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Sulfenamide-enabled ortho thiolation of aryl iodides
via palladium/norbornene cooperative catalysis
Renhe Li 1, Yun Zhou1, Ki-Young Yoon1, Zhe Dong 2 & Guangbin Dong 1

Poly-substituted aromatic sulfur compounds are widely found in pharmaceuticals, agro-

chemicals and organic materials. However, the position that a sulfur moiety can be intro-

duced to is largely restricted to a pre-functionalized site; otherwise, use of electronically

biased substrates or auxiliary groups that direct catalysis is required. Here we report a

general ortho thiolation of common aryl and heteroaryl iodides via palladium-norbornene

cooperative catalysis. Using this approach, an aryl or alky sulfur moiety can be site-selectively

introduced at the arene ortho position without using sterically or electronically biased sub-

strates. The arene ipso functionalization is simultaneously achieved through Heck, Suzuki or

Sonogashira termination. The reaction is enabled by a unique class of electrophiles in

palladium-norbornene cooperative catalysis, which are sulfenamides derived from seven-

membered lactams. The broad substrates scope and high chemoselectivity could make this

method attractive for synthesis of complex sulfur-containing aromatic compounds.
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A
romatic sulfur compounds are commonly found in
drugs1, agrochemicals2, organic electronics3, and poly-
mers4 (Fig. 1a). In addition, aryl sulfides often serve as

versatile intermediates to access the corresponding sulfoxides5,
sulfones6, and benzothiophenes7. Common ways to prepare aryl
sulfides heavily rely on nucleophilic aromatic substitution8 and
cross-coupling reactions9 between aryl halides and thiols. Both
methods form carbon−sulfur (C–S) bonds at the ipso position of
aryl halides; thus, the position of the installed sulfur moiety is
restricted by the position of the halide. On the other hand, C–H
thiolation offers an attractive approach to introduce sulfur to an
non-pre-functionalized position;10 however, control of site-
selectivity generally requires use of directing groups11,12 or
electron-rich arenes13. Hence, a general method that site-
selectively introduces sulfur functional groups to unbiased and
unactivated arene positions would be highly attractive for pre-
paring multi-substituted aromatic sulfur compounds. This has
motivated us to explore the approach using palladium/norbor-
nene (Pd/NBE) cooperative catalysis.

Pd/NBE cooperative catalysis14–16, originally discovered by
Catellani17, has emerged as a useful tool for preparing multi-
substituted arenes18–33. Compared to the conventional arene
functionalization, this approach enables simultaneous functio-
nalization of arene vicinal positions regioselectively using simple
aryl halides as substrates (Fig. 1b). Specifically, through forming
an aryl-NBE-palladacycle (ANP) intermediate, a nucleophile and
an electrophile are coupled at the arene ipso and ortho positions,
respectively. While the scope of nucleophiles in this reaction is
broad14–16, finding suitable electrophiles that can participate in
the Catellani reaction nevertheless remains a formidable
challenge34,35, because the electrophile must react with ANP
selectively in the presence of Pd(0) species and has to be com-
patible with the nucleophile and NBE. Currently, the scope of
electrophiles is mainly limited to carbon17,36–41 and nitrogen42-
based reagents. In 2017, Yu used aryl chlorosulfates for a directed
Pd(II)-catalyzed meta chlorination of arenes;43 however, com-
patibility of this reagent with Pd(0) catalysts could be a concern44.

More recently, Zhang45 and Cheng46 independently reported an
interesting ortho silyation with disilanes; unfortunately, NBE
cannot be extruded in this reaction. Clearly, it would be attractive
if other elements, besides C and N, could be introduced at the
arene ortho position in the Pd(0)-catalyzed Catellani reaction.
Herein, we report a Pd/NBE-catalyzed ortho thiolation of aryl
iodides, which is enabled by sulfenamide-type electrophiles
(Fig. 1c). This approach provides a general platform to introduce
various sulfur moieties to the arene ortho positon and simulta-
neously install other functional groups at the arene ipso position.
The generality, scability and high chemoselectivity could make
this method attractive for preparing complex sulfur-containing
aromatic compounds.

Results
Hypothesis. Compared to other ortho functionalizations, ortho
thiolation exhibits its unique challenges. First, many electro-
philic sulfur-based compounds, such as PhSSPh or PhSCl,
readily react with Pd(0)47, therefore preventing arene functio-
nalization. Second, thiolates (RS−) are known as strong ligands
for soft Pd species; thus, decomposition of the thiolation agent
would likely generate RS−that could lead to direct ipso thiola-
tion48. Hence, developing a stable but also reactive electrophilic
thiolation agent would be a key for realizing the ortho thiolation
reaction. Based on our prior efforts on developing the ortho
amination reaction42, sulfenamides49,50 were anticipated to be a
suitable electrophile for the Pd/NBE catalysis for two reasons
(Fig. 1d): (1) the electronegativity (Eneg, Pauling scale) differ-
ence between N and S matches well with that between O and
N;51 (2) analogous to the ortho amination, the amide carbonyl
could serve as a directing moiety to facilitate selective reactions
with ANP. Thus, we hypothesized that sulfenamides might
show similar stability and reactivity as O-benzoyl hydro-
xylamines. It is noteworthy that, during the review process of
this work, an interesting ortho thiolation using thiosulfonate
reagents was reported by Gu52.

b Electrophille scope of the Pd/NBE catalysis

c Ortho thiolation via Pd/NBE catalysis
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Optimization of reaction conditions. To test this hypothesis, a
range of sulfenamide-based thiolation agents were examined with 2-
iodotoluene (1a) as the standard substrate, and the ipso position was
functionalized via Heck termination with acrylate 2a (Fig. 2). As a
control experiment, PhSSPh S1, previously used in the Pd-catalyzed
C–H thiolation11,12, gave almost no desired product with a low
conversion of 1a. In contrast, various sulfenamides indeed afforded
the desired ortho thiolation product (4a). First, neither imide-
derived or amine-derived sulfenamides (S2 and S3) were as effective

as amide-based ones. In particular, the lactam-derived sulfenamides
(S11–S21) were found most reactive. Interestingly, the six, seven,
and eight-membered sulfenamides (S12–S14) gave significantly
improved yields compared to the five-membered one (S11). Use of
more strained or benzofused lactams (S15–S18) gave inferior
results. Surprisingly, increasing the bulkiness around the lactam
nitrogen with an adjacent isopropyl group significantly enhanced
the yield (S19). Ultimately, the optimal result was obtained using
the tert-butyl-substituted sulfenamide S20.
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To understand these counterintuitive results in terms of the
role of the bulk substituent, X-ray crystal structures of S11–S14,
S19 and S20 analog (3c) were obtained (Fig. 3 and Supplemen-
tary Figs. 10–16). A clear trend is that increasing the steric
hindrance around the amide moiety elongated the N–S bond,
which correlates to the performance of these reagents. Hence,
the tert-butyl group in S20 weakened the N–S bond, thereby
making it more reactive. Note that adding copper(I) thiophene-2-
carboxylate (20 mol%) enhanced the yield, which may serve as a
thiolate scavenger (for full control experiments, see Supplemen-
tary Table 1).

Substrates scope of aryl iodide. With the optimized conditions
in hands, the aryl iodide scope was examined first (Fig. 4). Dif-
ferent substituents at the ortho position of aryl iodides were
tolerated, including methyl (4a), methoxy (4b), MOM ether (4c),
4-bromobenzyl ether (4d), acetate and silyl-protected benzyl
alcohols (4e and 4f), and an estrone derivative (4g). In addition, a
broad range of functional groups were compatible, such as aryl
chloride (4h), aryl bromide (4i), Weinreb amide (4j), dialkyl
aniline (4k), carbamate (4l), fluoride (4m), and Vitamin E moiety
(4n). Importantly, the reaction is suitable for a variety of het-
eroarenes and polycyclic arenes, including quinoline derivative
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(4o and 4p), indole (4q), thiophene (4r), naphthalene (4s),
phenanthrene (4t), and pyrene (4u).

Substrates scope of thiolation agents. Next, the scope of the
thiolation agents and the olefin coupling partners was explored
(Fig. 5). Besides PhS–, other aryl sulfur groups that contain
electron-donating or withdrawing groups could be introduced at
the ortho position in good to excellent yields. Notably, the ortho-
substituted aryl sulfide (5h) still afforded a high yield of product.
While it was challenging to prepare the corresponding alkyl
thiolation agents based on the tBu-substituted lactam, use of
simple ε-lactam-derived sulfenamide 6 nevertheless delivered the
desired methylthiolated product (5k) in moderate efficiency. In
addition to tBu acrylate, other acrylates and acrylamides (5l–5o)
were also competent coupling partners for ipso functionalization.

Synthetic application. From a practical viewpoint, the lactam
byproduct 3a’ was recovered in 86% yield after the reaction, which
could be used to regenerate the sulfenamide reagent (Fig. 6a). The
reaction is scalable: a high yield was still obtained on a gram scale
(Fig. 6b). Besides aryl sulfides, the corresponding sulfoxides and
sulfones could be conveniently accessed through selective oxidation
of the ortho thiolation product (Fig. 6c). In addition to Heck cou-
pling, preliminary success has been obtained with Suzuki quench

(Fig. 6d) and Sonogashira quench (Fig. 6e) to install an aryl group
or alkyne group at the ipso position, respectively14–16.

Discussion
In summary, a unique class of electrophilic thiolation reagents,
sulfenamides, is developed for the Pd/NBE catalysis, which
enables ortho thiolation of a wide range of aryl and heteroaryl
iodides. The broad substrate scope, scalability, and high che-
moselectivity could make this method attractive for complex
molecule synthesis. The substituent effect observed in tuning
the sulfenamide reactivity could have implications beyond this
work. Efforts on expanding the reaction scope and under-
standing the detailed mechanism of the C–S bond formation
are underway.

Methods
General procedure of the Pd/NBE-catalyzed ortho thiolation. To a flame-dried
7.0 mL vial (vial A) was added palladium acetate (4.6 mg, 0.02 mmol, 10 mol%),
copper(I) thiophene-2-carboxylate (7.6 mg, 0.04 mmol, 20 mol%), tri(2-furyl)
phosphine (11.6 mg, 0.05 mmol, 25 mol%), and aryl iodide (0.2 mmol, 1.0
equiv). The thiolation agent (0.6 mmol) was added to another 4.0 mL vial
(vial B). These two vials were then transferred into a nitrogen-filled glovebox
without caps. In glovebox, cesium carbonate (130.4 mg, 0.4 mmol, 2.0 equiv)
was added to vial A before a solution of norbornene in dry ethyl acetate (0.5 mL,
0.1 mmol) was transferred to the same vial. To the 4.0 mL vial B containing
thiolation agent was added 0.75 mL dry ethyl acetate, and then two thirds of
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this solution (0.5 mL, 0.4 mmol, 2.0 equiv) was transferred into vial A, before
another 3.0 mL dry ethyl acetate and acrylate 2 (0.4 mmol, 2.0 equiv) were
added. Vial A was then tightly sealed, transferred out of glovebox and stirred
on a pie-block preheated to 105 °C for 12 h. After completion of the reaction,
the mixture was filtered through a thin pad of silica gel. The filter cake was
washed with ethyl acetate and the combined filtrate was concentrated under
vacuum. The residue was purified via silica gel chromatography to yield the
desired ortho thiolation product.

Data availability
Experimental procedures (Supplementary Figs. 1–9) and characterization data

(Supplementary Figs. 10–149) are available within this article and Supplementary

Information. CCDC: 1906766 (S11), 1906767 (S12), 1906768 (S13), 1906770 (S14),

1906771 (S19), 1906769 (3c), and 1906772 (4e) contain the supplementary

crystallographic data for this paper. These data can be obtained free of charge from the

Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
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