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Abstract

We explore the homogenization limit and rigorously derive upscaled equations for
a microscopic reaction-diffusion system modeling sulfate corrosion in sewer pipes
made of concrete. The system, defined in a periodically-perforated domain, is semi-
linear, partially dissipative and weakly coupled via a non-linear ordinary differen-
tial equation posed on the solid-water interface at the pore level. Firstly, we show
the well-posedness of the microscopic model. We then apply homogenization tech-
niques based on two-scale convergence for an uniformly periodic domain and derive
upscaled equations together with explicit formulae for the effective diffusion coeffi-
cients and reaction constants. We use a boundary unfolding method to pass to the
homogenization limit in the non-linear ordinary differential equation. Finally, be-
sides giving its strong formulation, we also prove that the upscaled two-scale model
admits a unique solution.

Key words: Sulfate corrosion of concrete, periodic homogenization, semi-linear
partially dissipative system, two-scale convergence, periodic unfolding method,
multiscale system.

1 Introduction

This paper treats the periodic homogenization of a semi-linear reaction-diffusion
system coupled with a nonlinear differential equation arising in the modeling
of the sulfuric acid attack in sewer pipes made of concrete. The concrete cor-
rosion situation we are dealing with here strongly influences the durability of
cement-based materials especially in hot environments leading to spalling of
concrete and macroscopic fractures of sewer pipes. It is financially important
to have a good estimate on the moment in time when such pipe systems need
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to be replaced, for instance, at the level of a city like Los Angeles. To get
good such practical estimates, one needs on one side easy-to-use macroscopic
corrosion models to be used for a numerical forecast of corrosion, while on the
other side one needs to ensure the reliability of the averaged models by allow-
ing them to incorporate a certain amount of microstructure information. The
relevant question is: How much of this oscillatory-type information is needed
to get a sufficiently accurate description of the heterogeneous reality? Due to
the complexity of possible shapes of the microstructure, averaging concrete
materials is far more difficult than averaging metallic composites with rigor-
ously defined well-packed structure. In this paper, we imagine our concrete
piece to be made of a periodically-distributed microstructure. Based on this
assumption, we provide here a rigorous justification of the formal asymptotic
expansion performed by us (in [1]) for this reaction-diffusion scenario. Note
that in [1] upscaled models are derived for a more general situation involving
a locally-periodic distribution of perforations!. Locally periodic geometries
refer to a special case of z-dependent microstructures, where, inherently, the
outer normals to (microscopic) inner interfaces are dependent on both spatial
slow variable, say x, and fast variable, say y.

In the framework of this paper, we combine two-scale convergence concepts
with the periodic unfolding of interfaces to pass to the homogenization limit
(i.e. to € — 0, where ¢ is a small parameter linked to the relative size of the
perforation) for the uniformly periodic case. Here, the outer normals to the in-
ner interfaces are dependent only on the spatial fast variable. For more details
on the mathematical modeling of sulfate corrosion of concrete, we refer the
reader to [2,3] (a moving-boundary approach: numerics and formal matched
asymptotics), [4] (a two-scale reaction-diffusion system modeling sulfate cor-
rosion), as well as to [5], where a nonlinear Henry-law type transmission con-
dition (modeling H,S transfer across all air-water interfaces present in this
sulfatation problem) is analyzed. Mathematical background on periodic ho-
mogenization can be found in e.g., [6-8], while a few relevant (remotely resem-
bling) worked-out examples of this averaging methodology are explained, for
instance, in [9-14]. It is worth noting that, since it deals with the homogeniza-
tion of a linear Henry-law setting, the paper [11] is related to our approach.
The major novelty here compared to [11] is that we now need to pass to the
limit in a non-dissipative object, namely a nonlinear ordinary differential equa-
tion (ode). The ode is describing sulfatation reaction at the inner water-solid
interface — place where corrosion localizes. This aspect makes a rigorous av-
eraging challenging. For instance, compactness-type methods do not work in
the case when the nonlinear ode is posed on e-dependent surfaces. We circum-
vent this issue by ”boundary unfolding” the ode. Thus we fix, as independent
of €, the reaction interface similarly as in [15], and only then we pass to the
limit. Alternatively, one could use varifolds (cf. e.g. [16]), since this seems to

I The word ”perforation” is seen here as a synonym for ”pore” or ”microstructure”.



be the natural framework for the rigorous passage to the limit when both the
surface measure and the oscillating sequences depend on €. However, we find
the boundary unfolding technique easier to adapt to our scenario than the
varifolds.

Note that here we approach the corrosion problem deterministically. However,
we have reasons to expect that the uniform periodicity assumption can be
relaxed by assuming instead a Birkhoff-type ergodicity of the microstructure
shapes and positions, and hence, the natural averaging context seems to be
the one offered by random fields; see ch. 1, sect. 6 in [17], ch. 8 and 9 in [18],
or [19]. But, methodologically, how big is the overlap between homogenizing
deterministically locally-periodic distributions of microstructures compared to
working in the random fields context? We will treat these and related aspects
elsewhere.

The paper is organized as follows: We start off in section 2 (and continue
in section 3) with the analysis of the microscopic model. In section 4, we
obtain the e-independent estimates needed for the passage to the limit ¢ — 0.
Section 5 contains the main result of the paper: the set of the upscaled two-scal
equations.

2 The microscopic model

In this section, we describe the geometry of our array of periodic microstruc-
tures and briefly indicate the most aggressive chemical reaction mechanism
typically active in sewer pipes. Finally, we list the set of microscopic equa-
tions.

2.1 Basic geometry

Fig. 1 (i) shows a cross-section of a sewer pipe hosting corrosion. We assume
that the geometry of the porous medium in question consists of a system of
pores periodically distributed inside the three-dimensional cube Q := [a, b]?
with a,b € R and b > a. The exterior boundary of {2 consists of two disjoint,
sufficiently smooth parts: I'V - the Neumann boundary and I'” - the Dirichlet
boundary. The reference pore, say Y := [0, 1]?, has three pairwise disjoint
connected domains Y?*, Y and Y* with smooth boundaries I'** and I'"“, as
shown in Fig. 1 (iii). Moreover, Y :=Y*UY>» UY".

Let ¢ be a sufficiently small scaling factor denoting the ratio between the
characteristic length of the pore Y and the characteristic length of the domain
Q. Let x* and x* be the characteristic functions of the sets Y and Y¢,
respectively. The shifted set Y} is defined by

ka =Y + Z?:ijej for k= (k’l, k’g, kg) S Z?’,

where e; is the j unit vector. The union of all shifted subsets of Y} multiplied
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Fig. 1. Left: Cross-section of a sewer pipe and pointing out one region. Middle:
Periodic approximation of the periodic rectangular domain. Right: Reference pore
configuration.

by ¢ (and confined within 2) defines the perforated domain Q¢ namely
QF 1= Ugegs{eY}” | €Y, C Q}.

Similarly, ©f, I'**, and ' denote the union of the shifted subsets (of )
Y&, I3, and I'}P* scaled by €. Since usually the concrete in sewer pipes is not
completely dry, we decide to take into account a partially saturated porous ma-
terial 2. We assume that every pore has three distinct non-overlapping parts:
a solid part (grain) which is placed in the center of the pore, the water film
which surrounds the solid part, and an air layer bounding the water film and
filling the space of Y as shown in Fig. 1. The air connects neighboring pores to

one another. The geometry defined above satisfies the following assumptions:

(1) Neither solid nor water-filled parts touch the boundary of the pore.
(2) All internal (air-water and water-solid) interfaces are sufficiently smooth

and do not touch each other.
These geometrical restrictions imply that the pores are connected by air-filled

parts only which is needed not only to give a meaning to functions defined
across interfaces, but also to introduce the concept of extension as given, for
instance, in [20]. Furthermore, there are no solid-air interfaces.

2.2 Description of the chemistry

There are many variants of severe attack to concrete in sewer pipes, we focus
here on the most aggressive one — the sulfuric acid attack. The situation can
be described briefly as follows: (The anaerobic bacteria in the flowing waste
water release hydrogen sulfide gas (H2S) within the air space of the pipe. These
bacteria are especially active in hot environments. From the air space inside
the pipe, HyS(g)?® enters the pores of the concrete matrix where it diffuses
and then dissolves in the pore water. The aerobic bacteria catalyze some of the
H, S into sulfuric acid HySO,4. HsS molecules can move between air-filled part
and water-filled part the water-air interfaces [21]. We model this microscopic

2 The solid, water and air parts corresponds to Y, Y and Y¢, respectively.
3 HyS(g) and H3S(aq) refer to gaseous, and respectively, aqueous H>S.



interfacial transfer via Henry’s law [22], (see the boundary conditions at I'**
in (3) and (4)). Hy,SO, being an aggressive acid reacts with the solid matrix 4
at the solid-water interface, which is made up of cement, sand, and aggregate,
and produces gypsum (i.e. CaSOy, - 2H,0). Here we restrict our attention to
a minimal set of chemical reactions mechanisms as suggested in [2], namely.

10H" + SO, % + org. matter — HyS(aq) + 4H,0 + oxid. matter
HyS(aq) + 20y — 2HT + SO,
H,S(aq) = H2S(g)
2H,0 + HT + SO;? + CaCO3 — CaSO, - 2H,0 + HCO3

(1)

We assume that reactions (1) do not interfere with the mechanics of the solid
part of the pores. This is a rather strong assumption since it is known that (1)
can actually produce local ruptures of the solid matrix [23]. For more details
on the involved cement chemistry and connections to acid corrosion, we refer
the reader to [24] (for a nice enumeration of the involved physicochemical
mechanisms), [23] (standard textbook on cement chemistry), as well as to
[25—27] and references cited therein. For a mathematical approach of a similar
theme related to the conservation and restoration of historical monuments, we
refer to the work by R. Natalini and co-workers (cf. e.g. [28]).

2.3 Setting of the equations

The data and unknown are given by

uj, : 8 — Ry - initial concentration of H3S0,(aq)

u3, : 8 — Ry - initial concentration of HyS(aq)

u5, - 8 — R - initial concentration of HyS(g)

ug, - 2 — R, - initial concentration of moisture

ug, : 0 — R, - initial concentration of gypsum

u :Tp x (0,T) — R - exterior concentration (Dirichlet data) of H5S(g)
uj : Q° x (0,7) — R - concentration of HyS0,(aq)

(
us : Q° % (0,7) — R - concentration of HyS(aq)
ug : Qf x (0,7) — R - concentration of HsS(g)
ug : Q° x (0,7) — R - concentration of moisture
uz : I'2" x (0,7) — R - concentration of gypsum

All concentrations are viewed as mass concentrations. We consider the fol-
lowing system of mass-balance equations defined at the pore level. The mass-

4 The solid matrix is assumed here to consist of CaCOs only. This assumption can
be removed in the favor of a more complex cement chemistry.



balance equation for HySO, is

o + div(—d;Vui) = —kjui + kus, x € Q°, t € (0,7T)
ui(z,0) = uj,(x), xe€QF )
—nf-diVu; =0, zel? te(0,7)
—n® - diVui = en(ui,us), zeIlte(0,7T).

The mass-balance equation for HsS(aq) is given by

oS + div(—d5Vus) = kSuS — ksus, 1€ Q°, t € (0,7T),
u3(x,0) = us(x), z€Q° )
—n® - d3Vus = e(a’(x)us — b°(x)u;), z el te(0,7)
—n°-d3Vu; =0, xzelP" te(0,7).

The mass-balance equation for HyS(g) reads

owus + div(—d;Vus) =0, x€Qf, te (0,7)
Wi(,0) = wig(e), @€ 0
—n®-dsVu; =0, xcTV tc(0,7) (4)
ug(w,t) = ul(z,t), ze€TlP te€(0,T)
—n® - d5Vu§ = —e(a®(x)us — b°(x)u3), z el te(0,7).

The mass-balance equation for moisture follows
Owui + div(—d;Vul) = kjuj, € te (0,7)
Ui(l‘,()) = Uio(l’), LS o

—nf-diVui; =0, zel? te(0,7)
—n°-diVu; =0, xzel2’ te(0,7).

()

The mass-balance equation for the gypsum produced at the water-solid inter-

face is
g = n(ui,us), rel te(0,T)

6
ug(x,0) = ugy(x), zeli¥ te(0,7). (6)

3 Weak formulation and basic results

We begin this section with a list of notations and function spaces. Then we
indicate our working assumptions and give the weak formulation of the mi-
croscopic problem; we bring reader’s attention to the well-posedness of the
system (2)—(6).

3.1 Notations and function spaces

We use (o, B) o1y = Jy Jor aBdzdt, (o, B)omyxr. == [y Jp. aBdogdt. (-),
| | and || - || denote the dual pairing of H'(£2°) and H'(QF), the norm in
L?(9F), and the norm in H'(F), respectively. ¢ and ¢~ will point out the



positive and respectively the negative part of the function ¢. We denote by
Cx(Y), Hy(Y), and Hy(Y)/R, the space of infinitely differentiable functions
in R™ that are periodic of period Y, the completion of CZ(Y) with respect
to H'—morm, and the respective quotient space, respectively. Furthermore,
Hl,(Q) = {u € H'(Q)|u = 0 on I'”}. The Sobolev space H?(2) as a com-
pletion of C*°(2) is a Hilbert space equipped With a norm

O
el = el + ( ], f, L2 2 o

and (cf. Theorem 7.57 in [29]) the embedding H?(2) — L?(Q2) is continuous.
Since we deal with an evolution problem, we need typical Bochner spaces like
L*0,T; HY(S2)), L*(0,T; H1(2)), L*(0,T; H:p(2)), and L2((0,T) x; H;#(Y)/R).
In the analysis of the microscopic model, we use frequently the following trace
inequality for e—dependent hypersurfaces I'V*: For . € H' (), there exists

a constant C*, which is independent of €, such that

eleliar,) < C(Ielize) + %[V eelizior))- (7)

The proof of (7) is given in Lemma 3 of [30]. For a function ¢° € H?(Qf) with
B € (3,1), the inequality (7) refines into ,

. = e lef(z) — ¢*(y)]
eleelZar,) SCo(!sos!%zms)Jré‘w/Q/Q o — y[ni2s dxdy), (8)

where Cff is again a constant independent of . For proof of (8), see [15].
To simplify the writing of some of the estimates, we employ the next set of
notations:

d; == m1n|d|@€{1234} d; == minf\cia

i|7

[0,T]xQ [0,T1xQ
D,, = od: |, me {1,2,3}, k;:= kS e{1,2
o (O], m € 41,23}, ky = min [ K], € {1,2)
Kj = min_| k5 |, k; := min_| /::j )
[0,T1xQ [0,T]xQ
ko= sup K| RS = sup [R5,
(0,7)xQ (0,T)xQ
Kﬁ ‘= sup ’ atkfn |7 MZ ‘= Sup | u?,E |7 (S {172737475}7
(0,T)xQ (0,T)xQ
A*®:= sup |ac|, B*:= sup |b,
(0,T)xTwa (0,T)xTwa
A*®:= sup |G|, B®:= sup |0,
(0,T) xI'wa (0,T)xI'pe
a*:= sup |a|, b®:= sup b,
(0,T)xTwa (0,T)xTwa
Q*:= sup Q). n:=lnllec; 7= 1|0l

s€(0,T)xDgw



3.2 Assumptions on the data and parameters

We consider the following restriction on the data and parameters:

(A1) d; € L*((0,T) x Y)3*3, 0yd; € L>((0,T) x Y)3*3, Oud; € L>=((0,T) x
Y33 (di(t,2)6,€) > dyp | € | for dig > 0, for every £ € R?, (t,x) €
(0,T)x Y, i€ {1234}

(A2) 7 is measurable w.r.t. t and x and n(«, ) = k§R(a)Q(5), R is sub-linear
and locally Lipschitz function and ) is bounded and locally Lipschitz
function such that

0, otherwise 0, otherwise

R(a) = {positive, if a>0, Q(3) = {positive, if B < Bmaz,
Additionally to (A2), we sometimes assume (A2)’, that is

(A2)" O <,

(A3) u§y € L*(Q°) N LY(QF), i € {1,2,4}, u§, € L*(Q5) N LL(Q), ug, €
LX) 0 L2 (TS

(A4) a®Ms = b Ms, k°M, = My, ki M, = k3 M.

(A5) a,b € CY([0,T]; C¥*(T*)),a,b > 0in [0,T] x T** dya,dpb € L>=((0,T) x
re).

(A6) 8tu3[)) , Oyu? and Vou are bounded.

(A7) k3 € CY([0,T]; CO¥(T**)) and k; € C*([0,T]; CO*(Y)) for any j € {1,2}
and « €]0, 1].

The assumptions (A1)—(A3), (A5), and (A6) are of technical nature. The first
equality in (A4) points out an infinitely fast (equilibrium) Henry law, while the
last two equalities remotely resemble a detailed balance in two of the involved
chemical reactions.

3.8  Weak formulation of the microscopic model

Definition 1 Assume (A1) and (A3). We call the vector u® = (u5, uj, us, uj, uf),
a weak solution to (2)~(6) ifus € L*(0,T; H'(Q%)), oyus € L*(0,T; H'(X)),j €
{1,2,4}, u§ € uf + L*(0,T; Hp(5)), Owug € ul + L2(0,T; H1(Q)), ug €
L>((0,T) x I's%), 0w € L>®((0,T) x I'*™) such that the following identities
hold
(Opus, 901>(0,T)><Q£ + (d1Vui), V%)(O,T)xﬂa
= —(k1ul, 1) 0,m)x0 + (k2u3, ©1)(0,1)x0 9)
—e(n(ui, ug), 901)(0,T)xrgw7
(05, ©2)0.1)x0= + (d5Vu3), Vipa) 0.1)xq0
= (kjui, v2)0m)x0s — (k5u5, ¥2)(0,1)x0° (10)
+ e(aeus, @2)(0,T)xrgm — e(acus, 902)(0,T)xrgm,



(Oru3, p3)(0,1)x0s = —(d3Vu3), Vioz)o1)x0: a1
— e(azus, 903)(0,T)xrga + e(acus, 803)(07T)><1—~g,a’
(O, pa)omyxee = =(diVuq), Voa)omyxas + (Kui, wa)o.r)xor (12)

for all p; € L*(0,T; H'(Q9)),7 € {1,2,4} and 3 € L*(0,T; H%D(Qi)) to-
gether with the ode

Owug = n(ui,uz) a.e. on (0,7) x I'¥* (13)

and the initial conditions

u; (0,2) = uiy(z) x € Q° for alli € {1,2,4},
u5(0, ) = uip(w) @ € 0%, (14)
uz(0,2) = ugy(x) x € I'Y”.

3.4  Basic results

Lemma 2 (Positivity and L™ -estimates) Assume (Al)-(A6), and let t €
[0, T] be arbitrarily chosen. Then the following estimates hold:
(i) ui(t) >0, i€ {1,2,4} a.e. in Q°, u5(t) >0 a.e. Q5 and ui(t) > 0 a.e. on
rws,
(11) ui(t) < M;, i€ {1,2}, ui(t) < (t+1)My a.e. in Q° , ui(t) < My a.e. in Qf
and ug(t) < My a.e. on T'Y%.
Proof (i). We test (9)-(12) with ¢ = (—u§~, —u5~, —ui~, —uj ") element of
the space [L*(0,T; H*(Q))]? x L*(0, T; H.p (Q5) x L*(0,T; H' (). We obtain
the following inequality
SNP4IV P < kP
— e(n(ui; ug), —ui rew.

Note that the first term on the r.h.s of (15) is negative, while the third term
is zero because of (A2). We then get

Ol |7+ 2ea [Vuis~* < k5 ([ + [us ) - (16)
On the other hand, (10) leads to

1 ke
GOrlus ™ o V[P < T (Jui [+ s )
+ea™(u3 ™, u5 " )rwe + 5b°°|u§_|12~gm.

By the trace inequality (7) (with e < 1), we get

Oufus™[* + 2(dy — C°)|[ Vs~ P < k5 (Jui™? + [us™?)

} . N (17)
+ 2070 |u5 ™| 4 2ea™ (u5 ™, u5 ™ )pwa.



(11) leads to
Ous™ P +2(ds — C*a™)|[Vug ™[> < 2eb™(ug ™, ui rwa + 2C%a™|ug™ [, (18)
while from (12), we see that
g™ |” + 2da| Vg~ P < k5 ([us > + [u5 ) - (19)
Adding up inequalities (16)-(19) gives
4
Oy |us TP+ 2da [Vui ™ P 4 2(dy — C*6) [Vug ™ [?

i=1
+2(dg — C*a™)|Vu§~|? + 2d4| Vui |?

. (20)
< (2k° + k3° 42070 +2C%a™) Y |us
i=1
+ 2e(a™ + ™) (u5 ", u5 rwa,
and hence,
4
O Y i P4 2d4 |V [P+ 2(dy — C*0%°) | Vg™ |?
i=1
+ 2(ds — C*a™)|Vu§™|? + 2dy4|Vus ™ |?
(21)

4
< (2k7° + k5T 4 CH(a™ +0%)) > [ui P
=1

1
e (@ 457 0lus e + Sl [y )

Applying the trace inequality (7) to estimate the last term on the right side
of (21), we finally get

4
03 uE |2 + 2y [Vas ™2 + (2dy — 2070 — 76 (a™ + b)) | Vs |2
=1

C*2
+ (2d3 — 2C"a™ — T(a"o + VN |Vus ™| + 2dy| Vg |?
4
S Cl Z |U§_|2.
i=1
Thus, we have
4 4
S [T - & S [T
i=1 i=1

where Cy := 2k§° + k5° 4+ C*(a™ 4 b>) + C*(6 + 3)(a> + b™) and ¢ is chosen
conveniently. Gronwall’s inequality together with [u$(0)]” = 0 gives now the
desired result. Note that (A2) ensures automatically the positivity of ug.

10



(ii). We consider the test function
(1, 02,03, 1) = ((ui — My)™, (u — Ma) ", (ug — Ms)™, (uf — (t + 1)Ma)").

Obviously, ¢ € [L*(0,T; H'(Q2)))* x L*(0,T; Hip () x L*(0,T; H(QF) is
allowed asltest function. We obtain from (9) that
SO (us = M) 4 |V (u] = M) TP < —ha|(uf = Ma)"f?
— (k1 My, (uf = My)")
+ k37 ((ug = M)", (ug — Ma)™)
+ (k3" Ma, (uf — M1)")
— e(n(ug, ug), (ui — My)")rze.

Relying on (A4), we get the estimate

Ol (us — M) *? < B3(|(uf = My)T [ + [(ug — Ma) ™). (22)
(10) in combination with (A4) gives that
Oul(ug — M2)** +2(dz — C*0%)|V (u — My)*|?
<k (|(ui = Mo)*P? + [ (ug — Ma) ™))
+2C7b| (ug — M) *|?
+ 2ea™((ug — Mo)™, (u§ — M3)™ )pwa.

(23)

By (11), we obtain

Oyl(ug — Ms) ™| + 2(ds — C*a™)|V(ug — M3)*|?
< 2C%a™ |V (u§ — Ms)*t|? (24)
+ 28()00((1[; — M2>+, (Ulg — M3)+>1"7éua.

Using again (A4), (12) yields
Ol (uf — (¢ + 1) M) [* < K7(|(uf — My)** + [ (ug — (t+ 1)M) " ). (25)

Adding up (22)—(25) side by side, we get

3
D Oul(u§ = M) " | + il (uf — (¢ + 1)Ma)*[* + (2dy — 2076%°)|V (ug — Ma) " |?
j=1

+ (2d3 — 2C*a™®)|V (u§ — M3)*|?

3

< (2K 4+ K 4+ 2C"a™ + 2C70°) (Y |(u§ — M) ?
j=1
+ (g — (¢ + 1) M) *) + (> + 6°) (0] (ug — Ma) " [fye
]' €
515 = Ma)* ).
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We use the trace inequality (7) (with e < 1) to deal with the boundary terms in

(26). Then Gronwall’s inequality yields for all ¢ € (0, T) the following estimate
ui(t) < My, j€{1,2,5}a.e. in O

us(t) < Ms, a.e.in
ugy < (t+1)My ae. in Q°.
Furthermore, by (A2) u is bounded.

Proposition 3 (Uniqueness) Assume (A1)-(A4). Then there exists at most
one weak solution in the sense of Definition 1.

Proof. We assume that w/* = (u}°, ub® u}®, u}®, ul),j € {1,2} are two dis-
tinct weak solutions in the sense of Definition 1. We set uS = u; — u>*° for
all i € {1,2,3,4}. Firstly, we deal with (15). We obtain

Oz = Opuz™ = n(ur ", us™) — Uy, us”). (26)

Integrating (26) along (0,T) and using (A2), we get

176 28 o0 t 1 o0 o0 2,6

lus® — uz”| < k3 cRcQleo lus® — u2®|dr + kPer@Q / lup® — ube|dr.
Gronwall’s inequality implies
¢
k(1) — w25 (1)] < 02/ ul® — u2F|dr for ae. t e (0,T),  (27)

where Cy := k°crQ™(1 + Cste®®') and Cs := k$°cregM;. We calculate

1

§3t|ui|2 +di|Vuil* < —kifud* + k5 (ug, u5) + e(m = mo,uf)rew,  (28)
where we denote 7, — 172 := n(ul®, uy®) — n(u, uz®). We can write

1 ke
SONGP + V0P < — P+ "2 (s + ugl?)

+eCy(us® — u?f, U )psw (29)
+ ek erQ™ (uy® — ut, uf)rsw.
Now, inserting (27) in (29) yields
1 €2 €12 €12 kgo €2 €12
§8t|u1| + di|[Vui|” < =k fu]” + —(|u1| + [uzl?)
502 (30)
+ Cueluslf rsw T 55 28 |U1 std7'7
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where Cy 1= k§PcpQ™> + $2. Using (7), we estimate the last two terms in
to obtain the inequality

1 kS®
SO + TP < — P+ "2 (s P+ [ugf?) + € i

c3
+Vui)) + O [ (il + 22 Vs ar.

(30)

(31)

Note that the constant C*, arising from in (31), stems from (7). Rearranging

now the terms, we have
O |us|? + (2d; — 2C*Cye®)|Vus|? + 2k [us)? < (ks° + C*Cy) (Jus|?
st + 05 [l + 29
Following the same line of arguments as before, we obtain from (10) that

Oclus|* + 2da|Vus|* < —2ksup]* + k7 (Ju * + u3]*)
+ 2ea™ (u3, u5)rwe + 26b°°|u§|%5m,

while from (11), we deduce
O us)® + 2ds|Vug|* < 2eb™(ug, ug)rwe + 25a™|uj

..
Proceeding similarly, (12) yields
Oelus|* + 2da| Vs |* < k37 ([uil” + |ugl*).
Putting together (32)—(35), we get
IS ui]? + (2dy — C*Cye®) [ Vui|* + 2do| Vug|* + 2d3| Vs |

+ 2d4| VU |* 4 2k |us ?
< (2K° + kS° 4+ CFCy) B Jus P

*012 ! €12 2 €2
+ Ok [l + Vi Py
20 Jo
+ 25b|u§|%1€m + 2€G|U§’%g;a

1
+ (@™ +5%) (0]ulpwe + <[u5lrm)-

Applying the trace inequality (7) to the boundary terms in (36), we get

Ot |us | + (2dy — 20%Cye?)| VU |?
+ (2dy — 20%0®e? — C*6e%(a™ + b™)) | Vus|?
* 2

C
4 (2ds — 20 e — Tgmw + b)) |V ?

+ 2dy|Vu§|? + 2k 5[ < G5B g2

13
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*012 t €12 2 €12
+ O 5k [ (il + 2| Vi ), (37)
where Cy 1= 2k{° + k3° + C*Cy + 2C*(a™ + b)) + C*(a™ + b®) (6 + 5). Let us

choose € and § such that

2d,y
€€ ‘|0, W [
s [0*52((100 L B%) 2dy — CFboE ]

2d3 — C*a>e? 7 C*e2(a™ + b>)

With this choice of (g,d), (37) takes the form
t
0:Sio|ui|* + CIVuil® + Clui|* < Co(Sisyfug]® +/O (Juil* + €% Vui[*)dr),

where Cg := 2k{° + k3° 4+ C*Cs + C*(a™ 4 b>) + C*(;—; and C := min{2d, —
2C*Cqe?, 2k, }. Taking in (37) the supremum along ¢ € (0,7) and applying
Gronwall’s inequality, we obtain the following estimate

_ [T _ T
z;;l\ug\uc/o |vu;f|2dt+c/0 s |2dt < 0. (38)

Thus, the proof of Proposition 3 is completed.

Theorem 4 (Global Existence) Assume (Al) — (A3). Then there exists at
least a global-in-time weak solution in the sense of Definition 1.

Proof. The proof is based on the Galerkin argument. Since the proof is rather
standard, and here we wish to focus on the passage to the limit ¢ — 0, we
omit it.

4 A priori estimates for microscopic solutions

This section includes the e— independent estimates.

Lemma 5 Assume (A1)-(A6). Then the weak solution of the microscopic
model (9)-(14) satisfies the following a priori bounds:

| w5 220 @< O § €{1,2,3,4}
I Vat% 220102000 < C,

| 0ss5 | 220,120 < C,

| u3 |22 0,151 @5 < C,

| VO3 || 20,1200 < C,

|| 81571/; ||L2(O,T;L2(QE C

AN TN N N N TN
=
N

N N N e N N
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| u§ || oo 0,1y xree) < C,

(45)
| Ovus |2 0,1y xrsny < C. (46)
In (39)-(46), the generic constant C' is independent of €.
Proof. We test (9) with ¢ = uj to get
1
SO + do| VUi < = fug]® + k57 (ul, ) — e(n, uf)rse,
(47)

o
< 2 (Jus P+ ) + A Qe (g, wi e

After applying the trace inequality to the last term on r.h.s of (47), we get
1 €2 €12 kgo €12 €12 * 7,00 /)00 €12 2 €12
58t|u1| + di|Vui|” < 7(‘“1’ + [u5]") + C*k Q¥ cr(|ui]” + €7 Vui | )rsw.

1 * 71,00 o0
SO + (dy = ECTRFQ ) [Vui [* < Cr(|uif + [ug]?), (48)
where C7 := % + C*kQ>ck. Taking po = uj in (10), we get
1 €2 €12 kfo €2 €2 €2
Lo + dafVus? < M (i 4 pusl?) — bl
+ ea® (u5, u3)rwa + Eb°°|u§|%ga.

Application of the trace inequality (7) only to the last term leads to

1 ke
SO+ (d — OV Vs < “L(us P+ ) + 2

(49)
+ gam(ug,ug)rga.
We choose @3 = u§ as a test function in (11) to calculate
§@t|u§\2 + (d3 — C*a™e?)|Vug|? < eb™ (ug, u3)rwa + C*a™|ug|?. (50)
Setting ¢4 = uj in (12), we are led to
1 12 €12 kfo 12 |2
SO+ daf Vil < (s 4 Ju ). G1)

Putting together (48)-(51), we obtain

1
5 St O ui* 4 (di = 2 CRQep) Vs + da| Vug[?
e = VUL ¢ (dy — O T
koo
< (K + = + O 4 Ca™) i

+ E(CLOO -+ boo>('U/§, 'U,g)[‘gua.
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Combing Young’s inequality and the trace inequality to the boundary term,
(52) turns out to be

1
S0+ (di — 2R Q¥ cR) Vs

2
o)
4 (dy — C*be? — 22 (0™ + %)) |V 2
* 2
-u%—cwg—ngw+m»W@P+@W@P
ke 1
< (W4 "2 4 O (@ +5°)(0 + 5)SL

Choosing € small enough and § conveniently such that the coefficients of the
terms involving |Vu§|? and |Vu§|? stay positive, we are led to

S 0us P+ dy [ Vui? + dy | Vus|® + ds| Vs |* + 2da| Vug|? < Cr8 usf?,

(2

where ) )
&= 2(dy — 20"k Q% cR),
C*e%§
dy = 2(dy — O — — =20 + b)),
*h 2
dy = 2(ds — C*a™e* — 02;(6100 + b)),

while the constant C' is given by

1

Cy 1= 2k3° + k‘g 070 + O 4 O (@ 5%)(5 4 5).

Summarizing, we have

im0l + doX5_y [ V5| + do| V5 |* < OB Jui?, (53)

(2

where dy := min{dy, d,, d5, d}}. By Gronwall’s inequality, we have

i [u[* < O [ui(0)]%,

and hence,

|| uj ”LZ(&T;LQ(QE))S C fOI“ all i - {1,274} and ||u§||L2(O,T;L2(Q§)) S C, (54)

where C' depends on initial data and model parameters but is independent of
e. Integrating (53) along (0,7"), we get

|45 lz20mm ey < C, 5 € {1,2,4},

(55)
| uz lz20.7;01 02)) < C.
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With the help of (A2) together with the boundedness of u5, we conclude from
(13) that

5 |z ((01) xremy < €.
Multiplying (13) by d;uf and using (AZ), we get

|Orus]| 20,1 xrswy < C.

Now, we focus on obtaining e—independent estimates on the time derivative
of the concentrations. Firstly, we choose 1 = dyui and get

t t
// @ui@midmﬁ%—// d;VuiVouidzdr
0 Jos
t
// klulatu§d$d7‘+/ /Q ksusOpuidadr  (56)
0 €

—6// nouido,dr.
0 Jrsw

Consequently, it holds
/ / lé?tu1]2dmd7+/ / ( (Vs [?) — (@di)WuiP) drdr

< ——/ / O Jus P dadr
—// <|u§|2+5|8tu§|2> dxdr

— 8/ / ,(nui) — (Om)u])dodr,

1_Q // |0yus| dl‘dT<D1// |V [*dzdr

‘/ ]V%ho\dx—+ /)|u2\dxd7

i/m |17|2+|u1|2+|77( )+ 45(0) *) do,

19 t _
i 5/0 /Fgw (‘@77’2 + ‘u1’2) do.dr,

where 7(0) := n(u5(0),u:(0)). Applying (7) and recalling (55), we have

(57)

t
| 0w Pdwar <, (58)
0 JQ#

where

t k dy
Cy = Dl/0 /QE |V [*dzdr + 51 /Qs |u$ (0)|*dx + é/gs |Vuyo|*d
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o [ wsPdadr+ 5 [ Gl + P + )

c
7// (s ? + &2 Vui ) dardr + -

and § € } = [ Testing (10) with @9 = Opu§ gives

[ (12 + 29 #)da,

t t 1
| [ JowsPdrdr+ [ [ GodsIVus]?) — (0d5)| Vs ) dad

<_f// at]u2|2dxd7+—//

a>® ot
+ 610, )dxd7+—// |u§]2+|8tu§\)daxd7

bOO
5 // at\u2] do,dT,
and hence

// 05| doT + = /|Vu |’ dzdr

<& 2 | 1vus(0)] da:+D2// Vs [2dzdr

2/0 /§25(5|u§’2+5]0tu§| )dzdr

C*a>® rt
+=2 / / (!ug\Q—|—€2\Vu§\2+52w8tu§]2) dxdr
0 Jos
eb™> . .
5 J (1517 = [u3(0)*)dor.
rwa

By (7) and (55), we get

Cra® k0 t .
(1 — 9 > / / |8tu2’2da:d7'< CIO (1 +¢€ / /Qa |Vatu2|2dxd7') .

2—C*a>®

Consequently, choosing ¢ €]0, [, we are led to

t t
|| 10w Pdvdr < Cuo(1+&* [ [ V0w Pdadr), (59)
0 € 0 €

where

t € ds° € ket €
010;:1)2/0 /Q Vs |Pdwdr + %/ﬂ IV (0)2d + 215/0 /Q 5|2 dwdr
O
2
C*a™>

+ A (lus)? + €% Vus* + [u5(0)]” + €% Vu5(0)?) da:

t
+ [ ] (sl + Vs dedr.
0 €
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The initial data u§, holding in Q5 and the Dirichlet data uf acting on the
exterior boundary of 2] are considered here as restrictions of the respective
functions defined on whole of Q. Testing now (11) with 3 = 9;(u§ —u?l) leads

to
t d
/0 /Qe |Ou§|*dedT + 53/98 |Vuss)?
< B[ VO + S 0uf? + 10 )
= 92 Jo- 3 2 3 3
t de gt
+Dg// \Vugmi// (IVu5? + [Voud )
S Il e ) [ o
w1 ) 5b°°
+§a +5b /o/rga|8tu3 // 2.

Using (7) and (A6), we obtain

t t
/ / O Pddr < Cpi(1 + 26 / / VO | dadr), (60)
0 JQe 0 Qe
where 0 6]0, W[ and
t €12 dS e 2 1 t D 2
Om:m//ﬂwgmm+—/rmwﬂm+%//yw
O g
dgo t 2 C* o 2 2
+7/ / (|Vusg| +]V8tu // (Ju5)* + ¢ ]Vu3| )
Lo

// (|us|* + 2| Vus)? )dxdT
/ / (18,uP|? + 2|V Oul?)dxdr.

From (12), we get

t
/0 /QE latuﬂdedT < (9. (61)

In order to estimate (59) and (60), we proceed first with differentiating (10)
with respect to time and then testing the result with d,u5. Consequently, we
derive

]_ t
s /Q [0y Pde + dy /0 /Q [V Pddr (62)
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/ (2 (Ordo| Vg <atatd2)|vuf|2>
kOO
T \atu1\2+|atu21 EE T er +10asP)

ks /0 /QE o~ 52 [ /QE oulus?

“L// (5105 + 0105 ) doradr

bOO
+ 5 // |0 | daxd7'+—// Os|us)*do,dr.

Using (7), it yields

1 *AooQ *Boo *
5| |atu§\2dx+(d2—0 - 5)// [V o,us7Pdrdr

C’*a°°5

t
< Crat = [ [ (05l + Vo)

k?oo Koo C*Aoo C*Boo 2 Cr* o) )
+<2+2 TRt )//"9”‘2'

where (3 depends on the bounded terms of r.h.s of (62). leferentlatmg now
(11) with respect to time and then testing the result with d;(u§ —u?), we get

1 t
5/9 |8tu§]2d93+d3// |V O,us®|*dedr
4 / / ( (Buds| V|2 — (atatdg)\vu3€\2>
de ot
S—// \Vu35|2dxd7'+i// |V O,us®|*dxdr
2 Jo Jor 2 Jo Jor
d¥ + D3 [t At
—l—m// \V@tu3D|2dxdT+€7// Or|uz® [P dxdr
2 0 JQe 2 0 1"1Eua
00 t €2 gA> €2 D)2
+ca // |Orus®| dxdT%—i// (lus®|* + |Opus™ |7 )dzdT
0 Jrwe 2 Jo Jrwe

0o ot
5& / / (10yus®|? + |OusP|?)dwdr
eBoo

/ / (Jus|? + |0vus®[? + [ust|? + |Byus |2 dadr
gboo 15 12 12
// |atu2| + 8|8us7 |2 + |Orus’|? + |0y 2)deedr.

Using (7) to deal with the boundary terms, we obtain

1/ O+ (ds — B — C (305 4 B 4 1% + a™0) /t/ VOyus®[2dzd
B 0 tUg s 3 9 9 a a o Jor + U3 TAT

20



t
<O+ Cis / /Q 1Oy’ 2 dadr (64)
0 £
t
O / /Q (10sus|? + 2|V Byus®|?)dadr (65)
0 £

Adding (63) and (64) and using (59) and (60) to get the desired result.

4.1 FExtension step

Since we deal here with an oscillating system posed in a perforated domain,
the natural next step is to extend all concentrations to the whole 2. We do
this by following a two-steps procedure: In Step 1, we rely on the standard
extension results indicated in section 4.2 to extend all active concentrations
ui (0 € {1,...,4}) to Q. In step 2, we unfold the ode for uf such that the
unfolded concentration is defined on the fixed boundary I'; see section 5.1.

4.2 Eztension lemmas

Since all the concentrations are defined in ° and €2}, to get macroscopic
equations we need to extend them into (2.

Remark 6 Take ¢° € L*(0,T; H'(QF)). Note that since our microscopic ge-
ometry is sufficiently reqular, we can speak in terms of extensions. Recall the
linearity of the extension operator

P L2(0,T; HY () — L*(0,T; H'(2))

defined by Pep® = ¢°. To keep notation simple, we denote the extension @°
again by ¢©°.

Lemma 7 (Extension) Consider the geometry described in Section 2.1. There
exists an extension u° of u® such that

(1) | @ Nr2on < C || 0 laagywy, for us € LA(Y™)
(2) || Va© ||L2 SAC' | Vu© || r2ywy, for Vus € L*(Y™)
(3) | & | < C || v ||mrae, for u® € H'(QF)

Proof. For the proof of this Lemma, see Section 2 in [20] or compare Lemma
5, p.214 in [30].

Definition 8 (Two-scale convergence cf. [31,32]) Let {u®} be a sequence of
functions in L*((0,T) x Q) (Q being an open set of RY ) where ¢ being a
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sequence of strictly positive numbers that tends to zero. {u®} is said to two-
scale converge to a unique function ug(t, z,y) € L*((0,T)x QxY) if and only
if for any ¢ € Cg°((0,T) x Q,CF(Y)), we have

lzmgﬂo/ / da:dt / / uo(t, x,y)(t, z,y)dydzdt. (66)

We denote (66) by u® = uy.

Theorem 9 (i) From each bounded sequence {u} in L*((0,T)xQ), one can
extract a subsequence which two-scale converges to ug(t, x,y) € L*((0,T)x
QxY).

(ii) Let {u} be a bounded sequence in H*((0,T) x ), which converges weakly
to a limit function ug(t,z,y) € H'((0,T) x QxY). Then there exists i €
L?(Q; Hy(Y)/R) such that up to a subsequence {u°} two-scale converges
to ue(t, x,y) and Vu 2 Vug + V.

(iii) Let {u¢} and {eVu¢} be bounded sequences in L*((0,T) x Q), then there
existsug € L*((0,T) x Q; Hy(Y)) such that up to a subsequence u® and
eVu® two-scale converge to ug(t, z,y) and Vyuo(t, x,y) respectively.

Definition 10 (Two-scale convergence for e—periodic hypersurfaces [35]) A
sequence of functions {u¢} in L*((0,T) x T'.) is said to two-scale converge to a
limit ug € L*((0,T) x Q@ xT') if and only if for any ¢ € C3°((0,T) x Q, CF(T))
we have

lzmgﬂoa/ / daxdt / /uo (t,z,9)Y(t, x,y)do,dzdt.

Theorem 11 (i) From each bounded sequence {u®} € L*((0,T) x T'.), one
can extract a subsequence u® which two-scale converges to a function ug €
L2((0,T) x Q x T).

(i1) If a sequence of functions {u®} is bounded in L*((0,T) x I'.), then u?
two-scale converges to a function uy € L>((0,7) x Q x T').

Proof. For proof of (i), see [33] and the one for (ii), see [15].

Lemma 12 Assume the hypotheses of Lemma 5 and Lemma 7 to hold. The
a priori estimates lead to the following convergence results:

(a) us — u; in L*(0,T; HY(Q) for alli € {1,2,3,4},

(b) ui = u; in L=((0,T) x Q),

(c) Ows — Oy in L*((0,T) x Q),

(d) u§ — u; in L*(0,T; HP(Q)) for 3 < 8 <1, also || uf —u; || r2(0.1)xr.)— 0
ase — 0,

(e) uf 2wy, Vg 2 Vo, + Vyui, uy € L2((0,T) x Q; Hy(Y)/R),

(f) us 2 us, and us € L®((0,T) x Q x ),

(9) Ous 2 dyus, and us € L((0,T) x Q x [,
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Proof. (a) and (b) are obtained as a direct consequence of the fact that wug
is bounded in L?*(0,T; H*(€2)) N L>=((0,T) x Q); up to a subsequence (still
denoted by u$) uS converges weakly to u; in L*(0,T; H'(Q)) N L>((0,T) x ).
A similar argument gives (c). To get (d), we use the compact embedding
HY(Q) — HP(Q), for B € (3,1) and 0 < B < ' < 1 (since 2 has Lipschitz
boundary). We have

W = {u; € L*(0,T; H'(Q)) and du; € L*((0,T) x Q) for alli € {1,2,3,4}}

For a fixed &, W is compactly embedded in L?(0, T'; H°(£2)) by the Lions-Aubin
Lemma, cf. e.g. [34]. Using the trace inequality (8)

| w5 = wi [[r2o,m)xr) S Cg | w4 — wi 200708 (02)),

<C v —u ”L?(U,T;HB(Q)),

where || uf — u; ||r2(0,mm50)— 0 as € — 0. To investigate (e), (f) and (g),
we use the notion of two-scale convergence as indicated in Definition 8 and
10. Since uf are bounded in L2(0,T; H'(2), up to a subsequence u = u; in
L*((0,T) x @ x Y), and Vi 2 Vou; + Vi, @ € L((0,7) x Q; Hy(Y)/R).
By Theorem 11, u§ in L>((0,7") x Q2 xI") converges two-scale to us in the same
space and J;uf converges two-scale to dyus in L*((0,T) x Q x T'). Due to the
presence of the non-linear reaction rate on the interface I'", the convergences
listed in Lemma 12 are still not sufficient to pass to the limit ¢ — 0 in the
microscopic model. To be more precise, we can pass to € — 0 in the pde’s,
but not in the ode.

4.8 Cell problems

In order to be able to formulate the upscaled equations, we define two classes
of cell problems very much in the spirit of [9]. One class of problems will refer
to the water-filled parts of the pore, while the second class will refer to the
air-filled part of the pores.

Definition 13 (Cell problems) The cell problems in water-filled part are given

by
3
—Vy. (Dot y)Vyxi) = Oy Deri(t, y), in Y,
k=1
OXi 3
—Dy(t — Dy (t sv
g( 7y) on ~ sz( ay)nk on y
8 Z : wa
~Di(t,y) 5 = 3" Dugilty)me on ™,

i
I
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foralli, ¢ € {1,2,4} and x; are Y-periodic in y. The cell problems in air-filled part
are given by

3
_vy~(D3(t7y)vy§i) = ZaykD3ki<t7y)a n Ya7

k=1
dsi ¢ wa
_D3(t7y)% = Z D3ki(t7y)nk on I'™,
k=1
8§i E a wa
—D3(tay)% = Z DSki(tay>nk on dY* —I'"",
k=1

for alli € {1,2,3} and s; are Y -periodic in y.

5 Two-scale limit equations

Theorem 14 The sequences of the solutions of the weak formulation (9)-(13)
converges to the weak solution w;,i € {1,2,3,4,5} as ¢ — 0 such that u; €
HY0,T; L)) N L2(0, T; HY () N L>((0,T) x Q) and us € H*(0,T; L*(2 x
D)NL>®((0,T)xQ2xT)). The weak formulation of the two-scale limit equations
s given by

/0 /Q Oyui(t, ) bi(t, ) dwdt + /0 /Q dy() Vs (¢, 2)V iddt (67)
:/OT/QFi(u)gbida:dt for alli € {1,2,3,4},
where
Fy(u) := —ky () uy (8, ) + ko (t)us(t, )
~ 57 JL Rt ) R (1. 0) QL) o,
Fy(u) =k (t)uy (t, ) — l%g(t)lbz(t, ) + a(t)us(t, z) — b(t)uy(t, ),
Fs(u) :==—a(t)us(t,z) + b(t)us(t, x),

Fy(u) =k (t)uy (¢, ),
with the initial values u;(0, x) = u;o(x) for x € Q, and
T
/ / Ous(t, x,y)os(t, x, y)dtdzdo,
0 QxI’ (68)
T
= [ kst ) Rt 2)QCus(t )65 2. v, y)dtdador,

with us(0,x,y) = uso(z,y) for = € Q, y € I, Also ¢ := (¢1, o, P3,¢4) €
[C*°((0,T) x Q)]47 Y= (Y1, 92,93, 94) € [O=((0,T) x Q); C%O(Y)]4;
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(0= [ bty J € (1.2}, (69)

B 1
alt) =7 [ alt. ), (70)
b(t) =T S M0, (71)
N 3
dyij = Z /Y(dlij (t,y) + deir(t, y) (0000, X + 0300, 55)dy, (72)
k=1

e {1,2,3,4}, n € {1,2,4}

with xj,s; being solutions of the cell problems defined in Definition 13, while
0 denotes here the Kronecker’s symbol.

Proof. We apply two-scale convergence techniques together with Lemma 12 to
get macroscopic equations. We take test functions incorporating the following
oscillating behavior ¢;(t,z) = ¢;(t, ) +ei(t, z,2), ;s € C((0,T) x Q), ¢; €

C((0,T)x0Q,;CP(Y)),i € {1,2,3,4}. Applymg two-scale convergence yields

|Y|/0T/Q atui¢i(t7x)d$dt+/OT/Q/Ydi(tvy)(vxui(tvx)

Vi 2,9) (Vati(t, 7) + Vyi(t, 2, g))dyd:cdt

-/ ! [ Fiwote, o)z (73)

/ /f1 o1(t, x)dxdt = —hm/ / kjui(o1(t, x) + e (t, x ))d:cdt

e—0
+£i£%/ / kS (60 (t, ) + e (t @ ))dxdt
~lim /0 / MR, QU (61, ) + eva(t, £))dot.

Using Lemma 12, we have

/OT/Qfl(U)gbl(t’x)dxdt:_/OT/Q/Ykl(t’y)U1(t’x)¢1(t’$>dydxdt
+ /OT /Q /Yk2(tay)u2(t>$)<Z51(t,:17)dydxdt

T
“lime / Ol (1 (1, ) + e (1, , g))damdt.
0 Jrsw

e—0
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/OT/Qfl(u)qﬁl(t,x)da:dt:—|y|/OT/Ql%l(t)ul(t,x)gbl(t,m)dg;dt
+|Y|/OT/Q];72(t)u2(t,x)¢1(t,x)dxdt

_ /O ’ /Q /F sy (1, ) do, dudt.

T
(t,x)dxdt =1 kiui(¢o(t, dxdt
/ /fz Yo (t, x)dx 1m/ / T(da(t, ) + eho(t, x 6)) x
_lim / / ks (6o (t, ) + et 2, ©))dwdt
e—0Jo Jqe €
. T . x
—i—hma/o /Fém a:-u3(po(t, x) + eho(t, z, g))daxdt

e—0

e—0

T
“lime / / bgug(@(t,x)+5w2(z€,x,§))dawdt.
0 Jrwe

/T/ Folw)bo(t, ) dadt |Y|/T/ o ()ua (¢, 2) o (t, @) daedt
2(w)a(t, = 1(E)us (t, 7)ot
0 Ja 0 Ja
—|Y|/T/ o ()us (¢, )b (t, ) daedt
+\Y\/ / us(t, ©)éo(t, ) dwdt
|Y|/ / Vus(t, ) o (t, ) dwdt.
We also have
/ /f3 ¢3txdxdt——|Y|/ / Bus(t, ) b5 (t, )dzdt
+|Y|/ / Vus(t, ) s (t, ) dadt

and

/OT/szL(u)@(t,x)dxdt:|y|/OT/Q/gl(t)ul(t,x)@(t,g;)dwdt_

We set ¢; = 0,7 € {1,2,3,4} in (73) to calculate the expression of the known
function #; and obtain

T
/ /Q/ di(t,y)(Vau(t, z) + Vyu(t, z,y)) Vit x, g)dydxdt =0, forall ;.
0 Y
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Since %, depends linearly on V, uq, it can be defined as

3
?lz' = Za$]u1<(5mxj<t, y) + (53i§j(t,y)> fOI‘ n e {]., 2,4}

=1

where the function x;,; are the unique solutions of the cell problems defined
in Definition 13. Setting 1; = 0 in (73), we get

/oT /Q /y .kil diji (£, y) (O ui(t, )

3
+ Z (6znakam + 53i8ykgm)aacmui<t7 I))accj ¢k’(t7 l‘)dydl‘dt

m=1

T 3.
—|y| /O /Q S Oy tis(t, )y, 64(t, ) dadt,

k=1
Hence, the coefficients (entering the effective diffusion tensor) are given by

1 3
= /Y(dﬂz‘j(t, Y) + deir(t, y) (0inOy, X5 + 03:0y,55)dy.  (74)

Ji'k =
S et

i€{1,2,3,4}, n € {1,2,4} and j,k € {1,2,3}.
5.1 Passing to the limit ¢ — 0 in (13)

It is not yet possible to pass to the limit ¢ — 0 with the convergence results
stated in Lemma 12. To overcome this difficulty, we use the notion of periodic
unfolding. It si worth mentioning that there is an intimate link between the
two-scale convergence and weak convergence of the unfolded sequences; see
[35,15]. The key idea is: Instead of getting strong convergence for uf, obtain
strong convergence for the periodic unfolding of ug.

Definition 15 For e > 0, the boundary unfolding of a measurable function ¢
posed on oscillating surface I is defined by

T o(r,y) = pley +ck), y €T,z €Q

where k := [Z] denotes the unique integer combination Zizlk‘jej of the periods
such that x — 2] belongs to Y. Note that the oscillation due to the perforations
are shifted into the second variable y which belongs to fixed surface T'.

Lemma 16 If u. converges two-scale to u and T;u. converges weakly to u*

in L*((0,T) x Q; L% (T)), then u = u* a.e. in (0,T) x @ x T,
Proof. The proof details for this statement can be found in Lemma 4.6 of [15].
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Lemma 17 If ¢ € L?((0,T) x I'¢), then the following identity holds
1 €
m”Tb ollr2(0,myxaxry = ellell 2o,y xre)-

Proof. Consider 1 1
€, .12 _ €, 12 _ € 2
m|Tb ‘P|L2(er) = |Y|/er | Ty o|*dxdo, = |Y|/er Ty, o dxdoy,
1 1
:723_/ /TE 2dxd :723_/ d/ 2do,,
V| 7= Jevsny Jr by ATaTy V|7 ey sn) T o

= Zizle?’/Fgonay.

Changing variable z = e(y + k), where k = [Z], we get

O’do, = 5/ ©’do,.
FE

L e

This completes the proof of (17).
Lemma 18 If ¢ € L?(Q), then Tfp — ¢ as € — 0 strongly in L*(Q x T).
Proof. See in [36,37] for proof details.

Using the boundary unfolding operator Ty, we unfold the ode (13). Changing
the variable, © = ey + ek (for x € I'") to the fixed domain (0,7) x Q x I', we
have

O Tyus(t, v, y) = n(Tyui(t, =, y), Trus (L, ,y)). (75)

In the remainder of this section, we prove that 7 ug converges strongly to us in
L*(Q2 x T). From the two-scale convergence of u§, we obtain weak convergence
of Tuf to us in L>((0,T) x Q; L2, (I")). We start with showing that {T;ug} is
a Cauchy sequence in L*(2 x T'). To this end, we choose m,n € N with n > m
arbitrary. Writing down (75) for the two different choices of € (i.e. £; = ¢, and

€; = €m), We obtain after subtracting the corresponding equations that
€n n €m m|2
8t/§2><1" Ty ugr — Ty ug™ | “doydx

= [ ISR QT ) — KRG QT ug))

€n,, €n €m ,, €m
x (Tyrugr — Tymugm)do,dx,

[ee] QOO € € € € € €
<kj CR(7 + cosupaxr|Tyui"|) /er Ty ug — Tbmu5’"\2daydm
kOO oo
4 HrenQ® / Ty usm — Ty usm [Pdoy da. (76)
2 QxT
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To get (76), we have used the uniform boundedness of T;"ui". We consider
now

| T = T oy da
< /QXF(|T§”u§” — Ty |2 + | T uy — uy|?)do,da

n /Q T = + T35 = T w ) o de (77)
X

Since u; is constant w.r.t. y, we have that Ty™u; — wu; strongly in L*((0,T) x
2 xT')ase — 0. From Lemma 17, we conclude that

/ ITeus — Tou Pdoyde < e / S — uy|*doyda < eC.
QxTI’ Ie
(77) turns out to be
/ e s — Terusm [2do,dadt < Clen + em),
QxI
while (76) becomes

Cie
0, / T s — Temu™ 2do,dz < Cys / Tem s — Temusr oy da + —29,
QxT QxT’ n

where C5 := k:gocR(% + cosupaxr|Ty ui"|) and Cig == MC. The Gron-
wall’s inequality gives

| Ty " us" — Ty ug™ [ L2oxm) <

Cie
. (78)

By (78), {Tfug} is a Cauchy sequence. Now, we take the two-scale limit in the
ode (75) to get

e—0

T T
lims/ / O Tyuzoy(t, x, E)dagcdt = lim 5/ / n(Tgus, Tius ) o (t, @, E)daxdt.
0 Jrsw € e=0 Jo Jrsw €

Consequently, we have

T
/ / Ousds(t, z,y)dxdo,dt
0 QxI'sw

T
—lime / Tk R(TEuE ) Q () s (¢, . g)damdt,
0 Jrsw

e—0

e—0

T
—lime / TEkE R(TEuE ) Q us) s (¢, . g)daxdt
0 Jrsw

: T €1.€ €, & €, € x
+g%g/0 [ TSR ) (QUTu3) — Q(us))és(t, o, T)dordt.
(79)
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By (A2) and the strong convergence of u5, the first term on the right hand
side of (79) converges two-scale to

/OT/Q . k’3 (t, y)R(U1>Q(u5)¢5(t’ x, y)daydxdt,

while the second integral of (79)

T x
e [ [ TRRT)(Q(Ti0) - Q(us))os(t, 2, % )dodt
0 JIsw €

=° </0T [ TR R(T ) st §)|2da$dt>
T :
| (/0 f |@<T5u2>—@<u5>r2daxdt) ,

—0ase — 0.

N =

At this point, we have used again (A2) in combination with the strong con-
vergence of Tfug. So, as result of passing to the limit ¢ — 0 in (13) we get
(68).

It is worth noting that the weak solution to the two-scale model inherits a.e.
the positivity and boundedness properties from the corresponding properties
of the weak solution of the microscopic model. Now, it only remains to ensure
the uniqueness of weak solutions to the upscaled model.

Lemma 19 (Uniqueness of solutions of (67)-(68) Assume (A1)-(A6). There
exists at most one weak solution to the two-scale limit problem (67) and (68).
Proof. Suppose there are two weak solutions to the two-scale limit problem
(w), uh, uf, ul, ul) with j € {1,2}. We denote uy = u} —u2, ¢ € {1,2,3,4} and
choose as test function ¢, = u,. After straightforward calculations, we have
from (68)

t
uy =] < C [ Ju} —ufldr. (80)
Take ¢y = uy in (67) to obtain

1 ft _oqt
f/ /8t|u1|2dxdt+d1/ / Vs [P ddt
2Jo Ja

k.OO
< kl//8t|u1| drdt + "2 // |2 + [uo|?)ddt

kOO
|Y|CRCQM1/ /ersw s — uz)uydado,dt
|Y|CRQ°°/ /Q o luy [*dxdo,dt. (81)
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Using (80) together with the trace inequality for fixed domains, see section
5.5 Theorem 1 in [38] and also the fact that u; is independent of y in (81), we
get

t ~ t
/ /Q OyJun [2dxdt + (241 — kSPerC (5My + Q™)) / /Q Vs | dwdr
0 0
~ t
+2k1/ /atyu1|2da:d7
0 JQ
~ t
< (F° + kepC™ (6M, +Q°°))/0 /Q(yu1|2+ (s |?)dwdr
t T
—|—k§°5cRCQM10*/ /Q/ (|ur | + | Vu |*)dsdzdr.
0 0

2dy —k§°crC* Q>
kgocRC*Ml

T _ T _ T
/ /8t|u1|2dxdt—l—d1/ /|Vu1|2dxd7+2k‘1/ /6t|u1|2dxd7'
o Ja o Jo o Ja

~ T
< (B + kepC (5M; + Qoo>>/0 /Q(|u1\2 + Jus[?)dadr

For suitable choice of ¢ €]0, [, we have

e T T
+ kgcRcQMlC’*/ /Q/ (|| 4 |Vur |*)dsdzdr.  (82)
0 0

Take ¢ = uy in (67), we get

1 gt Lot
f/ /at\qudedeg/ / Vs [2dzdr
2 Jo Ja 0 Jo

ot Lo gt
g—kg/ /(9t|u2|2dxd7'—|— L/ /(|u1|2—|— |us|?)dxdr
0 /o 2 Jo Ja
t _ T
+EL°°/ /u2u3dmdt— b/ / |us|2dadr.
0 Jo o Ja

¢ ot
//3t]u2|2dxd7'+d2/ / |V, |Pdzdr
0 Jo 0 Jo

~ t
< +a) [ [ (el + ol + fusP)dadr. (83)

Similarly, we obtain from (67)

t - t ~ t
/ /8t|u3|2dxdr+d3/ / Vs 2dadr < b"o/ /(|u2|2+ lus|?) dwd£84)
0 JQ 0 JQ 0 JQ

t ~ t ~ T
| [ oluiPdedr+di [ [ (VuPdedr <i [ [ (ul? + usf?)dedss)
0 JQ 0 JQ 0 Q

Adding side by side (82)-(85) and applying Gronwall’s inequality to the cor-
responding result, we receive
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. ¢ .t
E?Zl/ lu;|2da + dE?ZI/ / |V, |*dzdr + d/ / lui Pdzdr < 0. (86)
Q 0 Ja 0 Jo

In (86), we have d := min{dy,ds,ds,dy, k1} > 0. Taking in (87) supremum
over (0,7"), we obtain

. T
Zf}:l/ |lu;|2da + dEle/ / |V, |*drdr <0, (87)
Q 0o Ja
which concludes the proof of the Lemma.

Lemma 20 (Strong formulation of the two-scale limit equations) Assume the
hypothesis of Lemma 12 to hold. Then the strong formulation of the two-scale
limit equations (for all't € (0,T)) reads
Oyui(t,z) + V - (—di Vau (¢, 7))
= —k:l(t)ul(t, x) + kg(t)Ug(t, I)
1
- m Fsw k3(ta y)R(ul(t’ ZL'))Q(UE)(t,ZE, y))dO'y, T e Q
ui(0,2) = u(z), © € Q,
n-(—d,Vuy(t,z)) =0, = € 00

) i ) (88)
Orus(t, z) + V - (_dQVUQ(tJ x)) = ki (t)us(t, ) — ko(t)ua(t, )
+ a(t)us(t,z) — b(t)us(t,z), = € Q,
u2(0,2) = uso(z), T € 0, (89)
n - (—dyVuy(t,z)) =0, = € 09,
duus(t,z) + V - (=dsVus(t, z)) = —a(t)us(t, z) + b(t)us(t, x), = € Q,
u3(0, ) = ugo(z), = € Q,
us(t,z) = ud (), v € TP,
n-(—dsVus(t,z)) =0, z € TV
(90)
duug(t, z) + V - (=dsVuy(t, ) = ky(H)uy(t, ), = € Q,
(0,$) = ( )7 LS Qv (91)
( d4VU4(t,ZL’)) 0 x e 89
8tu5(t,x,y) = ks(t,y)R(uy(t, 2))Q(us(t, x,y)), v € Qy € T°, (92)

us(0,2,y) = uso(x,y) v € Qy € T,
where d;, i € {1,2,3,4} and k‘j,] € {1,2} are defined in Theorem 14.
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