virtue of (4.9),
there exists at least one point τ ∈ (0, T ) such that %(τ, ·) ∈ W 1,q(Ω) ↪→ C(Ω); whence
the uniform upper bound on %̃ follows by integrating (1.1) along characteristics. Then
equation (1.2) can be used to deduce the uniform bound on ũ.

In view of (4.9), (4.10), the functions r = %̃, U = ũ can be used in the relative entropy
inequality (2.5). After a straightforward manipulation, we deduce that

R(%,u, %̃, ũ) =
∫

Ω

1

%̃
(%− %̃)divxS(∇xũ) · (ũ−u) dx+

∫

Ω
%(u− ũ) ·∇xũ · (ũ−u) dx (4.11)

+
∫

Ω

(
E(%, %̃)− %

(
P (%)− P (%̃)

)
+ %̃P ′(%̃)(%− %̃)

))
divxũ dx,

which coincides with the formula obtained by Germain [12]. Thus, similarly to [12], we
have ∣∣∣∣

∫

Ω
%(u− ũ) · ∇xũ · (ũ− u) dx(τ, ·)

∣∣∣∣ (4.12)

+
∣∣∣∣
∫

Ω

(
E(%, %̃)− %

(
P (%)− P (%̃)

)
+ %̃P ′(%̃)(%− %̃)

))
divxũ dx

∣∣∣∣
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≤ h(τ)
∫

Ω

(
1

2
%|u− ũ|2 + E(%, %̃)

)
(τ, ·) dx for a.a. τ ∈ (0, T ), h ∈ L2(0, T ),

provided p is twice continuously differentiable in (0,∞) and (4.10) holds. Indeed we have

E(%, %̃)− %
(
P (%)− P (%̃)

)
+ %̃P ′(%̃)(%− %̃)

= H(%)− %H ′(%)−
(
H(%̃)− %̃H ′(%̃)

)
+ %̃H ′′(%̃)(%− %̃);

whence ∣∣∣E(%, %̃)− %
(
P (%)− P (%̃)

)
+ %̃P ′(%̃)(%− %̃)

∣∣∣ ≤ c(δ, %̃)E(%, %̃)

provided % ≥ δ > 0, while, as H ∈ C[0,∞),
∣∣∣E(%, %̃)− %

(
P (%)− P (%̃)

)
+ %̃P ′(%̃)(%− %̃)

∣∣∣ ≤ c1(δ, %̃)|%− %̃|2 ≤ c2(δ, %̃)E(%, %̃)

as soon as 0 ≤ % ≤ δ.
Finally, as a direct consequence of Korn’s inequality, we have

∫

Ω
[S(∇xu)− S(∇xũ)] : ∇x(u− ũ) dx ≥ Λ‖u− ũ‖2

W 1,2
0 (Ω;R3))

;

whence, by virtue of the standard embedding W 1,2 ↪→ L6(Ω),

∫

{%≤M}

∣∣∣∣∣
1

%̃
(%− %̃)divxS(∇xũ) · (ũ− u)

∣∣∣∣∣ dx (4.13)

≤ Λ

2
‖u− ũ‖2

W 1,2(Ω;R3) + c(Λ,M)‖ũ‖2
W 2,3(Ω;R3)

∫

Ω
E(%, %̃) dx

for any M >> 1. On the other hand, in accordance with hypothesis (4.9),

∫

{%>M}

∣∣∣∣∣
1

%̃
(%− %̃)divxS(∇xũ) · (ũ− u)

∣∣∣∣∣ dx (4.14)

≤ c(M, %̃)‖u− ũ‖W 1,2
0 (Ω;R3))‖divxS(∇xũ)‖Lq(Ω;R3)E(%, %̃).

Consequently, combining the relative entropy inequality (2.5) with relations (4.11 -
4.14), we can use Gronwall’s lemma to conclude that
∫

Ω

(
1

2
%|u− ũ|2 + E(%, %̃)

)
(τ, ·) dx +

∫ τ

0

∫

Ω
[S(∇xu)− S(∇xũ)] : ∇x(u− ũ) dx dt (4.15)

≤ c(T )
∫

Ω

(
1

2
%0|u0 − ũ0|2 + E(%0, %̃0)

)
(τ, ·) dx for a.a τ ∈ (0, T ),

in particular, % ≡ %̃, u ≡ ũ provided %0 = %̃0, u0 = ũ0.
Thus, we have shown the following weak-strong uniqueness result.
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Theorem 4.1 Let Ω ⊂ R3 be a bounded domain of class C2+ν, ν > 0. In addition to
hypotheses of Theorem 3.1, suppose that p is twice continuously differentiable on the open
interval (0,∞). Assume that the Navier-Stokes system admits a weak solution %̃, ũ in
QT in the sense of Definition 2.1, belonging to the regularity class specified through (4.8),
(4.9).

Then %̃ ≡ %, ũ ≡ u, where %, u is the suitable weak solution of the Navier-Stokes
system emanating from the same initial data, the existence of which is guaranteed by
Theorem 3.1.

Remark 4.1 Similar result can be shown for the Navier-Stokes system driven by an
external force f .

Remark 4.2 As observed above, hypothesis (4.8) can be omitted provided %̃0 is bounded
from below, cf. similar hypotheses in Germain’s paper [12].

Remark 4.3 Smoothness of the boundary ∂Ω is not necessary, see [9].

4.2 Conditional regularity criteria

There are many results, mostly devoted to the more popular incompressible Navier-Stokes
system, concerning conditional regularity of the weak solutions. Very roughly indeed,
the weak solutions are regular as soon as they belong to a “critical” regularity class.
The best known examples can be found in the work by Prodi [26], Serrin [27], or more
recently, Neustupa et al. [23], [24]. Comparable results for the compressible Navier-Stokes
system are in short supply and subject to various restrictions on the geometry of domains
and/or viscosity coefficients (see e.g. [2], [13], [16]). This is mostly due to the fact that
the viscosity provides only a partial smoothing effect on some but not all quantities in
question. Recently, the authors of [28, Theorem 1.3] showed the following regularity
criterion for the compressible Navier-Stokes system:

Proposition 4.1 Let Ω ⊂ R3 be a bounded smooth domain and 3 < q ≤ 6. Moreover, let
%0 ≥ 0, %0 ∈ W 1,q(Ω), u0 ∈ W 1,2

0 (Ω; R3)∩W 2,2(Ω; R3), and let the following compatibility
condition holds:

−S(∇xu0) +∇xp(%0) =
√

%0g for a certain g ∈ L2(Ω, R3).

Then there exists a positive time T > 0 such that the Navier-Stokes system (1.1 - 1.5)
admits a unique strong solution %, u belonging to the class

% ∈ C([0, T ); W 1,q(Ω)), u ∈ C([0, T ); W 2,2(Ω; R3)) ∩ L2(0, T ; W 2,6(Ω; R3)).
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Moreover, if the maximal existence time T = Tmax is finite, and

0 ≤ 3η < 23µ,

then
lim sup
t→Tmax−

[sup
x∈Ω

%(t, x)] = ∞. (4.16)

Combining the previous result with Theorem 4.1 we obtain the following conditional
regularity criterion for the Navier-Stokes system.

Theorem 4.2 Let Ω ⊂ R3 be a bounded domain of class C2+ν, ν > 0. Let %0, u0 be given
such that

%0 ∈ W 1,6(Ω), 0 < % ≤ %0(x) ≤ % for all x ∈ Ω,

u0 ∈ W 2,2(Ω; R3) ∩W 1,2
0 (Ω; R3).

Suppose that the pressure p satisfies the hypotheses of Theorem 3.1, and that

µ > 0, η = 0.

Let %, u be a suitable weak solution of the Navier-Stokes system in QT , the existence of
which is guaranteed by Theorem 3.1.

If, in addition,
ess sup

QT

% < ∞,

then %, u is the unique (strong) solution of the Navier-Stokes system belonging to the
regularity class specified in Proposition 4.1.

Corollary 4.1 Let Ω and the initial data %0, u0 be the same as in Theorem 4.2. Assume
that %, u is a suitable weak solution of the Navier-Stokes system in QT such that

ess inf
x∈Ω

%(τ, x) = 0 for a certain τ ∈ (0, T ).

The there exists 0 < τ0 ≤ τ such that

lim sup
t→τ0

[ess sup
x∈Ω

%(t, x)] = ∞.

Corollary 4.1 may be interpreted in the way that the density must “blow-up” before
developing a vacuum.
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4.3 Stability issues

As a straightforward consequence of (4.15) we obtain the following stability result.

Theorem 4.3 Let Ω ⊂ R3 be a bounded domain of class C2+ν, ν > 0. In addition to
hypotheses of Theorem 3.1, suppose that p is twice continuously differentiable on the open
interval (0,∞). Assume that the Navier-Stokes system admits a weak solution %̃, ũ in
QT in the sense of Definition 2.1, belonging to the regularity class specified through (4.8),
(4.9), with the initial data %̃0, ũ0. Moreover, suppose that

%0,ε → %̃0 in Lγ(Ω), %0,ε ≥ 0,
∫

Ω
%0,ε|u0,ε − ũ0|2 dx → 0 as ε → 0.

Then

sup
τ∈[0,T ]

‖%ε(τ, ·)− %̃(τ, ·)‖Lγ(Ω) + sup
τ∈[0,T ]

‖%εuε(τ, ·)− %̃ũ(τ, ·)‖L1(Ω;R3)) → 0,

and
uε → ũ in L2(0, T ; W 1,2

0 (Ω; R3)),

where %ε, uε is a suitable weak solution of the Navier-Stokes system in QT , emanating
from the initial data %0,ε, u0,ε.

The convergence obtained in the course of the proof of Theorem 3.1 may be interpreted
in terms of stability of the approximation scheme proposed in (3.2 - 3.6) that may be
of some interest in possible numerical implementations. The first observation - a direct
consequence of Theorem 4.2 - asserts that the approximate solutions converge for n →∞,
ε → 0, and δ → 0 to a (unique) strong solution of the Navier-Stokes system provided the
latter exists in QT . Secondly, the same is true if a posteriori bounds were available in
the L∞−norm for the density at each level of approximations. We refer to Gallouët et
al. [11] for other interesting problems related to numerical analysis of the compressible
Navier-Stokes system.
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[25] A. Novotný and I. Straškraba. Introduction to the mathematical theory of compress-
ible flow. Oxford University Press, Oxford, 2004.
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