Sulfonamide Directivity Enables Ni-Catalyzed 1,2-Diarylation of Diverse Alkenyl Amines

Omar Apolinar, Van Tran, Michael A. Schmidt, Joseph Derosa, Keary Engle

Submitted date: 10/07/2020 • Posted date: 13/07/2020
Licence: CC BY-NC-ND 4.0
Citation information: Apolinar, Omar; Tran, Van; Schmidt, Michael A.; Derosa, Joseph; Engle, Keary (2020): Sulfonamide Directivity Enables Ni-Catalyzed 1,2-Diarylation of Diverse Alkenyl Amines. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12642803.v1

1,2-Diarylation of alkenyl sulfonamides with aryl iodides and aryl boronic esters under nickel catalysis is reported. The developed method tolerates coupling partners with disparate electronic properties and substitution patterns. 1,2- and 1,1-Disubstituted alkenes, as well as alkenes distal from the directing group, are all accommodated. Control experiments are consistent with a N-Ni coordination mode of the directing group, which stands in contrast to earlier reports on amide-directed 1,2-diarylation that involve carbonyl coordination. The synthetic utility of the method arises from the dual function of the sulfonamide as both a directing group and masked amine nucleophile. This is highlighted by various product diversifications where complex amine compounds are synthesized in a two-step sequence of N -functionalization and deprotection of the sulfonyl group.

File list (4)

Manuscript.pdf (632.65 KiB)	view on ChemRxiv • download file
Supporting Info.pdf $(21.57 \mathrm{MiB})$	view on ChemRxiv • download file
2a.cif $(407.62 \mathrm{KiB})$	view on ChemRxiv • download file
2ab.cif $(0.98 \mathrm{MiB})$	view on ChemRxiv \circ download file

Sulfonamide Directivity Enables Ni-Catalyzed 1,2-Diarylation of Diverse Alkenyl Amines

Omar Apolinar ${ }^{[a]}$, Van T. Tran ${ }^{[a]}$, Michael A. Schmidt ${ }^{[b]}$, Joseph Derosa ${ }^{[a]}$, and Keary M. Engle ${ }^{[a] \star}$

Abstract

Diarylation of alkenyl sulfonamides with aryl iodides and aryl boronic esters under nickel catalysis is reported. The developed method tolerates coupling partners with disparate electronic properties and substitution patterns. 1,2- and 1,1Disubstituted alkenes, as well as alkenes distal from the directing group, are all accommodated. Control experiments are consistent with a $\mathrm{N}-\mathrm{Ni}$ coordination mode of the directing group, which stands in contrast to earlier reports on amide-directed 1,2-diarylation that involve carbonyl coordination. The synthetic utility of the method arises from the dual function of the sulfonamide as both a directing group and masked amine nucleophile. This is highlighted by various product diversifications where complex amine compounds are synthesized in a two-step sequence of N -functionalization and deprotection of the sulfonyl group.

Forging contiguous $\mathrm{C}-\mathrm{C}$ bonds through 1,2dicarbofunctionalization of alkenes, also referred to as conjunctive cross-coupling, has blossomed into a vibrant area of catalysis that leverages the unique reactivity of diverse transition metals, including Pd, Ni, Co, Cu, and Fe. ${ }^{[1 a-b]}$ In this context, nickel provides unique advantages compared to other transition metals, such as palladium, by having a higher

previous alkenyl amine substrates

Scheme 1. Previous reports and synopsis of new findings.
[a] O. Apolinar, V. T. Tran, Dr. J. Derosa, Prof. K. M. Engle Department of Chemistry
The Scripps Research Institute
10550 North Torrey Pines Road, La Jolla, California 92037 (USA)
E-mail: keary@scripps.edu
[b] Dr. M. A. Schmidt,
Chemical Process Development
Bristol Myers Squibb
One Squibb Drive, New Brunswick, New Jersey 08903 (USA)
Supporting information for this article is given via a link at the end of the document
propensity toward oxidative addition and 1,2-migratory insertion steps while being more resilient towards β-hydride elimination. ${ }^{[1 c]}$ 1,2-Dicarbofunctionalization of alkenyl amine substrates, wherein a protected amine directs key steps in the catalytic cycle, is an attractive approach for selectivity control and offers rapid entry to functionalized alkyl amine product libraries. 1,2-(Fluoroalkyl)arylation and 1,2-diarylation of electronically activated enamides and ortho-vinyl aniline derivatives have been reported by Zhang ${ }^{[2 a]}$ and Giri ${ }^{[2 b]}$, respectively (Scheme 1). More recently the use of a non-

Table 1. Optimization of 1,2-diarylation reaction. ${ }^{\text {a] }}$
(3 equiv)
[a] Reaction conditions: 1a (0.1 mmol), 0.2 M s -BuOH. [b] Values in parentheses are isolated yields. [c] Percentage yield by ${ }^{1} \mathrm{H}$ NMR using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard; n.d. $=$ not detected. [d] Reaction conditions: $15 \mathrm{~mol} \% \mathrm{Ni}(\mathrm{cod})_{2}, 15 \mathrm{~mol} \%$ dimethylfumarate, 1.5 equiv Arl, 1.5 equiv ArB (nep), 2 equiv $\mathrm{NaOH}, 0.2 \mathrm{M}$ i-BuOH at r.t. [e] Reaction conditions: $15 \mathrm{~mol} \% \mathrm{Ni}(c o d)$), 2 equiv Arl, 2 equiv ArB (nep), 2 equiv NaOH , $0.1 \mathrm{M} \mathrm{s-BuOH}$ at $50^{\circ} \mathrm{C}$.
removable pyrimidyl auxiliary that facilitates the 1,2dicarbofunctionalization of non-conjugated terminal alkenes via coordination of Ni with a $\mathrm{N}\left(\mathrm{sp}^{2}\right)$ atom center was reported by Zhao and coworkers. ${ }^{[2 e]}$ Our group has reported the 1,2diarylation and 1,2-allylmethylation of simple alkenyl amides and N -allyl heterocycles, respectively. ${ }^{[3 \mathrm{a}-\mathrm{b}]} \mathrm{Ni}$-catalyzed conjunctive cross-couplings of various classes of nonconjugated alkenes have been reported by other research groups via different mechanistic paradigms. ${ }^{[4]}$ This progress notwithstanding, significant limitations remain in this family of transformations. In particular, existing methods are incompatible with homoallyl and bis-homoallyl amines as well as internal alkenyl amine substrates. Moreover, the directing groups employed in earlier reports are synthetically restrictive in that they cannot be directly employed in further functionalization. The goal of the present study was to identify an amine-based directing group capable of promoting 1,2diarylation of remote, highly substituted alkenes and engaging in diverse downstream N-functionalization chemistry, which
would allow alkenyl amines to act as linchpins in modular synthesis. To this end, herein we report the identification of sulfonamides as uniquely effective and versatile ${ }^{[5,6]}$ directing groups in 1,2-diarylation of alkenes under nickel/dimethyl fumarate (DMFU) catalysis. ${ }^{[7]}$

To commence the study, we selected iodobenzene and 4-tolylboronic acid neopentyl glycol ester (p-tolB(nep)) as model coupling partners and systematically surveyed homoallyl amine substrates bearing different protecting groups. Carbonyl groups that were previously found to direct 1,2-diarylation of allylamine substrates, namely Boc-, Piv-, and Bz-, were ineffective in this case with a more distal alkene. We next turned to sulfonyl protecting groups ${ }^{[6]}$ with the hypothesis that in this case, the nickel catalyst may bind the sulfonamide through nitrogen. Gratifyingly, triflyl-protected homoallyl amine gave the desired product, albeit in low yield. Moving to a less electron-withdrawing aryl sulfonyl group provided 1,2diarylated product 2a in excellent yield and regioselectivity, and its connectivity was confirmed by single-crystal X-ray diffraction. While various aryl sulfonamide directing groups
were similarly effective (vide infra), the 4-(trifluoromethyl)phenyl group provided a convenient ${ }^{19} \mathrm{~F}$ NMR handle for reaction analysis and was employed for much of the ensuing work. The absence of DMFU and employment of the aryl boronic acid and pinacol ester resulted in diminished yields (Entries 1-3). Bromobenzene was unreactive as an electrophile, and other nickel precatalysts, such as $\mathrm{Ni}(\operatorname{cod})(\mathrm{DQ}), \quad \mathrm{NiCl}_{2}, \mathrm{Ni}(\mathrm{acac})_{2}$, and $\mathrm{NiBr}_{2} \bullet$ glyme, were ineffective (Entries 4-5). Under previously published reaction conditions for diarylation of alkenyl amide substrates, lower yield was obtained (Entry 6). No diarylation was observed under conditions for alkenyl carboxylate substrates (Entry 7). ${ }^{[3 a, 4 i]}$ While excellent yields were obtained when lower catalyst loading or equivalents of coupling partners and base were used upon the standard substrate (Entry 8-9), across other examples, higher loading and equivalents gave improved yields.

Next, the scope of electrophilic and nucleophilic aryl coupling partners was investigated (Table 2). Electronwithdrawing groups at the para position of the aryl iodides

Table 2. Electrophile, nucleophile, sulfonamide and alkene scope. ${ }^{[a]}$

[^0]afforded the highest product yields ($\mathbf{2 b} \mathbf{- c}, \mathbf{2 i}$), and the product yield decreased with electron-neutral and -donating groups (2e-f, 2l). It is worth noting that product $\mathbf{2 b}$ was synthesized in an excellent yield on a larger scale ($1 \mathrm{mmol}, 0.48 \mathrm{~g}$ isolated). Electron-withdrawing groups on the meta position of the aryl iodides gave no 1,2-diarylated product; however, electrondonating groups (2g, 2m) gave 1,2-diarylation in excellent yields. Ortho-substituted electron-withdrawing or donating groups on the aryl iodide had little effect on the product yield in comparison to the para-substituted examples ($\mathbf{2 d}, \mathbf{2 h}, \mathbf{2 j}$). Consistent with the previously discussed results, electrondeficient 2-fluoro-4-iodopyridine gave good yield (2k). With regards to the nucleophile scope, no apparent trend is observed. Electron-withdrawing and weakly electron-donating groups on the para position ($\mathbf{2 n} \mathbf{-} \mathbf{o}, \mathbf{2 s}$) gave very good yields. Product yields greatly varied with the use of electron-donating groups on the para position ranging from moderate to excellent yields ($2 \mathbf{r}, \mathbf{2 u} \mathbf{u} \mathbf{v}$). Aryl boronic esters with electron withdrawing groups on the meta and ortho positions (2p, 2q, 2t, 2w) resulted in moderate to excellent yields as well.

Next, we varied the aryl sulfonyl group by substitution of the trifluoromethyl moiety at the para-position and observed good to excellent yields (2x-z). Mesyl (Ms) protected homoallyl amine 2aa is a competent substrate under the reaction conditions. However, product was not detected in the case of a nosyl protecting group, which we attribute to the potential inhibitory effect of nitro groups on Ni catalyst activity. ${ }^{[8]}$ We then examined alkene substrates that are typically challenging in 1,2-diarylation. Pleasingly, (Z) - and (E)internal alkenes were well tolerated under the optimized reaction conditions. Diarylated product from a (Z)-alkene was obtained in good yield and as a single diastereomer, as confirmed by single-crystal X-ray diffraction ($\mathbf{\pm}-2 \mathbf{a b}$). The (E)alkene was diarylated in the same fashion, but in a higher yield ($\mathbf{\pm} \mathbf{- 2 a c}$). In addition, a 1,1-disubstituted terminal alkene was found to work moderately well under the reaction conditions (2ad). With substitution at the α-position, no conversion was observed.

In a series of control experiments, both homoallyl aryl sulfonate 10 and N -methylated sulfonamide 1 p were subjected to the optimized conditions, which resulted in no product formation (Scheme 2A). This indicates that the $\mathrm{N}-\mathrm{H}$ moiety is important in the transformation. While we were successful in developing a remote alkene 1,2-diarylation reaction, we were
A. control experiments

B. tether length effects

$n=1$ (2af): 68\%, 7:1 r.r.
$n=2$ (2a): $82 \%,>20: 1$ r.r.
$n=3$ (2ag): $82 \%,>20: 1$ r.r.
$n=4$: (2ah): n.d.

C. proposed catalytic cycle

Scheme 2. (A) Control experiments to test sulfonamide and nitrogen importance. (B) Tether length effects on 1,2-diarylation. (C) Proposed catalytic cycle having directing group with X-type coordination upon migratory insertion.
curious about the effect of alkene distance on reactivity (Scheme 2B). When aryl sulfonyl protected allyl amine was subjected to the reaction conditions, diarylated product was obtained in a lower yield and as a 7:1 mixture of regioisomers (2af). Reaction of aryl sulfonyl protected pentenyl amine

Scheme 3. Diversification of 1,2-diarylated products as a linchpin technology. Percentages represent isolated yields.
unexpectedly gave the diarylated product in a good yield with excellent regioselectivity (2ag). Extension of the alkenyl chain to aryl sulfonyl protected hexenyl amine gave no product. We hypothesize that these alkenyl amine substrates go through 46 -membered nickelacycles, where a 7 -membered nickelacycle is unfavorable.

Although this reaction may proceed via a $\mathrm{N}-\mathrm{Ni}$ coordination mode, ${ }^{[9]}$ the general catalytic cycle likely follows a similar mechanism as that of alkenyl amide and carboxylate diarylation (Scheme 2C). ${ }^{[33,4 i]}$ The proposed catalytic cycle starts with nickel undergoing oxidative addition into the aryliodide bond, followed by alkene coordination of the protected alkenyl amine. Migratory insertion proceeds with the formation of an $\mathrm{Ni}^{\prime \prime}($ alkyl)(sulfonamido) metallacycle. Subsequent transmetalation affords an Ni^{11} (alkyl)(aryl) species which would finally undergo reductive elimination to give the 1,2-diarylated product. It should be noted that this catalytic cycle may also operate with the sulfonamide directing group as an L-type ligand upon migratory insertion and this pathway cannot be ruled out at this time.

Scheme 4. HLF cyclization of a representative product.
We next envisioned that this method could have synthetic applicability as a linchpin technology where the diarylated products could engage in N-functionalization followed by deprotection to form highly functionalized secondary amines that would otherwise be difficult to construct. The 4-cyano-phenyl sulfonyl (4-Cs) protecting group was utilized in scale-up and diversification efforts due to its precedented ease of removal by use of 1-dodecanethiol. ${ }^{[5]}$ With this in mind, we then synthesized diarylated product 2ai in 87% yield ($1 \mathrm{mmol}, 0.40 \mathrm{~g}$ isolated) (Scheme 3). This product was then subjected to Mitsunobu coupling, propargylation, benzylation, $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$, and Boc protection reactions, which proceeded in moderate to good yields providing a diverse set of N-functionalized products (3a-e). Subsequent treatment with 1 -dodecanethiol and DBU led to the removal of the aryl sulfonyl protecting group affording dialkyl, alkyl propargyl, alkyl benzyl, alkyl aryl, and alkyl Bocprotected amines in low to excellent yields (4a-e). Lastly, a violet-light-initiated Hofmann-Löffler-Freytag (HLF) cyclization of a representative product, $\mathbf{2 z}$, furnished 4-Csprotected pyrrolidine (\pm)-3f in good yield, with the two aryl groups in a trans configuration (Scheme 4). ${ }^{[10]}$

In summary, a Ni-catalyzed 1,2-diarylation of aryl sulfonyl protected alkenyl amines with aryl iodides and aryl boronic esters was developed. This method tolerates electronically varied aryl coupling partners. Electronics on the aryl sulfonyl protecting group is indiscriminate of its directing capabilities with the exception of nosyl substitution. Internal and 1,1disubstituted alkenes are competent substrates, affording the desired products in moderate to high yields with excellent regio- and diastereoselectivity. Control experiments showed that the free sulfonamide $\mathrm{N}-\mathrm{H}$ is essential in the reaction. The alkenyl chain length was determined to tolerate dicarbofunctionalization with aryl sulfonyl protected allyl, butenyl, and pentenyl amines. Finally, this methodology may be implemented as a linchpin technology where aryl sulfonyl protected alkenyl amines could engage in 1,2-diarylation, then N -functionalization, and lastly deprotection to afford
trifunctionalized secondary amines allowing leeway for facile complex amine synthesis.

Experimental Section

General Procedure: To a 1-dram (4 mL) vial equipped with a Teflon-coated magnetic stir bar were added the alkene substrate (0.1 mmol), the appropriate aryl boronic acid neopentylglycol ester (0.3 mmol), the appropriate aryl iodide electrophile (0.3 mmol), and dimethyl fumarate ($15 \mathrm{~mol} \%$). The vial was then equipped with a septum cap, which was pierced by a 20-gauge needle and introduced into an argon-filled glovebox antechamber. Once transferred inside the glovebox, anhydrous NaOH (0.3 mmol), $\mathrm{Ni}(\mathrm{cod})_{2}$ (20 mol\%), and anhydrous sec-butanol (0.5 mL) were added. After stirring for 30 sec , the vial was sealed with a screw-top cap, removed from the glovebox, and left to stir at room temperature for 12 h . After this time, the reaction mixture was diluted with EtOAc (1 mL), poured into a test tube filled with satd. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ rinsing with EtOAc (1 mL), and was extracted with EtOAc ($3 \times$ 1 mL). The organic layers were combined, and the solvent was removed in vacuo to leave a yellow residue, which afforded pure product after preparative thin-layer chromatography (PTLC).

Acknowledgements

This work was financially supported by the National Science Foundation (CHE-1800280) and Bristol Myers Squibb. We acknowledge the NSF for Graduate Research Fellowships (DGE-1346837, J.D. and DGE-1842471, O.A.). We further thank Dr. Han Nguyen and Dr. Milan Gembicky for X-ray crystallographic analysis (UCSD). We thank Andrew M . Romine for detailed proofreading of this manuscript.

Keywords: alkene \cdot diarylation \bullet nickel \bullet sulfonamide
[1] For representative reviews on conjunctive cross-coupling, see: (a) J. Derosa, V. T. Tran, V. A. van der Puyl, K. M. Engle, Aldrichimica Acta 2018, 51, 21-32. (b) R. Giri, S. KC, J. Org. Chem. 2018, 83, 30133022. (c) J. Derosa, O. Apolinar, T. Kang, V. T. Tran; K. M. Engle, Chem. Sci. 2020, 11, 4287-4296. (d) H.-Y. Tu, S. Zhu, F.-L. Qing, L. Chu, Synthesis 2020, 52, 1346-1356. (e) S. O. Badir, G. A. Molander, Chem 2020, 6, 1327-1339. (f) X. Qi, T. Diao, ACS Catal. 2020, DOI: 10.1021/acscatal.0c02115.
[2] (a) J.-W. Gu, Q.-Q. Min, L.-C. Yu, X. Zhang, Angew. Chem. Int. Ed. 2016, 55, 12270-12274; Angew. Chem. 2016, 128, 12458-12462. (b) C. Xu, Z.-F. Yang, L. An, X. Zhang, ACS Catal. 2019, 9, 82248229. (c) Z.-F. Yang, C. Xu, X. Zheng, X. Zhang, Chem. Commun. 2020, 56, 2642-2645. (d) B. Shrestha, P. Basnet, R. K. Dhungana, S. KC, S. Thapa, J. M. Sears, R. Giri, J. Am. Chem. Soc. 2017, 139, 10653-10656. (e) W. Li, J. K. Boon, Y. Zhao, Chem. Sci. 2018, 9, 600-607. (f) X. Wei, W. Shu, A. Garcia-Domínguez, E. Merino, C. Nevado, J. Am. Chem. Soc. 2020, DOI: 10.1021/jacs.0c05254
[3] (a) J. Derosa, R. Kleinmans, V. T. Tran, M. K. Karunananda, S. R. Wisniewski, M. D. Eastgate, K. M. Engle, J. Am. Chem. Soc. 2018, 140, 17878-17883. (b) V. T. Tran, Z.-Q. Li, T. J. Gallagher, J. Derosa, P. Liu, K. M. Engle, Angew. Chem. Int. Ed. 2020, 59, 7029-7034; Angew. Chem. 2020, 132, 7095-7100. (c) For an example of sulfonamide-directed $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ cross-coupling, see: A. Wilsily, F. Tramutola, N. A. Owston, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 5794-5797.
[4] (a) J. Derosa, V. T. Tran, M. N. Boulous, J. S. Chen, K. M. Engle, J. Am. Chem. Soc. 2017, 139, 10657-10660. (b) J. Derosa, V. A. van der Puyl, V. T. Tran, M. Liu, K. M. Engle, Chem. Sci. 2018, 9, 52785283. (c) V. A. van der Puyl, J. Derosa, K. M. Engle, ACS Catal. 2019, 9, 224-229. (d) R. Pan, C. Shi, D. Zhang, Y. Tian, S. Guo, H. Yao, A. Lin, Org. Lett. 2019, 21, 8915-8920. (e) P. Basnet, R. K. Dhungana, S. Thapa, B. Shrestha, S. KC, J. M. Sears, R. Giri, J. Am. Chem. Soc.

2018, 140, 7782-7786. (f) P. Basnet, S. KC, R. K. Dhungana, B. Shrestha, T. J. Boyle, R. Giri, J. Am. Chem. Soc. 2018, 140, 1558615590. (g) R. K. Dhungana, S. KC, P. Basnet, V. Aryal, L. J. Chesley, R. Giri, ACS Catal. 2019, 9, 10887-10893. (h) X. Zhao, H.-Y. Tu, L. Guo, S. Zhu, F.-L. Qing, L. Chu, Nat. Commun. 2018, 9, 3488. (i) J. Derosa, T. Kang, V. T. Tran, S. R. Wisniewski, M. K. Karunananda, T. C. Jankins, K. L. Xu, K. M. Engle, Angew. Chem. Int. Ed. 2020, 59, 1201-1205; Angew. Chem. 2020, 132, 1217-1221. (j) L. Guo, H.-Y. Tu, S. Zhu, L. Chu, Org. Lett. 2019, 21, 4771-4776. (k) A. García-Domínguez, R. Mondal, C. Nevado, Angew. Chem. Int. Ed. 2019, 58, 12286-12290; Angew. Chem. 2019, 131, 12414 12418. (I) T. Yang, X. Chen, W. Rao, M. J. Koh, Chem 2020, 6, 738751. (m) H.-Y. Tu, F. Wang, L. Huo, Y. Li, S. Zhu, X. Zhao, H. Li, F.L. Qing, L. Chu, J. Am. Chem. Soc. 2020, 142, 9604-9611.
[5] (a) M. A. Schmidt, R. W. Stokes, M. L. Davies, F. Roberts, J. Org. Chem. 2017, 82, 4550-4560. (b) T. Kan, T. Fukuyama. Chem. Commun. 2004, 353-359.
[6] For representative reviews on use of sulfonyl groups in organic synthesis, see: (a) K. Jarowicki, P. Kocienski, J. Chem. Soc., Perkin Trans. 1 1998, 4005-4037. (b) J. D. Wilden, J. Chem. Res. 2010, 34, 541-548.
[7] For examples of electron-deficient olefins as ligands in transition metal catalysis, see: (a) J. B. Johnson, T. Rovis, Angew. Chem., Int. Ed. 2008, 47, 840-871; Angew. Chem. 2008, 120, 852-884. (b) A. E. Jensen, P. Knochel, J. Org. Chem. 2002, 67, 79-85. (c) C.-Y. Huang, A. G. Doyle, J. Am. Chem. Soc. 2015, 137, 5638-5641. (d) J. G. Estrada, W. L. Williams, S. I. Ting, A. G. Doyle, J. Am. Chem. Soc. 2020, 142, 8928-8937.
[8] R. S. Berman, J. K. Kochi, Inorg. Chem.1980,19, 248-254.
[9] R. T. McGuire, C. M. Simon, A. A. Yadav, M. J. Ferguson, M. Stradiotto, Angew. Chem. Int. Ed. 2020, 59, 8952-8956; Angew. Chem. 2020, 132, 9037-9041.
[10] C. Q. O'Broin, P. Fernández, C. Martínez, K. Muñiz, Org. Lett. 2016, 18, 436-439.

SUPPORTING INFORMATION

Table of Contents

General Information S-2
Experimental Procedures S-2
Aryl Boronic Acid Neopentylglycol Ester Synthesis S-2
Alkenyl Sulfonamide and Miscellaneous Substrate Synthesis. S-3
Catalyst Loading Experiments for Nickel-Catalyzed 1,2-Diarylation of Alkenes. S-9
General Procedure for Nickel-Catalyzed 1,2-Diarylation of Alkenes. S-9
Diversification of 1,2-Diarylated Products S-22
X-Ray Crystallography Data S-28
References S-43
NMR Spectra S-45

GENERAL INFORMATION

Unless otherwise noted, all materials were used as received from commercial sources without further purification. All aryl iodides, aryl boronic acids, and solvents were purchased from Aldrich, Alfa Aesar, Oakwood, and Combi-Blocks. $\mathrm{Ni}(\operatorname{cod})_{2}$ was purchased from Strem. Loftek LED flood lights were used for photochemical experiments. Teflon-coated magnetic stir bars were soaked in concentrated nitric acid for at least 1 h , washed repeatedly with deionized water then acetone, and air-dried prior to use. In air- or moisture-sensitive reactions, anhydrous solvents from MilliporeSigma or from a Grubbs-type solvent purification system were used. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded with Bruker AV-400, DPX-500 and AV-600 instruments. Spectra were internally referenced to SiMe_{4} or solvent signals. The following abbreviations (or combinations thereof) were used to explain multiplicities: $\mathrm{b}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, sept $=$ septet, and $m=$ multiplet. Mass spectra for new compounds were recorded on an Agilent LC/MSD TOF (for high-resolution samples).

EXPERIMENTAL PROCEDURES

Aryl Boronic Acid Neopentylglycol Ester Synthesis

Table S1. Aryl boronic acid neopentylglycol esters (S1-S12).

S11

Compounds S1-S12 were prepared according to literature methods. ${ }^{[1,2]}$

Alkenyl Sulfonamide and Miscellaneous Substrate Synthesis

Table S2. Starting materials used in this study: alkenyl sulfonamides $\mathbf{1 c}, \mathbf{1 e}, \mathbf{1 i}$, and 11; alkenyl sulfonates S13-S15; and alkenyl amine S16.

$1 e$

S15

S19
Compounds 1c, ${ }^{[3]} \mathbf{1 e},{ }^{[4]} \mathbf{1 i},{ }^{[5]} \mathbf{1 1},{ }^{[6]} \mathbf{S 1 3 - S 1 5},{ }^{[7]} \mathbf{S 1 6},{ }^{[8]} \mathbf{S 1 7},{ }^{[9]} \mathbf{S 1 8},{ }^{[10]} \mathbf{S 1 9},{ }^{[11]}$ and $\mathbf{S 2 0}{ }^{[12]}$ were prepared according to literature methods.

A/B

$$
\mathrm{X}=\mathrm{NH}, \mathrm{O}
$$

Scheme S1. Synthesis of alkenyl sulfonamides 1a, 1b, 1d, 1k, and 10. These compounds were synthesized using adapted versions of literature procedures describing the preparation of similar compounds. ${ }^{[3,5,6]}$

General Procedure A: To a $100-\mathrm{mL}$ round-bottom flask equipped with a Teflon-coated magnetic stir bar were added the alkenyl amine (5.0 mmol) and dry DCM $(25 \mathrm{~mL})$. The flask was placed in an ice bath, and triethylamine (15.0 mmol) and DMAP ($25 \mathrm{~mol} \%$) were subsequently added. The reaction mixture was allowed to stir for at least 5 min . Lastly, the appropriate sulfonyl chloride $(5.5 \mathrm{mmol})$ was added, and the reaction mixture was allowed to warm to room temperature and continue stirring for 16 h . After this time, the reaction mixture was transferred to a separatory funnel, washed with $1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$, and was extracted with $\mathrm{DCM}(3 \times 20 \mathrm{~mL})$. The combined organic layers were then washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to leave a white solid, which afforded pure product after silica gel column chromatography.

General Procedure B (for small-scale synthesis): To a $10-\mathrm{mL}$ scintillation vial equipped with a Teflon-coated magnetic stir bar were added the alkenyl amine (1.0 mmol) and dry DCM (5 mL). The flask was placed in an ice bath, and triethylamine (3.0 mmol) and DMAP ($25 \mathrm{~mol} \%$) were subsequently added. The reaction mixture was allowed to stir for at least 5 min . Lastly, the
appropriate sulfonyl chloride (1.1 mmol) was added, and the reaction mixture was allowed to warm to room temperature and continue stirring for 16 h . After this time, the reaction mixture was transferred to a separatory funnel, washed with $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$, and extracted with DCM (3×1 $\mathrm{mL})$. The combined organic layers were then washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to leave a white solid, which afforded pure product after silica gel column chromatography.

N-(but-3-en-1-yl)-4-(trifluoromethyl)benzenesulfonamide (1a): The title compound was prepared from but-3-en-1-amine (356 mg , 5.0 mmol) and 4-(trifluoromethyl)benzenesulfonyl chloride (1.35 g , 5.5 mmol), according to General Procedure A. Purification using silica gel column chromatography (20% EtOAc in Hexanes) gave the product as a white solid ($995 \mathrm{mg}, 71 \%$ yield). Characterization data match those reported in the literature. ${ }^{13}$

\mathbf{N}-(but-3-en-1-yl)-4-methoxybenzenesulfonamide (1b): The title compound was prepared from but-3-en-1-amine ($71.1 \mathrm{mg}, 1.0$ mmol) and 4-methoxybenzenesulfonyl chloride ($227 \mathrm{mg}, 1.1 \mathrm{mmol}$), according to General Procedure B. Purification using silica gel column chromatography ($20 \% \mathrm{EtOAc}$ in Hexanes) gave the product as a colorless oil ($190 \mathrm{~g}, 79 \%$ yield $)$. Characterization data match those reported in the literature. ${ }^{14}$
\boldsymbol{N}-(but-3-en-1-yl)-4-cyanobenzenesulfonamide (1d): The title compound was prepared from but-3-en-1-amine ($356 \mathrm{mg}, 5.0 \mathrm{mmol}$) and 4-cyanobenzenesulfonyl chloride ($1.10 \mathrm{~g}, 5.5 \mathrm{mmol}$), according to General Procedure A. Purification using silica gel column chromatography (30% EtOAc in Hexanes) gave the product as a white solid ($695 \mathrm{mg}, 59 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.83 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{ddt}, J=17.1,10.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.09(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{qt}, J=6.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.42$, 133.70, 133.00, 127.70, 118.64, 117.32, 116.42, 42.20, 33.70; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 237.0698$, found 237.0697.

Methyl (S)-2-((4-(trifluoromethyl)phenyl)sulfonamido)pent-4enoate (1k): The title compound was prepared from methyl 2-aminopent-4-enoate ($129 \mathrm{mg}, 1.0 \mathrm{mmol}$) and 4(trifluoromethyl)benzenesulfonyl chloride ($269 \mathrm{mg}, 1.1 \mathrm{mmol}$), according to general procedure B. Purification using silica gel column chromatography (20% EtOAc in Hexanes) gave the product as a white solid ($250 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.61$ (ddt, $J=17.3,10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{dt}, J=9.0,5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.05,143.47(\mathrm{q}, J=1.4$ $\mathrm{Hz}), 134.58(\mathrm{q}, J=32.9 \mathrm{~Hz}), 130.90,127.77,126.20(\mathrm{q}, J=3.9 \mathrm{~Hz}), 123.18(\mathrm{q}, J=273.0 \mathrm{~Hz})$, $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 338.0674, found 338.0674 .

But-3-en-1-yl 4-(trifluoromethyl)benzenesulfonate (10): The title compound was prepared from but-3-en-1-ol ($71.2 \mathrm{mg}, 1.0 \mathrm{mmol}$) and 4-(trifluoromethyl)benzenesulfonyl chloride ($269 \mathrm{mg}, 1.1 \mathrm{mmol}$), according to General Procedure B. Purification using silica gel column chromatography (20% EtOAc in Hexanes) gave the product as a yellow oil ($48 \mathrm{mg}, 17 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.85-$ $7.81(\mathrm{~m}, 2 \mathrm{H}), 5.67(\mathrm{ddt}, J=16.4,10.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.44(\mathrm{qt}, J=6.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.81(\mathrm{q}, J=1.7 \mathrm{~Hz}), 135.40(\mathrm{q}, J$ $=33.2 \mathrm{~Hz}), 132.04,128.45,126.42(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.07(\mathrm{q}, J=272.8 \mathrm{~Hz}), 118.57,70.28,33.13$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.52$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 281.0459, found 281.0452.

Scheme S2. Synthesis of alkenyl sulfonamides $\mathbf{1 f} \mathbf{- h}, \mathbf{1 k}, \mathbf{1 m}$, and $\mathbf{1 n}$. These compounds were synthesized using adapted versions of literature procedures describing the preparation of similar compounds. ${ }^{[7-8]}$

General Procedure C: To a 4-mL dram vial equipped with a Teflon-coated magnetic stir bar were added 4-(trifluoromethyl)benzenesulfonamide (2.3 mmol), finely ground KOH powder (1.3 mmol), and DMSO (1.25 mL). The vial was placed on a heating block and allowed to stir at $50^{\circ} \mathrm{C}$ for 2 h . After this time, the vial was cooled to room temperature, and a solution of the appropriate alkenyl tosylate (1.0 mmol) dissolved in DMSO $(0.15 \mathrm{~mL})$ was added dropwise, followed by addition of $\mathrm{NaI}(0.3 \mathrm{mmol})$ in a single portion. The reaction was allowed to continue at $50^{\circ} \mathrm{C}$ for 16 h . After this time, water (10 mL) was added to the vial, and the reaction mixture was extracted with DCM $(3 \times 1 \mathrm{~mL})$. The combined organic layers were then washed with 10% aqueous solution of NaOH $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was removed in vacuo to leave a white solid, which afforded pure product after silica gel column chromatography.

General Procedure D: To a $35-\mathrm{mL}$ bomb flask equipped with a Teflon-coated magnetic stir bar were added 4-(trifluoromethyl)benzenesulfonamide (1 equiv), the appropriate alkenyl bromide (1.1 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv), and acetone $(0.1 \mathrm{M})$. The flask was placed in an oil bath, and the reaction mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 16 h . After this time, the reaction mixture was
allowed to cool to room temperature and was then filtered over Celite, which was subsequently washed with EtOAc. The filtrate was concentrated in vacuo to leave a white solid, which afforded pure product after silica gel column chromatography.

(Z)- N-(pent-3-en-1-yl)-4-(trifluoromethyl)benzenesulfonamide (1f): The title compound was prepared from (Z)-pent-3-en-1-yl 4methylbenzenesulfonate ($240 \mathrm{mg}, \quad 1.0 \mathrm{mmol}$) and 4(trifluoromethyl)benzenesulfonamide ($518 \mathrm{mg}, \quad 2.3 \mathrm{mmol}$), according to General Procedure C. Purification using silica gel column chromatography (20% EtOAc in Hexanes) gave the product as a white solid ($50 \mathrm{mg}, 17 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.66-5.55$ (m, 1H), 5.21 (dtd, $J=10.9,7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.25(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.67,134.37(\mathrm{q}, J$ $=33.1 \mathrm{~Hz}$), 128.10, 127.59, $126.30(\mathrm{q}, J=3.8 \mathrm{~Hz}), 125.22,123.27(\mathrm{q}, J=272.4 \mathrm{~Hz}), 42.77,27.07$, 12.90; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.36; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}$ [M+H] 294.0776, found 294.0776.

(E)-N-(pent-3-en-1-yl)-4(trifluoromethyl)benzenesulfonamide (1g): The title compound was prepared from (E)-pent-3-en-1-yl 4methylbenzenesulfonate ($240 \mathrm{mg}, \quad 1.0 \mathrm{mmol}$) and 4(trifluoromethyl)benzenesulfonamide ($518 \mathrm{mg}, 2.3 \mathrm{mmol}$), according to General Procedure C. Purification using silica gel column chromatography (20% EtOAc in Hexanes) gave the product as a white solid ($100 \mathrm{mg}, 34 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.53-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.15(\mathrm{~m}, 1 \mathrm{H})$, $4.47(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{dt}, J=6.5,1.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.67(\mathrm{q}, J=1.7 \mathrm{~Hz}), 134.29(\mathrm{q}, J=33.1 \mathrm{~Hz}), 129.16$, $127.60,126.29,126.25(\mathrm{q}, J=3.9,3.3 \mathrm{~Hz}), 123.25(\mathrm{q}, J=273.5,272.9 \mathrm{~Hz}), 42.76,32.51,17.87$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.35; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 294.0776, found 294.0780.

N-(3-methylbut-3-en-1-yl)-4(trifluoromethyl)benzenesulfonamide (1h): The title compound was prepared from 3-methylbut-3-en-1-yl 4-methylbenzenesulfonate ($937.2 \mathrm{mg}, 3.9 \mathrm{mmol}$) and 4-(trifluoromethyl)benzenesulfonamide ($743.1 \mathrm{mg}, 3.3 \mathrm{mmol}$), according to General Procedure C. Purification using silica gel column chromatography ($20 \% \mathrm{EtOAc}$ in Hexanes) gave the product as an off-white solid ($194 \mathrm{mg}, 22 \%$ yield); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{t}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.12(\mathrm{td}, J=6.7,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{td}, J=6.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.74,141.29,134.54(\mathrm{q}, J=33.0 \mathrm{~Hz}), 127.73,126.43(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.36$ $(\mathrm{q}, J=272.6 \mathrm{~Hz}), 113.65,40.69,37.41,21.82 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.41$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 294.0776, found 294.0764.

N-(pent-4-en-1-yl)-4-(trifluoromethyl)benzenesulfonamide (1m): The title compound was prepared from 4(trifluoromethyl)benzenesulfonamide ($1.13 \mathrm{~g}, 5.0 \mathrm{mmol}$), 5-bromopent-1-ene ($820 \mathrm{mg}, 5.5 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{mmol})$ and acetone (5 mL) according to General Procedure D. Purification using silica gel column chromatography (20% EtOAc in Hexanes) gave the product as a white solid ($584.5 \mathrm{mg}, 40 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79$ (d, $J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{t}, J=6.4 \mathrm{~Hz} 1 \mathrm{H}), 3.06-2.98(\mathrm{~m}, 2 \mathrm{H})$, 2.07 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.60(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.66(\mathrm{q}, J=$ $1.4 \mathrm{~Hz}), 136.96,134.39(\mathrm{q}, J=33.1 \mathrm{~Hz}), 127.56,126.32(\mathrm{q}, J=3.6 \mathrm{~Hz}), 124.14(\mathrm{q}, J=272.8 \mathrm{~Hz})$, 115.83, 42.72, 30.56, 28.71; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.37; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 294.0776, found 294.0776.

N -(hex-5-en-1-yl)-4-(trifluoromethyl)benzenesulfonamide (1n): The title compound was prepared from 4(trifluoromethyl)benzenesulfonamide ($349 \mathrm{mg}, 1.55 \mathrm{mmol}$), 6-bromohex-1-ene ($277 \mathrm{mg}, 1.7 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(3.1 \mathrm{mmol})$ and acetone (1.7 mL) according to General Procedure D. Purification using silica gel column chromatography ($20 \% \mathrm{EtOAc}$ in Hexanes) gave the product as a white solid ($95 \mathrm{mg}, 20 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.79$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.71 (ddt, $J=17.0,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.05-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.65(\mathrm{q}, J=1.5 \mathrm{~Hz}), 137.93,134.34(\mathrm{q}, J=33.1 \mathrm{~Hz}), 127.57,126.30$ ($\mathrm{q}, J=3.5 \mathrm{~Hz}$), $123.24(\mathrm{q}, J=272.8 \mathrm{~Hz}), 115.00,43.15,32.99,28.95,25.61 ;{ }^{19}$ F NMR (376 MHz , CDCl_{3}) $\delta-63.39$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$
308.0932, found 308.0932.

Scheme S3. Synthesis of α-methyl alkenyl sulfonamide $\mathbf{1 j}$. This compound was synthesized using an adapted version of a literature procedure describing the preparation of a similar compound. ${ }^{[15]}$
N-(pent-4-en-2-yl)-4-(trifluoromethyl)benzenesulfonamide (1j): To a 4-mL dram vial equipped with a Teflon-coated magnetic stir bar were added acetaldehyde ($0.28 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1$ equiv), allyltrimethylsilane ($0.95 \mathrm{~mL}, 6.0 \mathrm{mmol}, 1.2$ equiv), 4-(trifluoromethyl)benzenesulfonamide (1.13 $\mathrm{g}, 5.0 \mathrm{mmol}$, 1 equiv), and $\mathrm{MeCN}(8 \mathrm{~mL})$. The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.62 \mathrm{~mL}, 5.0 \mathrm{mmol}, 1$ equiv) was added in one portion. The mixture was stirred for 30 \min at $0^{\circ} \mathrm{C}$, then allowed to warm to room temperature and left stirring overnight. After this time, water (100 mL) was added to the vial, and the reaction mixture was extracted with DCM (3×20 $\mathrm{mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed in vacuo. Purification using silica gel column
chromatography (20% EtOAc in Hexanes) gave the product as a colorless oil ($529 \mathrm{mg}, 36 \%$ yield). ${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{ddt}, J=$ $17.3,10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dh}, J=7.8,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.15(\mathrm{ddt}, J=7.3,6.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $144.85,134.42(\mathrm{q}, J=33.0 \mathrm{~Hz}), 133.13,127.69,126.35(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.38(\mathrm{q}, J=272.9 \mathrm{~Hz})$, $119.29,49.73,41.53,21.47 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.37$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 294.0776, found 294.0771.

Scheme S4. Synthesis of N -methyl alkenyl sulfonamide $\mathbf{1 p}$. This compound was synthesized using an adapted version of a literature procedure describing the preparation of a similar compound. ${ }^{[16]}$
N-(but-3-en-1-yl)- N-methyl-4-(trifluoromethyl)benzenesulfonamide (1p): To a 1-dram (4 mL) vial equipped with a Teflon-coated magnetic stir bar were added NaH (60% in mineral oil, 12 mg , $0.30 \mathrm{mmol}, 0.6$ equiv) and THF (1 mL). The vial was submerged in an ice bath, and a solution of the alkenyl sulfonamide 1a ($0.50 \mathrm{mmol}, 1$ equiv) in THF (2 mL) was subsequently added. The mixture was allowed to stir for at least 10 min , and then $\mathrm{MeI}(92 \mathrm{mg}, 0.65 \mathrm{mmol}, 1.3$ equiv) was added dropwise. The reaction mixture was allowed to warm to room temperature and was stirred for 16 h . After this time, the reaction mixture was diluted with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 1 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed in vacuo. Purification using silica gel column chromatography ($20 \% \mathrm{EtOAc}$ in Hexanes) gave the product as a colorless oil ($75 \mathrm{mg}, 51 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{ddt}, J=17.1,10.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.03$ $(\mathrm{m}, 2 \mathrm{H}), 3.17-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{tdd}, J=8.2,6.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.56(\mathrm{q}, J=1.5 \mathrm{~Hz}), 134.24(\mathrm{q}, J=33.2 \mathrm{~Hz}), 133.91,126.24(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.27$ (q, $J=272.7 \mathrm{~Hz}$), 117.46, 49.63, 34.73, 32.29; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.33$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 294.0776, found 294.0779.

Table S3. Effect of catalyst loading on product yield. ${ }^{[a]}$

[a] Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}), s-\mathrm{BuOH}(0.2 \mathrm{M})$. [b] Percentages represent ${ }^{1} \mathrm{H}$ NMR yields using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard. [c] Values in parentheses are isolated yields.

General Procedure for Nickel-Catalyzed 1,2-Diarylation of Alkenes

General Procedure E: To a 1-dram (4 mL) vial equipped with a Teflon-coated magnetic stir bar were added the alkene substrate (0.1 mmol), the appropriate aryl boronic acid neopentylglycol ester (0.3 mmol), the appropriate aryl iodide electrophile (0.3 mmol), and dimethyl fumarate (15 $\mathrm{mol} \%)$. The vial was then equipped with a septum cap, which was pierced by a 20 -gauge needle and introduced into an argon-filled glovebox antechamber. Once transferred inside the glovebox, anhydrous $\mathrm{NaOH}(0.3 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}(20 \mathrm{~mol} \%)$, and anhydrous sec-butanol (0.5 mL) were added. After stirring for 30 sec , the vial was sealed with a screw-top cap, removed from the glovebox, and left to stir at room temperature for 12 h . After this time, the reaction mixture was diluted with $\mathrm{EtOAc}(1 \mathrm{~mL})$, poured into test tube filled with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, rinsed with EtOAc (1 mL), and extracted with EtOAc ($3 \times 1 \mathrm{~mL}$). The organic layers were combined, and the solvent was removed in vacuo to leave a yellow residue, which afforded pure product after preparative thin-layer chromatography (PTLC).

General Procedure F (for large-scale synthesis of 2b and 2ae): To a $20-\mathrm{mL}$ scintillation vial equipped with a Teflon-coated magnetic stir bar were added 1a or $\mathbf{1 d}(1.0 \mathrm{mmol})$, phenylboronic acid neopentyl glycol ester S1 (3.0 mmol), 1-iodo-4-(trifluoromethyl)benzene (3.0 mmol), and dimethyl fumarate ($15 \mathrm{~mol} \%$) according to General Procedure E. The vial was then introduced into an argon-filled glovebox antechamber. Once transferred inside the glovebox, anhydrous NaOH (3.0 mmol), $\mathrm{Ni}(\mathrm{cod})_{2}(20 \mathrm{~mol} \%)$, and anhydrous sec-butanol (5 mL) were added. After stirring for 30 sec , the vial was removed from the glovebox and left to stir at room temperature for 12-40 h . After this time, the reaction mixture was diluted with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The organic layers were combined, and the solvent was removed in vacuo to leave a yellow or orange residue, which afforded pure product after silica gel column chromatography.

Figure S1: Photographic depiction of reaction setup following general procedure. a) Standard reagents used outside glovebox. b) Addition of reagents outside of the glovebox. c) Reagents used inside glovebox and addition of NaOH and $\mathrm{Ni}(\operatorname{cod})_{2}$. d) Addition of solvent inside of the glovebox and after stirring for 30 sec . e) Closer view of typical color of reaction mixture after 30 sec of stirring in the glovebox. f) Stirring at room temperature outside of glovebox.

N-(4-phenyl-3-(p-tolyl)butyl)-4(trifluoromethyl)benzenesulfonamide (2a): The title compound was prepared from $1 \mathbf{1 a}$ ($28 \mathrm{mg}, 0.1 \mathrm{mmol}$), 4methylphenylboronic acid neopentyl glycol ester $\mathbf{S 1}$ ($61 \mathrm{mg}, 0.3$ mmol), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a white solid ($36.6 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.48(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.69(\mathrm{~m}, 5 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{dtd}, J=13.5,7.6,3.7 \mathrm{~Hz}$, 1 H), 1.71 (dddd, $J=13.5,10.0,7.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.45$ (q, $J=$ $1.5 \mathrm{~Hz}), 140.11,139.86,136.26,134.22(\mathrm{q}, ~ J=33.1 \mathrm{~Hz}), 129.35,129.07,128.24,127.51,127.31$, $126.18(\mathrm{q}, J=3.6 \mathrm{~Hz}), 126.11,123.26(\mathrm{q}, J=272.5 \mathrm{~Hz}), 44.80,43.75,41.63,34.93,21.00$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 448.1558$, found 448.1562 ; ${ }^{19}$ F NMR (376 MHz , CDCl_{3}) δ-63.30; X-ray (single-crystal) Colorless block crystals of X-ray diffraction quality were obtained by vapor diffusion of pentane to a saturated solution of 2a in benzene (CCDC 2011491). ${ }^{[17]}$

N-(3-phenyl-4-(4-(trifluoromethyl)phenyl)butyl)-4(trifluoromethyl)benzenesulfonamide (2b): The title compound was prepared from $1 \mathrm{a}(28 \mathrm{mg}, 0.1 \mathrm{mmol})$, phenylboronic acid neopentyl glycol ester $\mathbf{S} 2(57 \mathrm{mg}$, 0.3 mmol) and 1-iodo-4-(trifluoromethyl)benzene (82 $\mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a yellow oil ($49.4 \mathrm{mg}, 99 \%$ yield). Additionally, the title compound was also prepared on larger scale from $\mathbf{1 a}(279 \mathrm{mg}, 1 \mathrm{mmol})$, phenylboronic acid neopentyl glycol ester $\mathbf{S 1}$ ($570 \mathrm{mg}, 3 \mathrm{mmol}$) and 1-iodo-4-(trifluoromethyl)benzene ($816 \mathrm{mg}, 3 \mathrm{mmol}$) according to General Procedure F. Purification using silica gel column chromatography ($20 \% \mathrm{EtOAc}$ in Hexanes) gave the product as a yellow solid ($479 \mathrm{mg}, 96 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{pt}, J=7.4,1.8$ $\mathrm{Hz}, 3 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-$ $2.72(\mathrm{~m}, 5 \mathrm{H}), 1.94-1.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.76(\mathrm{q}, J=1.4 \mathrm{~Hz}), 143.32$ $(\mathrm{q}, J=1.4 \mathrm{~Hz}), 142.31,134.36(\mathrm{q}, J=33.0 \mathrm{~Hz}), 129.33,128.78,128.45(\mathrm{q}, J=31.5 \mathrm{~Hz}), 127.49$ (d, $J=2.2 \mathrm{~Hz}), 127.00,126.25(\mathrm{q}, J=3.6 \mathrm{~Hz}), 125.15(\mathrm{q}, J=271.8 \mathrm{~Hz}), 125.11(\mathrm{q}, J=3.6 \mathrm{~Hz})$, 124.11 ($\mathrm{q}, ~ J=273.2 \mathrm{~Hz}$), 115.47, 44.97, 43.35, 41.45, 35.30; ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ 62.59, -63.38; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 502.1275$, found 502.1272.

N-(4-(4-fluorophenyl)-3-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2c): The title compound was prepared from $1 \mathbf{1 a}(28 \mathrm{mg}, 0.1 \mathrm{mmol})$, phenylboronic acid neopentyl glycol ester $\mathbf{S} \mathbf{2}(57 \mathrm{mg}, 0.3$ mmol) and 1-fluoro-4-iodobenzene ($67 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a white solid ($39.6 \mathrm{mg}, 88 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.81(\mathrm{~m}, 4 \mathrm{H}), 4.61(\mathrm{t}$, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.71(\mathrm{~m}, 5 \mathrm{H}), 1.92-1.71(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.17$, $160.55,143.37(\mathrm{q}, ~ J=1.4 \mathrm{~Hz}), 142.75,135.30(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 134.30(\mathrm{q}, J=33.2 \mathrm{~Hz}), 130.40(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}), 128.68,127.51(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 126.83,126.24(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.23(\mathrm{q}, J=272.8$ $\mathrm{Hz}), 114.96(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 45.34,42.79,41.53,35.10 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.34$, 117.31; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{4} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 452.1307$, found 452.1315.
 according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a white solid ($41.1 \mathrm{mg}, 91 \%$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.91$ (dddd, $J=15.8,11.2$, $7.8,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 2.92-2.72(\mathrm{~m}, 5 \mathrm{H}), 1.82(\mathrm{ddd}, J=13.0,7.8,6.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.94,160.32,143.44(\mathrm{q}, J=1.4 \mathrm{~Hz}), 142.85,134.25(\mathrm{q}, J=33.0$ $\mathrm{Hz}), 131.38(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 128.67,127.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 127.45(\mathrm{~d}, J=15.5 \mathrm{~Hz}), 126.85,126.54$ (d, $J=15.5 \mathrm{~Hz}), 126.22(\mathrm{q}, J=3.9 \mathrm{~Hz}), 123.80(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 123.25(\mathrm{q}, J=273.0 \mathrm{~Hz}), 115.18$ (trifluoromethyl)benzenesulfonamide (2d): The title compound was prepared from $1 \mathbf{1 a}(28 \mathrm{mg}, 0.1 \mathrm{mmol})$, phenylboronic acid neopentyl glycol ester S2 (57 mg, 0.3 mmol) and 1 -fluoro-2-iodobenzene ($67 \mathrm{mg}, 0.3 \mathrm{mmol}$)
$(\mathrm{d}, J=22.2 \mathrm{~Hz}), 43.96,41.57,36.68(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 34.87 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.31$, -118.44; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{4} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 452.1307$, found 452.1310.
 according to General Procedure E. Purification using PTLC (20\% EtOAc in Hexanes) gave the product as a white solid ($31 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.50(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.68(\mathrm{~m}, 5 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{dtd}, J=13.8,7.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (dddd, $J=13.5,9.9,7.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.43(\mathrm{q}, J=1.4 \mathrm{~Hz}$), 143.37, 136.60, 135.62, 134.12 (q, $J=32.5 \mathrm{~Hz}$), 128.95, 128.94, 128.67, 127.51, 127.49, 126.72, $126.20(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.26(\mathrm{q}, J=272.9 \mathrm{~Hz}), 45.29,43.22,41.62,34.90,21.00 ;{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.31; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 448.1558$, found 448.1556.

N-(4-(4-methoxyphenyl)-3-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2f): The title compound was prepared from $\mathbf{1 a}(28 \mathrm{mg}, 0.1 \mathrm{mmol})$, phenylboronic acid neopentyl glycol ester $\mathbf{S 2}(57 \mathrm{mg}$, 0.3 mmol) and 1-iodo-4-methoxybenzene ($65 \mathrm{mg}, 0.3$ mmol) according to General Procedure E but with a reaction time of 16 h . Purification using PTLC (20% Acetone in Hexanes) gave the product as a colorless oil ($35.8 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.97$ $(\mathrm{m}, 2 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.69(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.67$ $(\mathrm{m}, 5 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{dtd}, J=9.9,8.4,8.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 157.94,143.42(\mathrm{q}, J=1.6 \mathrm{~Hz}), 143.31,134.21(\mathrm{q}, J=33.2 \mathrm{~Hz}), 131.78,129.99,128.63,127.53$, 127.51, 126.69, 126.21 (q, $J=3.6 \mathrm{~Hz}$), 123.27 (q, $J=272.6 \mathrm{~Hz}$), 113.62, 55.18, 45.40, 42.75, 41.61, 34.93; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.31; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 464.1507$, found 464.1502.

N-(4-(3-methoxyphenyl)-3-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2g): The title compound was prepared from $1 \mathrm{a}(28 \mathrm{mg}, 0.1 \mathrm{mmol})$, phenylboronic acid neopentyl glycol ester S2 (57 mg , 0.3 mmol) and 1-iodo-3-methoxybenzene ($65 \mathrm{mg}, 0.3$ mmol) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a colorless oil ($46 \mathrm{mg}, 99 \%$ yield $).{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.69 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.15$ (m, 3H), $7.10(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.98$ (m, $2 \mathrm{H}), 6.69$ (ddd, $J=8.2,2.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dt}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=2.6,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.70(\mathrm{~m}, 5 \mathrm{H}), 1.86(\mathrm{dtd}, J=13.9,7.7,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.75$ (dddd, $J=13.4,9.9,7.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.45,143.40$
$(\mathrm{q}, J=1.4 \mathrm{~Hz}), 143.22,141.32,134.23(\mathrm{q}, J=33.0 \mathrm{~Hz}), 129.21,128.68,127.50,126.77,126.22$ (q, $J=3.8 \mathrm{~Hz}$), $123.26(\mathrm{q}, J=272.5 \mathrm{~Hz}), 121.47,114.78,111.54,55.09,45.12,43.68,41.59,34.97 ;$ ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.31; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 464.1507, found 464.1516.
 according to General Procedure E but with a reaction time of 16 h . Purification using PTLC (20% Acetone in Hexanes) gave the product as a colorless oil ($37.3 \mathrm{mg}, 81 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 2 \mathrm{H})$, 6.81 (ddd, $J=8.2,2.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{td}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ $(\mathrm{s}, 3 \mathrm{H}), 2.91-2.71(\mathrm{~m}, 5 \mathrm{H}), 1.87-1.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 157.43, 143.92, $143.54(\mathrm{q}, J=1.4 \mathrm{~Hz}), 134.17(\mathrm{q}, J=32.4 \mathrm{~Hz}), 130.86$, 128.49, 128.14, 127.50, 127.48, 127.46, $126.54,126.20(\mathrm{q}, J=3.9 \mathrm{~Hz}), 123.28(\mathrm{q}, J=272.6 \mathrm{~Hz}), 110.32,55.29,43.42,41.68,37.65,34.68 ;$ ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.30; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 464.1507, found 464.1501 .

N-(4-(4-chlorophenyl)-3-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2i): The title compound was prepared from $1 \mathrm{a}(28 \mathrm{mg}, 0.1 \mathrm{mmol})$, phenylboronic acid neopentyl glycol ester $\mathbf{S} \mathbf{2}(57 \mathrm{mg}, 0.3$ mmol) and 1-chloro-4-iodobenzene ($72 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a white solid ($44.8 \mathrm{mg}, 96 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 2.79(\mathrm{p}, J=5.7,5.1 \mathrm{~Hz}, 5 \mathrm{H}), 1.92-1.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.35,142.60,138.12,134.32(\mathrm{q}, J=33.0 \mathrm{~Hz}$), 131.87, 130.38, 128.72, 128.31, $127.50,126.89,126.25(\mathrm{q}, J=3.6 \mathrm{~Hz}), 123.23(\mathrm{q}, J=273.3 \mathrm{~Hz}), 45.13,42.93,41.50,35.17 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.32; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClF}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 468.1012, found 468.1015.

N-(4-(2-chlorophenyl)-3-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2j): The title compound was prepared from 1a ($28 \mathrm{mg}, 0.1 \mathrm{mmol}$), phenylboronic acid neopentyl glycol ester S2 (57 mg, 0.3 mmol) and 1 -chloro-2-iodobenzene ($72 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a colorless oil $\left(43.7 \mathrm{mg}, 89 \%\right.$ yield). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.69$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.28(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.08$ (td, $J=7.7$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dtd}, J=7.5,3.4,2.6,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.85(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.74(\mathrm{~m}, 5 \mathrm{H}), 1.84(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.45$ $(\mathrm{q}, J=1.4 \mathrm{~Hz}), 142.87,137.28,134.25(\mathrm{q}, J=33.3 \mathrm{~Hz}), 134.05,131.40,129.51,128.69,127.72$,
$127.50,127.42,126.86,126.49,126.22(\mathrm{q}, J=3.6 \mathrm{~Hz}), 123.25(\mathrm{q}, J=273.3 \mathrm{~Hz}), 43.31,41.62$, 41.27, 34.78; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.30; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClF}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 468.1012$, found 468.1009.

N-(3-phenyl-4-(2-(fluoromethyl)pyridin-4-yl)butyl)-4(trifluoromethyl)benzenesulfonamide (2k): The title compound was prepared from $1 \mathbf{1 a}(28 \mathrm{mg}, 0.1 \mathrm{mmol})$, phenylboronic acid neopentyl glycol ester $\mathbf{S} 2(57 \mathrm{mg}, 0.3$ mmol) and 4-iodo-2-(trifluoromethyl)pyridine (82 mg , 0.3 mmol) according to General Procedure E but with a reaction time of 16 h . Purification using PTLC (20% Acetone in Hexanes) gave the product as a white solid ($33.3 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.26-$ $7.17(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{dt}, J=5.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{t}, J$ $=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.74(\mathrm{~m}, 5 \mathrm{H}), 1.99-1.79(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.28$, $164.60,163.02,154.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 147.14(\mathrm{~d}, J=15.0 \mathrm{~Hz}), 143.34(\mathrm{~d}, J=1.1 \mathrm{~Hz}), 134.36(\mathrm{q}$, $J=33.0 \mathrm{~Hz}), 128.89,127.45(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 127.26,126.27(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.19(\mathrm{q}, J=273.0$ $\mathrm{Hz}), 122.18(\mathrm{~d}, ~ J=3.8 \mathrm{~Hz}), 109.76(\mathrm{~d}, J=36.5 \mathrm{~Hz}), 44.12,42.55(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 41.25,35.60$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.36$, -69.31; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}] 453.1260$, found 453.1253 .

21
N-(4-(4-isopropylphenyl)-3-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (21): The title compound was prepared from $1 \mathrm{a}(28 \mathrm{mg}, 0.1 \mathrm{mmol})$, phenylboronic acid neopentyl glycol ester $\mathbf{S 2}(57 \mathrm{mg}$, 0.3 mmol) and 1-iodo-4-isopropylbenzene ($72 \mathrm{mg}, 0.3$ mmol) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a colorless oil ($35.2 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.16(\mathrm{~m}$, $3 \mathrm{H}), 7.09-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.68(\mathrm{~m}, 6 \mathrm{H}), 1.85$ (dtd, $J=13.7,7.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.73 (dddd, $J=13.5,9.9,7.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.21 (dd, $J=6.9,0.7$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.71,143.50,143.42,137.01,134.24(\mathrm{q}, J=33.2 \mathrm{~Hz})$, 128.97, 128.68, 127.52, 127.48, 126.73, 126.32, 126.21 (q, $J=3.6 \mathrm{~Hz}$), 123.26 (q, $J=272.4 \mathrm{~Hz}$), 45.22, 43.24, 41.63, 34.83, 33.66, 24.02; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.31; HRMS (ESITOF) Calc'd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 476.1871$, found 476.1863.

N -(4-(3,5-dimethylphenyl)-3-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2m): The title compound was prepared from $1 \mathbf{a}(28 \mathrm{mg}, 0.1 \mathrm{mmol})$, phenylboronic acid neopentyl glycol ester $\mathbf{S} 2(57 \mathrm{mg}, 0.3$ mmol) and 1 -iodo-3,5-dimethylbenzene ($70 \mathrm{mg}, 0.3$ mmol) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a colorless oil ($41.5 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.15(\mathrm{~m}$, $3 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.72(\mathrm{~m}, 4 \mathrm{H})$, $2.67(\mathrm{qd}, J=10.8,10.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H}), 1.83(\mathrm{dtd}, J=13.9,7.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (dddd,
$J=13.5,10.2,7.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.59,143.39(\mathrm{q}, J=1.4 \mathrm{~Hz})$, $139.65,137.72,134.22(\mathrm{q}, J=33.2 \mathrm{~Hz}), 128.67,127.81,127.51,127.45,126.96,126.73,126.18$ ($\mathrm{q}, ~ J=3.6 \mathrm{~Hz}$), $123.26(\mathrm{q}, J=273.0 \mathrm{~Hz}), 45.20,43.61,41.66,34.73,21.23$; ${ }^{19}$ F NMR (376 MHz , CDCl_{3}) $\delta-63.31$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 462.1715$, found 462.1713 .

N-(4-phenyl-3-(4-(trifluoromethyl)phenyl)butyl)-4(trifluoromethyl)benzenesulfonamide (2n): The title compound was prepared from $1 \mathbf{1 a}$ ($28 \mathrm{mg}, 0.1 \mathrm{mmol}$), 4(trifluoromethyl)phenylboronic acid neopentyl glycol ester S3 ($77 \mathrm{mg}, 0.3 \mathrm{mmol}$), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a white solid (40.9 $\mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84$ (dt, $J=8.1$, $0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ (dt, $J=8.1,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.11$ (m, 5H), $6.98-6.93$ $(\mathrm{m}, 2 \mathrm{H}), 4.54(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.69(\mathrm{~m}, 4 \mathrm{H}), 1.91(\mathrm{dtd}, J=13.9,7.8$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{dddd}, J=14.0,10.3,7.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.40$ (d, $J=1.1 \mathrm{~Hz}$), $143.28(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 139.03,134.43(\mathrm{q}, J=33.1 \mathrm{~Hz}), 129.01,129.00(\mathrm{q}, J=32.1$ $\mathrm{Hz}), 128.36,127.93,127.49,126.37$, $126.29(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.53(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.13(\mathrm{q}, J=$ $272.0 \mathrm{~Hz}), 123.19(\mathrm{q}, ~ J=272.9 \mathrm{~Hz}), 44.83,43.34,41.28,34.99 ;{ }^{19}$ F NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 62.67, -63.40; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 502.1275, found 502.1269.

N-(3-(4-fluorophenyl)-4-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (20): The title compound was prepared from $1 \mathbf{1 a}(28 \mathrm{mg}, 0.1 \mathrm{mmol}$), 4fluorophenylboronic acid neopentyl glycol ester $\mathbf{S 4}(62 \mathrm{mg}, 0.3$ mmol), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20\% EtOAc in Hexanes) gave the product as a white solid ($40.4 \mathrm{mg}, 89 \%$ yield).
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.87(\mathrm{~m}, 6 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 2.89-2.69(\mathrm{~m}, 5 \mathrm{H}), 1.86$ (dtd, $J=14.1,7.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.34,160.72$, $143.39(\mathrm{q}, J=1.4 \mathrm{~Hz}), 139.43,138.74(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 134.34(\mathrm{q}, J=33.1 \mathrm{~Hz}), 129.05,128.91(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}), 128.26,127.50,126.27(\mathrm{q}, J=3.7 \mathrm{~Hz}), 126.21,123.23(\mathrm{q}, J=273.1 \mathrm{~Hz}), 115.41(\mathrm{~d}, J$ $=21.1 \mathrm{~Hz}$), 44.34, 43.76, 41.43, 35.21; ${ }^{19} \mathbf{F}$ NMR (376 MHz, CDCl_{3}) $\delta-63.33$, -116.30; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{4} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 452.1307$, found 452.1301.

N-(3-(3-fluorophenyl)-4-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2p): The title compound was prepared from 1a ($28 \mathrm{mg}, 0.1 \mathrm{mmol}$), 3fluorophenylboronic acid neopentyl glycol ester $\mathbf{S 5}(62 \mathrm{mg}, 0.3$ mmol), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20\% EtOAc in Hexanes) gave the product as a white solid ($41.3 \mathrm{mg}, 91 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.86$ (td, $J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dt}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dt}, J=10.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{t}, J=6.1$
$\mathrm{Hz}, 1 \mathrm{H}), 2.90-2.70(\mathrm{~m}, 5 \mathrm{H}), 1.86(\mathrm{dtd}, J=14.1,7.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.78,162.15,145.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 143.34,139.24,134.36(\mathrm{q}, J=32.9$ Hz), 130.12 (d, $J=8.3 \mathrm{~Hz}$), 129.01, 128.32, 127.49 , 126.27 (dd, $J=6.5,3.1 \mathrm{~Hz}$), 123.32 (d, $J=$ $2.8 \mathrm{~Hz}), 123.22(\mathrm{q}, J=272.9 \mathrm{~Hz}), 114.22(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 113.66(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 44.93,43.48$, 41.42, 34.97; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.35,-112.90$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{4} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 452.1307, found 452.1313.

N-(3-(2-fluorophenyl)-4-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2q): The title compound was prepared from $1 \mathbf{1 a}$ ($28 \mathrm{mg}, 0.1 \mathrm{mmol}$), 2fluorophenylboronic acid neopentyl glycol ester $\mathbf{S 6}(62 \mathrm{mg}, 0.3$ mmol), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20\% EtOAc in Hexanes) gave the product as a white solid ($41.3 \mathrm{mg}, 91 \%$ yield $)$. ${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}$, $3 \mathrm{H}), 7.12(\mathrm{td}, J=8.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{td}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.71$ $(\mathrm{m}, 1 \mathrm{H}), 6.65(\mathrm{dt}, J=9.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 2.88-2.71(\mathrm{~m}, 5 \mathrm{H}), 1.91-1.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.49,161.86,143.36(\mathrm{q}, J=1.4 \mathrm{~Hz}), 142.65,142.25(\mathrm{~d}, J=7.2 \mathrm{~Hz})$, $134.30(\mathrm{q}, J=33.1 \mathrm{~Hz}), 129.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 128.72,127.48(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 126.90,126.24(\mathrm{q}$, $J=3.8 \mathrm{~Hz}), 124.74(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 123.24(\mathrm{q}, J=272.9 \mathrm{~Hz}), 115.83(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 113.03(\mathrm{~d}$, $J=21.0 \mathrm{~Hz}), 44.99,43.31(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 41.49,35.10 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.33,-$ 63.33, -113.92; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{4} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 452.1307$, found 452.1308 .

N-(3-(4-methoxyphenyl)-4-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2r): The title compound was prepared from $1 \mathrm{1a}$ ($28 \mathrm{mg}, 0.1 \mathrm{mmol}$), 4methoxyphenylboronic acid neopentyl glycol ester S7 (66 mg , 0.3 mmol), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E but with a reaction time of 16 h . Purification using PTLC (20% EtOAc in Hexanes) gave the product as a white solid ($32.5 \mathrm{mg}, 70 \%$ yield). ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.94$ $(\mathrm{m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 2.87-2.70 (m, 5H), 1.87-1.77 (m, 1H), 1.70 (dddd, $J=13.8,10.1,7.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.28,143.48(\mathrm{q}, J=1.4 \mathrm{~Hz}), 139.84,135.10,134.22(\mathrm{q}, J=33.1 \mathrm{~Hz})$, $129.08,128.39,128.22,127.51,126.21(\mathrm{q}, J=3.6 \mathrm{~Hz}), 126.09,123.26$ (q, $J=273.1 \mathrm{~Hz}), 114.00$, $55.20,44.37,43.87,41.61,35.13 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.30$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 464.1507$, found 464.1500 .

N-(3-(4-(tert-butyl)phenyl)-4-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2s): The title compound was prepared from $1 \mathbf{1 a}(28 \mathrm{mg}, 0.1 \mathrm{mmol}), 4$-(tertbutyl)phenylboronic acid neopentyl glycol ester $\mathbf{S 8}$ ($74 \mathrm{mg}, 0.3$ mmol), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a white solid ($43.8 \mathrm{mg}, 89 \%$ yield $)$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.44(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.68(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.30$ $(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.66,143.51(\mathrm{q}, J=1.3 \mathrm{~Hz}), 140.27,139.96,134.21(\mathrm{q}$, $J=33.1 \mathrm{~Hz}), 129.09,128.27,127.52,127.02,126.18(\mathrm{q}, J=3.6 \mathrm{~Hz}), 126.13,125.55,123.26(\mathrm{q}, J$ $=273.0 \mathrm{~Hz}), 44.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 43.64,41.70,34.75,34.42,31.37 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.27; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 490.2028$, found 490.2027.

N-(3-(3,5-bis(trifluoromethyl)phenyl)-4-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2t): The title compound was prepared from $1 \mathrm{a}(28 \mathrm{mg}, 0.1 \mathrm{mmol}), 3,5-$ bis(trifluoromethyl)phenylboronic acid neopentyl glycol ester $\mathbf{S} 9(98 \mathrm{mg}, 0.3 \mathrm{mmol})$, and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a colorless oil $\left(52.1 \mathrm{mg}, 91 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{dt}, J=8.1,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.68(\mathrm{~m}$, 3 H), 7.47-7.44 (m, 2H), 7.22-7.15 (m, 3H), 6.94-6.89 (m, 2H), 4.88 (t, J=6.2 Hz, 1H), 3.09 (dtd, $J=9.8,7.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.72(\mathrm{~m}, 4 \mathrm{H}), 1.97(\mathrm{dtd}, J=14.0,7.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86$ (dddd, $J=$ $14.1,9.9,7.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.89,143.19,138.20,134.55(\mathrm{q}, J=$ $33.2 \mathrm{~Hz}), 131.73(\mathrm{q}, J=33.1 \mathrm{~Hz}), 128.98,128.49,127.85(\mathrm{q}, J=3.9 \mathrm{~Hz}), 127.45,126.65,126.35$ $(\mathrm{q}, J=3.6 \mathrm{~Hz}), 123.23(\mathrm{q}, J=273.0 \mathrm{~Hz}), 123.14(\mathrm{q}, J=273.4 \mathrm{~Hz}) 44.62,43.22,41.13,34.71 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.10$, -63.47; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{9} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 570.1149 , found 570.1149 .

tert-butyl
(4-(1-phenyl-4-((4-
(trifluoromethyl)phenyl)sulfonamido)butan-2-
$\mathbf{y l}) \mathbf{p h e n y l})$ carbamate (2u): The title compound was prepared from 1a ($28 \mathrm{mg}, 0.1 \mathrm{mmol}$), tert-butyl(4-phenyl)carbamate boronic acid neopentyl glycol ester $\mathbf{S 1 0}(92 \mathrm{mg}, 0.3 \mathrm{mmol})$, and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a white solid ($37 \mathrm{mg}, 67 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.84-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{ddd}, J=11.5,7.4,1.9$ $\mathrm{Hz}, 4 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.71(\mathrm{~m}, 5 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{td}, J$ $=16.9,15.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.88$, $143.43(\mathrm{q}, J=1.6$ $\mathrm{Hz}), 139.71,137.70,136.90,134.19(\mathrm{q}, J=33.0 \mathrm{~Hz}), 129.07,128.23,128.00,127.50,126.23$ (q, $J=3.9 \mathrm{~Hz}), 126.10,123.27(\mathrm{q}, J=273.6 \mathrm{~Hz}), 118.83,80.58,44.56,43.71,41.55,35.09,28.34 ;$
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.28; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 549.2035, found 549.2024.

N-(3-(4-phenoxyphenyl)-4-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2v): The title compound was prepared from $\mathbf{1 a}(28 \mathrm{mg}, 0.1 \mathrm{mmol}$), 4phenoxyphenyl boronic acid neopentyl glycol ester $\mathbf{S 1 1}(85 \mathrm{mg}$, 0.3 mmol), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a colorless oil ($50.4 \mathrm{mg}, 96 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.68(\mathrm{~m}$, 2H), 7.36-7.29 (m, 2H), 7.22-7.13 (m, 3H), $7.09(\mathrm{td}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 6 \mathrm{H})$, 6.91-6.85 (m, 2H), $4.62(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.72(\mathrm{~m}, 5 \mathrm{H}), 1.84$ (dtd, $J=15.4,7.5,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.74$ (dddd, $J=13.1,9.3,7.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.32,155.84$, $143.48,139.69,138.09,134.31(\mathrm{q}, J=33.0 \mathrm{~Hz}), 129.79$, 129.12, 128.77, 128.26, 127.54, 126.28 $(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.19,123.27,122.82(\mathrm{q}, J=273.7 \mathrm{~Hz}), 119.12,118.74,44.54,43.80,41.62$, 35.14; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.26$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}] 526.1664$, found 526.1666.

N-(3-(3-acetylphenyl)-4-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2w): The title compound was prepared from $\mathbf{1 a}(28 \mathrm{mg}, 0.1 \mathrm{mmol})$, 3acetylphenyl boronic acid neopentyl glycol ester $\mathbf{S 1 2}$ (70 mg , 0.3 mmol), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a colorless oil ($32.9 \mathrm{mg}, 69 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.76(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dt}, J=7.7,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.89-$ $2.70(\mathrm{~m}, 4 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.77(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.41,143.43(\mathrm{q}$, $J=1.4 \mathrm{~Hz}), 139.24,137.33,134.29(\mathrm{q}, J=32.9 \mathrm{~Hz}), 132.50,129.07,128.87,128.31,127.47$, 127.16, 127.07, 126.29, 126.27 (q, $J=3.8 \mathrm{~Hz}$), 123.21 (q, $J=272.4 \mathrm{~Hz}), 44.91,43.52,41.44$, 34.94, 26.70; ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.32; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 476.1507, found 476.1514.

4-methoxy- N-(4-phenyl-3- p tolyl)butyl)benzenesulfonamide (2 x): The title compound was prepared from 1c ($24 \mathrm{mg}, 0.1 \mathrm{mmol}$), 4-methylphenylboronic acid neopentyl glycol ester S1 ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a colorless oil ($36.9 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 4 \mathrm{H}), 4.34(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.65(\mathrm{~m}, 5 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{dqd}, J=10.1,7.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$162.76,140.34,140.02,136.01,131.45,129.26,129.18,129.12,128.17,127.42,125.99,114.15$, 55.61, 44.77, 43.69, 41.48, 35.07, 21.05; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 410.1790 , found 410.1800 .

4-methyl- N -(4-phenyl-3-(p-tolyl)butyl)benzenesulfonamide (2y): The title compound was prepared from $\mathbf{1 d}(23 \mathrm{mg}, 0.1$ mmol), 4-methylphenylboronic acid neopentyl glycol ester S1 ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E but with a reaction time of 16 h. Purification using PTLC (20% Acetone in Hexanes) gave the product as a colorless oil ($29 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H})$, $7.20-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.42(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.65(\mathrm{~m}, 5 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.80$ (dddd, $J=15.3,7.7$, $3.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (dddd, $J=11.6,8.0,5.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.23$, $140.33,140.02,136.90,136.01,129.63,129.26,129.12,128.17,127.42,125.98,44.75,43.68$, 41.52, 35.12, 21.55, 21.06; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 394.1841$, found 394.1841 .

4-cyano- N-(4-phenyl-3-(p-tolyl)butyl)benzenesulfonamide (2z): The title compound was prepared from $\mathbf{1 e}(24 \mathrm{mg}, 0.1$ mmol), 4-methylphenylboronic acid neopentyl glycol ester S1 ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20\% EtOAc in Hexanes) gave the product as a colorless oil (37.6 mg , 90% yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.13$ (m, 3H), 7.05 (d, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.69(\mathrm{~m}, 5 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.64(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.22,140.08,139.80,136.34$, $132.85,129.40,129.07,128.28,127.58,127.30,126.17,117.37,116.21,44.81,43.77,41.69,34.86$, 21.06; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 405.1637$, found 405.1638 .

N-(4-phenyl-3-(p-tolyl)butyl)methanesulfonamide (2aa): The title compound was prepared from $\mathbf{1 e}(24 \mathrm{mg}, 0.1 \mathrm{mmol})$, 4methylphenylboronic acid neopentyl glycol ester $\mathbf{S} \mathbf{1}(61 \mathrm{mg}, 0.3 \mathrm{mmol})$, and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% Acetone in Hexanes) gave the product as a colorless oil ($25.2 \mathrm{mg}, 79 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-$ $7.18(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-6.99(\mathrm{~m}$, $4 \mathrm{H}), 4.18(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.79(\mathrm{~m}, 5 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}$, 3H), 1.97-1.77 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.33,140.02,136.26,129.40,129.16$, 128.26, 127.43, 126.11, 44.93, 43.89, 41.62, 40.08, 35.42, 21.06; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 318.1528, found 318.1533.

N-4-phenyl-3-(p-tolyl)pentyl)-4(trifluoromethyl)benzenesulfonamide (2ab): The title compound was prepared from if ($29 \mathrm{mg}, 0.1 \mathrm{mmol}$), 4methylphenylboronic acid neopentyl glycol ester $\mathbf{S 1}$ ($61 \mathrm{mg}, 0.3$ mmol), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to the General Procedure E. Purification using PTLC (20\% EtOAc in Hexanes) gave the product as a white solid ($32.2 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 2.74(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.52$ (m, $3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{q}, J=7.8,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 145.92,143.44,139.35,136.35,134.11(\mathrm{q}, J=33.0 \mathrm{~Hz}), 129.42,128.60,127.86,127.46$, 127.41, 126.40, 126.11 (q, $J=3.8 \mathrm{~Hz}$), 123.28 (q, $J=272.8 \mathrm{~Hz}$), 50.11, 46.32, 41.82, 34.28, 21.11, 21.02; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.29$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}$ [M+H] 462.1715, found 462.1713; X-ray (single-crystal) Colorless block crystals of X-ray diffraction quality were obtained by vapor diffusion of hexane to a saturated solution of $\mathbf{2 a b}$ in benzene (CCDC 2011492). ${ }^{[17]}$

N-4-phenyl-3-(p-tolyl)pentyl)-4(trifluoromethyl)benzenesulfonamide (2ac): The title compound was prepared from $\mathbf{1 g}$ ($29 \mathrm{mg}, 0.1 \mathrm{mmol}$), 4methylphenylboronic acid neopentyl glycol ester S1 ($61 \mathrm{mg}, 0.3$ mmol), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E but with a reaction time of 16 h . Purification using PTLC (20% Acetone in Hexanes) gave the product as a colorless oil ($39.6 \mathrm{mg}, 86 \%$ yield). ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.95-6.86$ $(\mathrm{m}, 4 \mathrm{H}), 6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 2 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{dtd}, J=13.6,7.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.75$ (dddd, $J=13.7,12.1,7.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.21$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.62,143.52(\mathrm{q}, J=1.2 \mathrm{~Hz}), 138.11,135.95$, 134.22 ($\mathrm{q}, J=33.1 \mathrm{~Hz}$), 128.82, 128.30, 127.94, 127.84, 127.52, 126.16 ($\mathrm{q}, J=3.8 \mathrm{~Hz}$), 126.00, $123.25(\mathrm{q}, ~ J=272.6 \mathrm{~Hz}), 49.46,45.45,41.90,32.07,20.94,18.42 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.34; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 462.1715$, found 462.1711.

N-(3-methyl-3-(4-phenoxyphenyl)-4-phenylbutyl)-4(trifluoromethyl)benzenesulfonamide (2ad): The title compound was prepared from $\mathbf{1 h}$ ($29 \mathrm{mg}, 0.1 \mathrm{mmol}$), 4methylphenylboronic acid neopentyl glycol ester S1 ($61 \mathrm{mg}, 0.3$ mmol), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E but with a reaction time of 16 h . Purification using PTLC (20% Acetone in Hexanes) gave the product as a colorless oil ($27 \mathrm{mg}, 50 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=8.6,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.16-7.09 (m, 4H), 7.09-7.06 (m, 2H), 7.02-6.99 (m, 2H), 6.92 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ (dd, $J=$ $7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.49-4.43(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.70(\mathrm{~m}$,
$2 \mathrm{H}), 2.13$ (ddd, $J=13.5,10.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.75$ (ddd, $J=13.5,10.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}$ C NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.30,155.45,143.59(\mathrm{~d}, J=1.2 \mathrm{~Hz}$), $140.09,137.32,134.34$ (q, $J=33.2 \mathrm{~Hz}$), 130.50, 129.79, 127.85, 127.63, 127.53, 126.32, 126.25 (q, $J=3.7 \mathrm{~Hz}$), 123.28, $123.23(\mathrm{q}, J=272.8 \mathrm{~Hz}), 118.79,118.68,51.08,41.83,40.75,39.73,23.23$; ${ }^{19}$ F NMR (376 MHz , CDCl_{3}) $\delta-63.28 ;$ HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 540.1820, found 540.1827.

N-(3-phenyl-2-(p-tolyl)propyl)-4(trifluoromethyl)benzenesulfonamide (2af): The title compound was prepared from $11(27 \mathrm{mg}, 0.1 \mathrm{mmol}), 4-m e t h y l p h e n y l b o r o n i c$ acid neopentyl glycol ester $\mathbf{S 1}$ ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$), and iodobenzene $(61 \mathrm{mg}, 0.3 \mathrm{mmol})$ according to General Procedure E. Purification using PTLC (20% Acetone in Hexanes) gave the product as a white solid ($29.3 \mathrm{mg}, 68 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.69 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97$ (d, J $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{dd}, J=7.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (ddd, $J=12.6,7.7,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.13-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.77(\mathrm{~m}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $143.38(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 138.95,137.52$, $137.02,134.21(\mathrm{q}, J=32.9 \mathrm{~Hz}), 129.64,128.93,127.53$, $127.51,126.40,126.19(\mathrm{q}, J=3.6 \mathrm{~Hz}), 123.28(\mathrm{q}, J=273.1 \mathrm{~Hz}), 47.50,46.97,40.28,21.00 ;{ }^{19} \mathbf{F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.29$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 434.1402, found 434.1404.

N-(5-phenyl-4-(p-tolyl)pentyl)-4(trifluoromethyl)benzenesulfonamide (2ag): The title compound was prepared from $\mathbf{1 m}(29 \mathrm{mg}, 0.1 \mathrm{mmol})$, $4-$ methylphenylboronic acid neopentyl glycol ester S1 (61 mg, 0.3 mmol), and iodobenzene ($61 \mathrm{mg}, 0.3 \mathrm{mmol}$) according to General Procedure E. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a white solid ($34 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17$ (m, 2H), 7.16-7.11 (m, 1H), 7.04 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ (d, $J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.55(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.79(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{dd}, J=13.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (dtd, $J=$ $10.1,7.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13}$ C NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.68(\mathrm{q}, J=1.5 \mathrm{~Hz}), 135.84,134.26(\mathrm{q}, J=33.0 \mathrm{~Hz}), 129.15$, 129.11, 128.17, 127.51, 126.25 (q, $J=3.8 \mathrm{~Hz}$), 125.95, 123.27 ($\mathrm{q}, ~ J=273.6 \mathrm{~Hz}$), 47.06, 43.92, 43.27, 32.09, 27.63, 21.01; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.31; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 462.1715$, found 462.1722 .
 (trifluoromethyl)benzene ($816 \mathrm{mg}, 3 \mathrm{mmol}$) according to General Procedure F. Purification using silica gel column chromatography (20% EtOAc in Hexanes) gave the product as a yellow solid ($398 \mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 (d, $J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.19$ (m, 3H), 7.07 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.01$ (d, $J=6.5 \mathrm{~Hz}$,
$2 \mathrm{H}), 4.32(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.77(\mathrm{~m}, 5 \mathrm{H}), 1.96-1.77(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 144.03,143.80(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 143.79,142.34,132.93,129.38,128.78,128.38(\mathrm{q}, J=32.3 \mathrm{~Hz})$, $127.59,127.50,127.01,126.98,125.10(\mathrm{q}, J=3.6 \mathrm{~Hz}), 124.28(\mathrm{q}, J=271.5 \mathrm{~Hz}), 117.32,116.28$, 44.90, 43.32, 41.48, 35.27; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.59$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 459.1354$, found 459.1346.

Diversification of 1,2-Diarylation Products

Scheme S6. Diversification of representative product 2ai.

4-cyano- N -(3-phenyl-4-(4-(trifluoromethyl)phenyl)butyl)- N -(4-phenylbutyl)benzenesulfonamide (3a): To a vial containing the starting material 2ai ($398 \mathrm{mg}, 0.869 \mathrm{mmol}, 1.00$ equiv) was added triphenylphosphine ($460 \mathrm{mg}, 1.737 \mathrm{mmol}, 2.00$ equiv), 4-phenyl-1-butanol ($273 \mu \mathrm{~L}, 1.737 \mathrm{mmol}, 2.00$ equiv), and dichloromethane (4.0 mL). The solution was stirred until homogeneous, then cooled in an ice water bath. A solution of DEAD ($40 \mathrm{wt} \%$ in toluene, $791 \mu \mathrm{~L}, 1.737 \mathrm{mmol}, 2.00$ equiv) was added dropwise over 40 min . The mixture was warmed to room temperature and stirred for 1 h . The volatiles were removed in vacuo, and the crude residue was purified directly by flash column chromatography over silica gel (0 to 20% ethyl acetate in hexanes gradient) to afford the product as a thick, colorless oil ($384 \mathrm{mg}, 75 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.11(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.86-2.99 \mathrm{~m}, 3 \mathrm{H}), 2.74-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2H), 1.84-1.99 (m, 2H), 1.48-1.55 (m, 2H), 1.30-1.38 (m, 2H); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.9, 143.8, 142.6, 141.6, 132.8, 129.4, 128.6, 128.43 (q, $J=32.3 \mathrm{~Hz}$), 128.40, 128.3, 127.6, $127.5,126.9,126.0,125.0(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.2(\mathrm{q}, J=272 \mathrm{~Hz}), 117.3,116.0,48.3,46.5,45.3$, 43.4, 35.1, 34.6, 28.0, 27.6; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.3$; HRMS (ESI) Calc'd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$608.2553, found 608.2567.

4-cyano- N-(3-phenyl-4-(4-(trifluoromethyl)phenyl)butyl)- N -(prop-2-yn-1-yl)benzenesulfonamide (3b): To a 1 -dram (4 mL) vial equipped with a Teflon-coated magnetic stir bar were added 2ai ($92 \mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($55 \mathrm{mg}, 0.40 \mathrm{mmol}, 2$ equiv), and DMF ($330 \mu \mathrm{~L}$). After stirring for at least 5 min , propargyl bromide ($80 \mathrm{wt} \%$ in toluene, $38 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2$ equiv) was added, and the reaction mixture was left to stir at $100{ }^{\circ} \mathrm{C}$ under nitrogen for 24 h . After this time, the reaction mixture was cooled, diluted with water (10 mL) and extracted with EtOAc $(3 \times 1 \mathrm{~mL})$. The combined organic layers were washed with sat. aq. NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to leave a yellow residue. Purification using PTLC ($20 \% \mathrm{EtOAc}$ in Hexanes) gave the product as a colorless oil ($65.2 \mathrm{mg}, 66 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=8.1,6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 4 \mathrm{H}), 4.01(\mathrm{t}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.14-2.84(\mathrm{~m}, 5 \mathrm{H}), 1.99(\mathrm{td}, J=$ $6.8,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.89(\mathrm{~d}, J=1.1 \mathrm{~Hz})$, 142.83, 142.75, 132.63, 129.46, 128.66, 128.45 (q, $J=32.2 \mathrm{~Hz}$), 128.25, 127.66, 126.89, 125.11 ($\mathrm{q}, J=4.0 \mathrm{~Hz}$), $124.28(\mathrm{q}, J=271.6 \mathrm{~Hz}), 117.33,116.43,75.72,74.29,44.97,44.85,43.33,36.46$, 33.14; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.57; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}$ [M+H] 497.1511, found 497.1508.

N-benzyl-4-cyano- N -(3-phenyl-4-(4(trifluoromethyl)phenyl)butyl)benzenesulfonamide (3c): To a 1-dram (4 mL) vial equipped with a Teflon-coated magnetic stir bar were added a solution of $\mathbf{2 a i}$ ($69 \mathrm{mg}, 0.15 \mathrm{mmol}, 1$ equiv) in DMF ($200 \mu \mathrm{~L}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(55 \mathrm{mg}, 0.40 \mathrm{mmol}, 2$ equiv), and $130 \mu \mathrm{~L}$ of DMF. After stirring for at least 5 min , benzyl chloride ($51 \mathrm{mg}, 0.40 \mathrm{mmol}, 2$ equiv) was added, and the reaction mixture was left to stir at $60^{\circ} \mathrm{C}$ under nitrogen for 16 h . After this time, the reaction mixture was cooled, diluted with water $(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 1 \mathrm{~mL})$. The combined organic layers were washed with sat. aq. NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed in vacuo to leave a colorless residue. Purification using PTLC ($20 \% \mathrm{EtOAc}$ in Hexanes) gave the product as a white solid ($61.8 \mathrm{mg}, 75 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.76-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.08$ (dd, $J=7.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.16(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.88$ (m, 1H), $2.83(\mathrm{td}, J=9.7,9.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.63(\mathrm{~m}$, 2 H); ${ }^{13}$ C NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.89,143.82$ ($\mathrm{q}, J=1.2 \mathrm{~Hz}$), 142.47, 135.41, 132.88, 129.33, 128.71, 128.61, 128.42, 128.32 (q, $J=32.3 \mathrm{~Hz}$), 128.18, 127.63, 127.54, 126.81, 125.22, $125.03(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.32(\mathrm{q}, J=272.0 \mathrm{~Hz}), 123.42,117.33,116.14,52.39,46.72,45.14$, 43.36, 33.93; ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.56; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 549.1824, found 549.1826.

4-cyano- N -(4-nitrophenyl)- N -(3-phenyl-4-(4(trifluoromethyl)phenyl)butyl)benzenesulfonamide (3d): To a 1-dram (4 mL) vial equipped with a Tefloncoated magnetic stir bar were added $2 \mathbf{2 a i}(92 \mathrm{mg}, 0.2 \mathrm{mmol}$, 1 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(55 \mathrm{mg}, 0.40 \mathrm{mmol}, 2$ equiv), and DMF ($330 \mu \mathrm{~L}$). After stirring for at least $5 \mathrm{~min}, 1$-fluoro-4-nitrobenzene ($42 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) was added, and the reaction mixture was left to stir at $100{ }^{\circ} \mathrm{C}$ under nitrogen for 23 h . After this time, the reaction mixture was cooled, diluted with water (10 mL), and extracted with EtOAc ($3 \times$ 1 mL). The combined organic layers were washed with sat. aq. NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and
concentrated in vacuo to leave a yellow residue. Purification using PTLC ($20 \% \mathrm{EtOAc}$ in Hexanes) gave the product as a yellow solid ($88.7 \mathrm{mg}, 77 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 6 \mathrm{H}), 3.55(\mathrm{dt}, J=13.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (ddd, J $=13.3,7.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{t}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 146.75,144.04,143.76(\mathrm{q}, J=1.4 \mathrm{~Hz}), 143.75,142.43,141.36,132.90,129.37,128.75,128.49$ $(\mathrm{q}, J=32.4 \mathrm{~Hz}), 128.44,127.96,127.58,127.05,125.11(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.53,124.20(\mathrm{q}, J=$ 271.5 Hz), 116.98, 48.73, 44.93, 43.29, 33.80; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.56$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 580.1518$, found 580.1523.

tert-butyl ((4-cyanophenyl)sulfonyl)(3-phenyl-4-(4(trifluoromethyl)phenyl)butyl)carbamate (4e): To a 1-dram (4 mL) vial equipped with a Teflon-coated magnetic stir bar were added 2ai ($92 \mathrm{mg}, 0.2 \mathrm{mmol}$), DMAP ($2.4 \mathrm{mg}, 20 \mu \mathrm{~mol}$), and DCM $(450 \mu \mathrm{~L})$. After stirring for at least 5 min , di-tert-butyl dicarbonate ($55 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.2$ equiv) was added, and the reaction mixture was left to stir at room temperature under nitrogen for 23 h . After this time, the reaction was diluted with water (10 mL) and extracted with EtOAc ($3 \times 1 \mathrm{~mL}$). The combined organic layers were washed with sat. aq. NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to leave a colorless residue. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a colorless oil ($72.6 \mathrm{mg}, 65 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{td}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.70-3.56(\mathrm{~m}$, 2H), $3.05-2.86(\mathrm{~m}, 3 \mathrm{H}), 2.24-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.33,144.00(\mathrm{q}, J=1.4 \mathrm{~Hz}), 142.46,132.46,129.46,128.67,128.48,128.38(\mathrm{q}, J=33.2 \mathrm{~Hz})$, $127.60,126.89,125.38,125.07(\mathrm{q}, J=4.0 \mathrm{~Hz}), 124.31(\mathrm{q}, J=271.6 \mathrm{~Hz}), 117.17,116.89,85.08$, 46.36, 45.69, 43.64, 35.55, 27.81; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.53; HRMS (ESI-TOF) for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 559.1878, found 559.1888.

Scheme S7. Synthesis of 4-Cs protected pyrrolidine (\pm)-3f. This compound was synthesized using an adapted version of a literature procedure describing the preparation of similar compounds. ${ }^{[18]}$

4-((2-phenyl-3-(p-tolyl)pyrrolidin-1-yl)sulfonyl)benzonitrile ((\pm)-3f): Inside the glovebox, to a 1-dram (4 mL) vial equipped with a Teflon-coated magnetic stir bar were added $\mathbf{2 z}(38.7 \mathrm{mg}, 96$ $\mu \mathrm{mol}, 1$ equiv) and NIS ($43 \mathrm{mg}, 0.19 \mathrm{mmol}, 2$ equiv). The vial was sealed with a screw-top cap, removed from the glovebox, and anhydrous DCM ($2 \mathrm{~mL}, 0.05 \mathrm{M}$) was added. The reaction vessel was then irradiated with violet light (400 nm) via LEDs while stirring at room temperature for 6 h . After this time, the reaction mixture was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(5$
$\mathrm{mL})$ and extracted with $\mathrm{DCM}(3 \times 1 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed in vacuo to leave a colorless residue. Purification using PTLC (20% EtOAc in Hexanes) gave the product as a white solid ($27.1 \mathrm{mg}, 70 \%$ yield). ${ }^{1}$ H NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~s}, 4 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{ddd}, J=10.4,7.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ (ddd, $J=$ $10.4,8.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.29(\mathrm{dt}, J=9.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.27$ (ddd, $J=12.8,6.4,4.1 \mathrm{~Hz}$, 1 H), 2.09 (dtd, $J=12.7,8.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.53,140.50,136.99$, 136.55, 132.43, 129.41, 128.38, 127.65, 127.58, 126.95, 126.85, 117.48, 115.72, 71.21, 54.88, 49.19, 32.02, 21.01; HRMS (ESI-TOF) for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 403.1480$, found 403.1478 .
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY was found to be ambiguous in determining trans/cis configuration since it is difficult to confidently assign the configuration of substituents of 5 -membered rings from ${ }^{3} J_{\mathrm{H}, \mathrm{H}}$ values. ${ }^{[19]}$ However, the relative stereochemistry of (\pm)-3f could be assigned based on the ${ }^{1} \mathrm{H}$ spectrum (specifically the chemical shifttt of the $\alpha-\mathrm{C}\left(3^{\circ}\right)-H$ atom and the J-values of the two benzylic H atoms), as described previously in the literature for 2,3-disubstituted pyrrolidines. ${ }^{[20]}$

Scheme S8. Synthesis of secondary alkyl amines 4a-e. These compounds were synthesized using adapted versions of literature procedures describing the preparation of similar compounds. ${ }^{[21]}$

General Procedure G: A stock solution of 1-dodecanethiol in DMF was degassed by sparging with nitrogen for 20 min . Under a nitrogen atmosphere, the thiol solution was added to 3a-e in a reaction vessel equipped with a Teflon-coated magnetic stir bar, and the reaction mixture was stirred for 5 min . DBU was then added, at which point a light-yellow color developed, and the reaction mixture was stirred at room temperature for 21-24 h under nitrogen. After this time, the reaction mixture was diluted with water $(10 \mathrm{~mL})$ and extracted with EtOAc $(\times 3)$. The organic layers were combined, and the solvent was removed in vacuo to leave an oil, which afforded pure product after silica gel column chromatography or PTLC.

4a

3-phenyl- N-(4-phenylbutyl)-4-(4-(trifluoromethyl)phenyl)butan-1-amine (4a): The title compound was prepared from a 0.85 M stock solution of 1dodecanethiol in DMF (3.25 mL , $2.75 \mathrm{mmol}, 5.00$ equiv), 3a ($325 \mathrm{mg}, 0.550 \mathrm{mmol}, 1.0$ equiv), and DBU ($394 \mu \mathrm{~L}, 2.61 \mathrm{mmol}$, 4.75 equiv) with a reaction time of 24 h according to General Procedure G . After this time, the reaction mixture was diluted with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The crude oil was purified by silica gel column chromatography (0 to $10 \% \mathrm{MeOH}$ in DCM gradient) to afford the product as a light-tan syrup ($206 \mathrm{mg}, 88 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.44(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.07-7.13(\mathrm{~m}, 4 \mathrm{H}), 2.84-3.01(\mathrm{~m}, 3 \mathrm{H})$, $2.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.64$
$(\mathrm{m}, 2 \mathrm{H}), 1.42-1.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.4(\mathrm{q}, J=1.5 \mathrm{~Hz}), 143.6,142.3$, $129.4,128.4,128.3,128.2,128.16(\mathrm{q}, J=32.3 \mathrm{~Hz}), 127.5,126.5,125.7,124.9(\mathrm{q}, J=3.7 \mathrm{~Hz})$, 124.3 (q, $J=272 \mathrm{~Hz}$), 49.6, 47.8, 45.9, 43.7, 35.7, 35.5, 29.3, 29.0; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.3$; HRMS (ESI) Calc'd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 426.2403$, found 426.2414 .

3-phenyl- N-(prop-2-yn-1-yl)-4-(4-(trifluoromethyl)phenyl)butan-1-amine (4b): The title compound was prepared from a 1.65 M stock solution of 1dodecanethiol in DMF ($280 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 2.7$ equiv), 3b (85 $\mathrm{mg}, 0.17 \mathrm{mmol}, 1$ equiv), and $\mathrm{DBU}(123 \mu \mathrm{~L}, 0.815 \mathrm{mmol}, 4.75$ equiv) with a reaction time of 23 h according to General Procedure G. After this time, the reaction mixture was diluted with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 1 \mathrm{~mL})$. The crude oil was purified by PTLC $(20 \%$ EtOAc in Hexanes) to afford the product as a yellow oil ($18 \mathrm{mg}, 32 \%$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 4 \mathrm{H}), 3.30$ (t, $J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.81$ $(\mathrm{m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.47(\mathrm{q}, J=1.4 \mathrm{~Hz}), 143.73,129.42$, 128.23 (q, $J=32.2 \mathrm{~Hz}), 127.63,125.00(\mathrm{q}, ~ J=3.9 \mathrm{~Hz}), 124.34(\mathrm{q}, J=272.2 \mathrm{~Hz}), 82.11,46.70$, 45.67, 43.67, 35.64; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.54; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}] 332.1626$, found 332.1632 .

N-benzyl-3-phenyl-4-(4-(trifluoromethyl)phenyl)butan-1amine (4c): The title compound was prepared from a 1.65 M stock solution of 1 -dodecanethiol in DMF ($220 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 2.8$ equiv), $3 \mathrm{c}(70 \mathrm{mg}, 0.13 \mathrm{mmol}, 1$ equiv), and $\mathrm{DBU}(91 \mu \mathrm{~L}, 0.61$ $\mathrm{mmol}, 4.75$ equiv) with a reaction time of 23 h according to General Procedure G. After this time, the reaction mixture was diluted with water (10 mL) and extracted with ethyl acetate $(3 \times 1 \mathrm{~mL})$. The crude oil was purified by PTLC $(20 \%$ EtOAc in Hexanes) to afford the product as a colorless oil ($29 \mathrm{mg}, 60 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 8 \mathrm{H}), 7.08(\mathrm{dd}, J=7.1,1.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.64(\mathrm{q}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.92$ (dd, $J=7.3,4.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.48(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.54$ ($\mathrm{q}, ~ J=1.3 \mathrm{~Hz}$), 143.84, 140.17, 129.42, 128.47, 128.38, 128.20 (q, $J=$ $33.4 \mathrm{~Hz}), 128.09,127.64,126.94,126.48,124.99(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.35(\mathrm{q}, J=271.7 \mathrm{~Hz}), 123.45$, 53.94, 47.40, 45.77, 43.70, 35.82; ${ }^{19} \mathbf{F} \quad$ NMR $\left(376 \quad \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \quad \delta$ -62.52; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]$ 384.1939, found 384.1943.

2-nitro- N-(3-phenyl-4-(4(trifluoromethyl)phenyl)butyl)aniline (4d): The title compound was prepared from a 1.65 M stock solution of 1-dodecanethiol in DMF ($220 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 2.7$ equiv), 3d ($78 \mathrm{mg}, 0.13 \mathrm{mmol}$. 1 equiv), and $\mathrm{DBU}(96 \mu \mathrm{~L}, 0.64$ $\mathrm{mmol}, 4.75$ equiv) with a reaction time of 21 h according to General Procedure G. After this time, the reaction mixture was diluted with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 1 \mathrm{~mL})$. The crude oil was purified by PTLC (20% EtOAc in Hexanes) to afford the product as a yellow oil ($46 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8$
$\mathrm{Hz}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=7.9,4.2,2.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.30(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-2.89(\mathrm{~m}, 5 \mathrm{H}), 2.07-1.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.20,144.02(\mathrm{q}, J=1.4 \mathrm{~Hz}), 142.97,137.75,129.40,128.86,128.43(\mathrm{q}, J=32.4 \mathrm{~Hz})$, $127.55,127.05,126.38,125.15(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.40(\mathrm{q}, J=272.0 \mathrm{~Hz}), 110.93,45.81,43.58$, 41.66, 34.71; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.49$; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$ [M+H] 415.1633, found 415.1628.

tert-butyl
(3-phenyl-4-(4(trifluoromethyl)phenyl)butyl)carbamate (4e): The title compound was prepared from a 1.65 M stock solution of 1dodecanethiol in DMF ($220 \mu \mathrm{~L}, 0.48 \mathrm{mmol}, 5$ equiv), 3e (54 mg , $97 \mu \mathrm{~mol}, 1$ equiv), and DBU ($69 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 4.75$ equiv) with a reaction time of 23 h according to General Procedure G. After this time, the reaction mixture was diluted with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 1 \mathrm{~mL})$. The crude oil was purified by PTLC (20% EtOAc in Hexanes) to afford the product as a colorless oil ($26 \mathrm{mg}, 68 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11-7.04(\mathrm{~m}, 4 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H}), 3.11-2.75(\mathrm{~m}, 5 \mathrm{H}), 1.87(\mathrm{ddd}, J=33.1,14.7,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.40$ (s, 9H); ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.85,144.30(\mathrm{q}, J=1.4 \mathrm{~Hz}$), 143.27, 129.40, 128.60, 128.28 ($\mathrm{q}, J=32.5$), $127.58,126.65,125.00(\mathrm{q}, J=4.0 \mathrm{~Hz}), 124.32(\mathrm{q}, J=271.9 \mathrm{~Hz}), 123.42$, 79.15, 45.54, 43.34, 38.92, 35.86, 28.39; ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -62.56; HRMS (ESI-TOF) Calc'd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]$ 394.1994, found 394.1999.

Table S3. Crystal data and structure refinement for 2a.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
engle225_a
C24 H24 F3 N O2 S
447.50
100.0 K
$0.71073 \AA$
Monoclinic
P 1 21/n 1
$\mathrm{a}=16.6732(7) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=7.8057(3) \AA \quad \beta=103.9000(10)^{\circ}$.
$\mathrm{c}=16.9323(7) \AA$
$\gamma=90^{\circ}$.
2139.14(15) \AA^{3}

4
$1.390 \mathrm{Mg} / \mathrm{m}^{3}$
$0.199 \mathrm{~mm}^{-1}$
936
$0.2 \times 0.1 \times 0.08 \mathrm{~mm}^{3}$
2.889 to 25.683°.
$-20<=\mathrm{h}<=12,-8<=\mathrm{k}<=9,-19<=\mathrm{l}<=20$
12263
4067 [$\mathrm{R}(\mathrm{int})=0.0298]$
99.9 \%

Analytical
0.7453 and 0.6625

Full-matrix least-squares on F^{2}
4067 / 0 / 284
1.027
$\mathrm{R} 1=0.0363, \mathrm{wR} 2=0.0842$
$R 1=0.0494, w R 2=0.0903$
n/a
0.294 and -0.415 e. \AA^{-3}

Table S4. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3})
for $\mathbf{2 a} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
S(1)	4474(1)	7626(1)	5195(1)	13(1)
F(1)	6144(1)	7230(2)	9197(1)	33(1)
$\mathrm{O}(1)$	5167(1)	7077(2)	4894(1)	18(1)
N(1)	3813(1)	6070(2)	4996(1)	14(1)
C(1)	5352(1)	7569(2)	8856(1)	23(1)
F(2)	5170(1)	9007(2)	9203(1)	40(1)
$\mathrm{O}(2)$	4045(1)	9173(2)	4903(1)	18(1)
C(2)	5176(1)	7696(2)	7947(1)	17(1)
F(3)	4914(1)	6321(2)	9096(1)	44(1)
C(3)	5644(1)	6737(2)	7529(1)	19(1)
C(4)	5450(1)	6760(2)	6687(1)	18(1)
C(5)	4792(1)	7754(2)	6272(1)	14(1)
C(6)	4333(1)	8748(2)	6684(1)	18(1)
C(7)	4528(1)	8707(2)	7529(1)	20(1)
C(8)	3031(1)	6214(2)	5257(1)	15(1)
C(9)	2451(1)	4767(2)	4898(1)	15(1)
C(10)	2742(1)	2942(2)	5176(1)	14(1)
C(11)	2094(1)	1631(2)	4736(1)	17(1)
C(12)	1944(1)	1742(2)	3818(1)	16(1)
C(13)	2526(1)	1088(2)	3430(1)	18(1)
C(14)	2406(1)	1231(2)	2589(1)	20(1)
C(15)	1716(1)	2046(2)	2130(1)	21(1)
C(16)	1131(1)	2700(2)	2509(1)	21(1)
C(17)	1243(1)	2544(2)	3344(1)	20(1)
C(18)	2944(1)	2794(2)	6097(1)	14(1)
C(19)	2359(1)	2339(3)	6527(1)	22(1)
C(20)	2560(1)	2280(3)	7371(1)	24(1)
C(21)	3344(1)	2726(2)	7823(1)	18(1)
C(22)	3925(1)	3190(2)	7398(1)	18(1)
C(23)	3734(1)	3198(2)	6555(1)	16(1)
$\mathrm{C}(24)$	3563(1)	2678(3)	8742(1)	27(1)

Table S5. Bond lengths [\AA] and angles [${ }^{\circ}$] for 2a.

$\mathrm{S}(1)-\mathrm{O}(1)$	1.4351(12)	$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{S}(1) \mathrm{N}(1)$	1.6211(15)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.394(2)
$\mathrm{S}(1)-\mathrm{O}(2)$	1.4295(12)	$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{S}(1)-\mathrm{C}(5)$	1.7748(17)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.381(2)
$\mathrm{F}(1)-\mathrm{C}(1)$	1.334(2)	$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{N}(1)-\mathrm{H}(1)$	0.82(2)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.387(3)
$\mathrm{N}(1)-\mathrm{C}(8)$	1.477(2)	$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500
$\mathrm{C}(1)-\mathrm{F}(2)$	1.336(2)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.386(2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.499(2)	$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(1)-\mathrm{F}(3)$	1.338(2)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.395(2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.391(2)	$\mathrm{C}(18)-\mathrm{C}(23)$	1.395(2)
$\mathrm{C}(2)-\mathrm{C}(7)$	1.387(2)	$\mathrm{C}(19)$-H(19)	0.9500
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500	$\mathrm{C}(19)-\mathrm{C}(20)$	1.388(2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.385(2)	$\mathrm{C}(20)-\mathrm{H}(20)$	0.9500
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500	$\mathrm{C}(20)-\mathrm{C}(21)$	1.391(2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.389(2)	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.385(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	1.389(2)	$\mathrm{C}(21)-\mathrm{C}(24)$	1.512(2)
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500	$\mathrm{C}(22)-\mathrm{H}(22)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(7)$	1.390(2)	$\mathrm{C}(22)-\mathrm{C}(23)$	1.386(2)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500	$\mathrm{C}(23)-\mathrm{H}(23)$	0.9500
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9800
C(8)-C(9)	1.517(2)	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9900		
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9900	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{N}(1)$	105.58(7)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.542(2)	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(5)$	108.34(7)
$\mathrm{C}(10)-\mathrm{H}(10)$	1.0000	$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(5)$	106.00(7)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.544(2)	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(1)$	120.56(7)
$\mathrm{C}(10)-\mathrm{C}(18)$	1.520(2)	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	107.56(7)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(5)$	107.93(8)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900	$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{H}(1)$	110.8(13)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.517(2)	$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{S}(1)$	119.07(11)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.392(2)	$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{H}(1)$	116.1(13)
$\mathrm{C}(12)-\mathrm{C}(17)$	1.396(2)	$\mathrm{F}(1)-\mathrm{C}(1)-\mathrm{F}(2)$	106.40(14)

$\mathrm{F}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	112.80(15)
$\mathrm{F}(1)-\mathrm{C}(1)-\mathrm{F}(3)$	106.28(15)
$\mathrm{F}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	112.74(15)
$\mathrm{F}(2)-\mathrm{C}(1)-\mathrm{F}(3)$	106.23(15)
$\mathrm{F}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	111.89(15)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	119.36(16)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$	119.88(15)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	120.70(16)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	120.2
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	119.69(16)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	120.2
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	120.3
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.34(16)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	120.3
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	119.52(13)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.35(16)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(1)$	118.94(13)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	120.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	118.96(16)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	120.5
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	119.93(16)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{H}(7)$	120.0
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	120.0
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.6
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.6
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	110.29(13)
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.1
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.6
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.6
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	108.2
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108.2
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	116.23(13)
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	107.4
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	108.2
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108.2
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	107.5

$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	109.38(13)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	107.5
$\mathrm{C}(18)-\mathrm{C}(10)-\mathrm{C}(9)$	111.07(13)
$\mathrm{C}(18)-\mathrm{C}(10)-\mathrm{H}(10)$	107.5
$\mathrm{C}(18)-\mathrm{C}(10)-\mathrm{C}(11)$	113.63(13)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.1
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.1
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	107.9
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	112.32(13)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.1
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.1
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	120.06(15)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	118.37(16)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(11)$	121.53(15)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119.7
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.51(16)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	119.7
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.8
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	120.47(16)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	119.8
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	120.2
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	119.53(16)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	120.2
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	119.9
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	120.14(16)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	119.9
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{H}(17)$	119.5
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	120.96(16)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	119.5
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(10)$	123.01(15)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)$	116.97(15)
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(10)$	119.95(14)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	119.4
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	121.18(16)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	119.4
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	119.3

$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$121.47(16)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(18)$	$121.57(15)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	119.3	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	119.2
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(24)$	$121.52(16)$	$\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	109.5
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$117.45(15)$	$\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(24)$	$121.03(16)$	$\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	119.3	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$121.31(16)$	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	119.3	$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{H}(23)$	119.2		

Table S6. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2a. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{~S}(1)$	$14(1)$	$11(1)$	$14(1)$	$1(1)$	$1(1)$	$-1(1)$
$\mathrm{F}(1)$	$29(1)$	$46(1)$	$20(1)$	$-3(1)$	$-7(1)$	$3(1)$
$\mathrm{O}(1)$	$18(1)$	$16(1)$	$20(1)$	$2(1)$	$7(1)$	$-1(1)$
$\mathrm{N}(1)$	$15(1)$	$10(1)$	$16(1)$	$0(1)$	$3(1)$	$1(1)$
$\mathrm{C}(1)$	$24(1)$	$21(1)$	$20(1)$	$-2(1)$	$1(1)$	$-2(1)$
$\mathrm{F}(2)$	$62(1)$	$39(1)$	$19(1)$	$-7(1)$	$7(1)$	$16(1)$
$\mathrm{O}(2)$	$19(1)$	$13(1)$	$21(1)$	$4(1)$	$1(1)$	$1(1)$
$\mathrm{C}(2)$	$17(1)$	$14(1)$	$17(1)$	$-2(1)$	$1(1)$	$-5(1)$
$\mathrm{F}(3)$	$53(1)$	$52(1)$	$24(1)$	$8(1)$	$5(1)$	$-26(1)$
$\mathrm{C}(3)$	$16(1)$	$17(1)$	$21(1)$	$2(1)$	$0(1)$	$3(1)$
$\mathrm{C}(4)$	$16(1)$	$17(1)$	$20(1)$	$-1(1)$	$3(1)$	$4(1)$
$\mathrm{C}(5)$	$14(1)$	$10(1)$	$16(1)$	$-2(1)$	$1(1)$	$-4(1)$
$\mathrm{C}(6)$	$15(1)$	$15(1)$	$22(1)$	$-3(1)$	$-2(1)$	$2(1)$
$\mathrm{C}(7)$	$21(1)$	$18(1)$	$20(1)$	$-6(1)$	$3(1)$	$2(1)$
$\mathrm{C}(8)$	$15(1)$	$14(1)$	$15(1)$	$-1(1)$	$3(1)$	$0(1)$
$\mathrm{C}(9)$	$13(1)$	$16(1)$	$15(1)$	$-1(1)$	$1(1)$	$-1(1)$
$\mathrm{C}(10)$	$13(1)$	$15(1)$	$13(1)$	$-3(1)$	$3(1)$	$-3(1)$
$\mathrm{C}(11)$	$18(1)$	$15(1)$	$17(1)$	$-2(1)$	$4(1)$	$-3(1)$
$\mathrm{C}(12)$	$16(1)$	$12(1)$	$17(1)$	$-4(1)$	$1(1)$	$-5(1)$
$\mathrm{C}(13)$	$18(1)$	$14(1)$	$19(1)$	$0(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(14)$	$22(1)$	$19(1)$	$20(1)$	$-4(1)$	$5(1)$	$-3(1)$
$\mathrm{C}(15)$	$27(1)$	$20(1)$	$13(1)$	$-2(1)$	$0(1)$	$-7(1)$
$\mathrm{C}(16)$	$20(1)$	$18(1)$	$21(1)$	$0(1)$	$-6(1)$	$-1(1)$
$\mathrm{C}(17)$	$15(1)$	$19(1)$	$24(1)$	$-5(1)$	$3(1)$	$-2(1)$
$\mathrm{C}(18)$	$17(1)$	$10(1)$	$15(1)$	$-1(1)$	$5(1)$	$1(1)$
$\mathrm{C}(19)$	$16(1)$	$31(1)$	$19(1)$	$-2(1)$	$4(1)$	$-5(1)$
$\mathrm{C}(20)$	$21(1)$	$32(1)$	$21(1)$	$0(1)$	$11(1)$	$-6(1)$
$\mathrm{C}(21)$	$22(1)$	$18(1)$	$15(1)$	$1(1)$	$6(1)$	$2(1)$
$\mathrm{C}(22)$	$14(1)$	$20(1)$	$18(1)$	$1(1)$	$1(1)$	$0(1)$
$\mathrm{C}(23)$	$16(1)$	$17(1)$	$16(1)$	$1(1)$	$6(1)$	$0(1)$
$\mathrm{C}(24)$	$31(1)$	$36(1)$	$16(1)$	$3(1)$	$7(1)$	$-3(1)$

Table S7. Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{2 a}$.

	x	y	z	U(eq)
H(1)	4048(11)	5140(30)	5075(10)	16
$\mathrm{H}(3)$	6096	6070	7821	23
H(4)	5763	6103	6396	22
H(6)	3894	9446	6393	22
H (7)	4217	9371	7821	24
H(8A)	2766	7328	5076	18
H(8B)	3148	6171	5858	18
H(9A)	2353	4818	4298	18
H(9B)	1914	4969	5034	18
H(10)	3264	2722	4999	16
H(11A)	2284	461	4915	20
H(11B)	1567	1836	4893	20
H(13)	3007	539	3741	21
H(14)	2803	765	2330	24
H(15)	1641	2159	1558	25
H(16)	652	3256	2196	26
H(17)	837	2989	3598	24
H(19)	1812	2064	6236	26
H(20)	2154	1929	7646	29
H(22)	4465	3509	7691	21
H(23)	4152	3486	6283	19
H(24A)	3566	1488	8927	41
H(24B)	3153	3333	8946	41
H(24C)	4111	3183	8950	41

Table S8. Crystal data and structure refinement for 2ab.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Crystal color, habit
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [$\mathrm{I}>2$ sigma(I$)$]
R indices (all data)
Largest diff. peak and hole
engle232
C25 H26 F3 N O2 S
461.53
100.0 K
$1.54178 \AA$
Monoclinic
C 1 21/c 1
$\mathrm{a}=28.1491(7) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=9.7037(3) \AA \quad \beta=123.7560(10)^{\circ}$.
$\mathrm{c}=19.9138(5) \AA \quad \gamma=90^{\circ}$.
4522.4(2) \AA^{3}

8
$1.356 \mathrm{Mg} / \mathrm{m}^{3}$
$1.682 \mathrm{~mm}^{-1}$
1936
$0.175 \times 0.15 \times 0.12 \mathrm{~mm}^{3}$
colorless block
3.777 to 69.496°.
$-33<=\mathrm{h}<=33,-11<=\mathrm{k}<=11,-24<=1<=21$
32376
$4121[\mathrm{R}(\mathrm{int})=0.0375]$
98.4 \%

Semi-empirical from equivalents
0.7532 and 0.6812

Full-matrix least-squares on F^{2}
4121 / 1/294
1.021
$\mathrm{R} 1=0.0341, \mathrm{wR} 2=0.0858$
$\mathrm{R} 1=0.0391, w R 2=0.0898$
0.475 and $-0.425 \mathrm{e} . \AA^{-3}$

Table S9. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ $\left.10^{3}\right)$ for $2 \mathbf{a b} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{S}(1)$	$7594(1)$	$3876(1)$	$7240(1)$	$21(1)$
$\mathrm{F}(1)$	$5537(1)$	$2644(1)$	$3454(1)$	$43(1)$
$\mathrm{F}(2)$	$6154(1)$	$3388(1)$	$3231(1)$	$38(1)$
$\mathrm{F}(3)$	$5611(1)$	$4821(1)$	$3324(1)$	$37(1)$
$\mathrm{O}(1)$	$8033(1)$	$2878(1)$	$7473(1)$	$29(1)$
$\mathrm{O}(2)$	$7747(1)$	$5286(1)$	$7490(1)$	$27(1)$
$\mathrm{N}(1)$	$7218(1)$	$3352(1)$	$7574(1)$	$21(1)$
$\mathrm{C}(1)$	$6722(1)$	$4188(2)$	$7400(1)$	$22(1)$
$\mathrm{C}(2)$	$6425(1)$	$3495(2)$	$7756(1)$	$22(1)$
$\mathrm{C}(3)$	$6140(1)$	$2117(2)$	$7351(1)$	$19(1)$
$\mathrm{C}(4)$	$5853(1)$	$1409(2)$	$7736(1)$	$22(1)$
$\mathrm{C}(5)$	$5637(1)$	$-25(2)$	$7365(1)$	$28(1)$
$\mathrm{C}(6)$	$5713(1)$	$2313(2)$	$6451(1)$	$19(1)$
$\mathrm{C}(7)$	$5759(1)$	$1593(2)$	$5885(1)$	$24(1)$
$\mathrm{C}(8)$	$5368(1)$	$1784(2)$	$5062(1)$	$27(1)$
$\mathrm{C}(9)$	$4920(1)$	$2714(2)$	$4772(1)$	$24(1)$
$\mathrm{C}(10)$	$4876(1)$	$3446(2)$	$5336(1)$	$24(1)$
$\mathrm{C}(11)$	$5262(1)$	$3246(2)$	$6158(1)$	$22(1)$
$\mathrm{C}(12)$	$4489(1)$	$2930(2)$	$3880(1)$	$34(1)$
$\mathrm{C}(13)$	$6230(1)$	$1277(2)$	$8647(1)$	$21(1)$
$\mathrm{C}(14)$	$6811(1)$	$960(2)$	$9066(1)$	$26(1)$
$\mathrm{C}(15)$	$7139(1)$	$836(2)$	$9898(1)$	$29(1)$
$\mathrm{C}(16)$	$6896(1)$	$1005(2)$	$10335(1)$	$28(1)$
$\mathrm{C}(17)$	$6316(1)$	$1284(2)$	$9928(1)$	$27(1)$
$\mathrm{C}(18)$	$5990(1)$	$1425(2)$	$9095(1)$	$23(1)$
$\mathrm{C}(19)$	$7130(1)$	$3870(2)$	$6172(1)$	$21(1)$
$\mathrm{C}(20)$	$6844(1)$	$5059(2)$	$5763(1)$	$23(1)$
$\mathrm{C}(21)$	$6453(1)$	$5002(2)$	$4933(1)$	$24(1)$
$\mathrm{C}(22)$	$6347(1)$	$3762(2)$	$4530(1)$	$24(1)$
$\mathrm{C}(23)$	$6641(1)$	$2575(2)$	$4942(1)$	$33(1)$
$\mathrm{C}(24)$	$7036(1)$	$2628(2)$	$5766(1)$	$31(1)$
$\mathrm{C}(25)$	$5914(1)$	$3661(2)$	$3640(1)$	$29(1)$

Table S10. Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for 2ab.

S(1)-O(1)	1.4283(12)	C(18)-H(18)	0.9500
$\mathrm{S}(1)-\mathrm{O}(2)$	$1.4380(12)$	C(19)-C(20)	1.383(2)
$\mathrm{S}(1)-\mathrm{N}(1)$	$1.6146(13)$	$\mathrm{C}(19)$-C(24)	1.391(2)
$\mathrm{S}(1)-\mathrm{C}(19)$	$1.7725(16)$	$\mathrm{C}(20)-\mathrm{H}(20)$	0.9500
$\mathrm{F}(1)-\mathrm{C}(25)$	1.343(2)	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.386(2)$
$\mathrm{F}(2)-\mathrm{C}(25)$	$1.3398(19)$	$\mathrm{C}(21)-\mathrm{H}(21)$	0.9500
$\mathrm{F}(3)-\mathrm{C}(25)$	1.340 (2)	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.384(2)$
$\mathrm{N}(1)-\mathrm{H}(1)$	0.858(15)	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.389(2)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.4795(19)$	$\mathrm{C}(22)-\mathrm{C}(25)$	$1.496(2)$
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9900	$\mathrm{C}(23)-\mathrm{H}(23)$	0.9500
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9900	$\mathrm{C}(23)-\mathrm{C}(24)$	1.380(3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.521(2)	$\mathrm{C}(24)-\mathrm{H}(24)$	0.9500
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9900		
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9900	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	119.60(7)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.537(2)	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{N}(1)$	107.36(7)
$\mathrm{C}(3)-\mathrm{H}(3)$	1.0000	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(19)$	108.41(7)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.550(2)	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	107.19(7)
$\mathrm{C}(3)-\mathrm{C}(6)$	1.517(2)	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(19)$	107.36(7)
$\mathrm{C}(4)-\mathrm{H}(4)$	1.0000	$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(19)$	106.17(7)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.534(2)	$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{H}(1)$	110.6(12)
$\mathrm{C}(4)-\mathrm{C}(13)$	1.515(2)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{S}(1)$	118.70(10)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9800	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1)$	116.0(12)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9800	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.7
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	0.9800	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.7
$\mathrm{C}(6)-\mathrm{C}(7)$	1.392(2)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	109.90(12)
$\mathrm{C}(6)-\mathrm{C}(11)$	1.397(2)	$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	108.2
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.7
$\mathrm{C}(7)-\mathrm{C}(8)$	1.388(2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.7
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	108.8
C(8)-C(9)	1.390(2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.8
$\mathrm{C}(9)-\mathrm{C}(10)$	1.391(2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113.69(12)
$\mathrm{C}(9)-\mathrm{C}(12)$	1.508(2)	$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	107.7
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	108.8
$\mathrm{C}(10)-\mathrm{C}(11)$	1.385(2)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.8
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	107.5
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	112.92(12)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	107.5
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800	$\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(2)$	110.50(12)
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.398(2)$	$\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{H}(3)$	107.5
$\mathrm{C}(13)-\mathrm{C}(18)$	$1.394(2)$	$\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)$	110.59(12)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	107.6
$\mathrm{C}(14)-\mathrm{C}(15)$	1.384(2)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	109.84(12)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	107.6
$\mathrm{C}(15)-\mathrm{C}(16)$	1.382(2)	$\mathrm{C}(13)-\mathrm{C}(4)-\mathrm{C}(3)$	114.82(12)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500	$\mathrm{C}(13)-\mathrm{C}(4)-\mathrm{H}(4)$	107.6
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.385(3)$	$\mathrm{C}(13)-\mathrm{C}(4)-\mathrm{C}(5)$	109.09(13)
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.5
$\mathrm{C}(17)-\mathrm{C}(18)$	1.385(2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5

$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	119.07(14)
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	120.5
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	120.1
$\mathrm{H}(5 \mathrm{~B})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	119.85(14)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(3)$	121.63(13)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	120.1
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	117.40(14)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	120.86(16)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(3)$	120.97(13)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(25)$	121.04(15)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	119.4	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(25)$	118.10(15)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	121.21(15)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	120.2
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	119.4	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	119.55(15)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.3	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	120.2
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	121.31(15)	$\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{H}(24)$	120.3
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	119.3	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(19)$	119.33(15)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	117.55(15)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	120.3
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(12)$	122.03(15)	$\mathrm{F}(1)-\mathrm{C}(25)-\mathrm{C}(22)$	111.92(13)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(12)$	120.42(15)	$\mathrm{F}(2)-\mathrm{C}(25)-\mathrm{F}(1)$	106.00(14)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.3	$\mathrm{F}(2)-\mathrm{C}(25)-\mathrm{C}(22)$	112.28(14)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	121.34(15)	$\mathrm{F}(3)-\mathrm{C}(25)-\mathrm{F}(1)$	106.78(14)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	119.3	$\mathrm{F}(3)-\mathrm{C}(25)-\mathrm{F}(2)$	106.54(13)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{H}(11)$	119.4	$\mathrm{F}(3)-\mathrm{C}(25)-\mathrm{C}(22)$	112.86(14)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	121.17(14)		
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.4		
$\mathrm{C}(9)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5		
$\mathrm{C}(9)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5		
$\mathrm{C}(9)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5		
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5		
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5		
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5		
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(4)$	122.75(14)		
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(4)$	119.52(14)		
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	117.69(15)		
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.6		
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	120.83(15)		
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	119.6		
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.6		
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	120.74(16)		
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.6		
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	120.4		
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	119.17(15)		
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	120.4		
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	119.9		
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	120.14(15)		
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	119.9		
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18)$	119.3		
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	121.40(15)		
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	119.3		
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{S}(1)$	120.22(12)		
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(24)$	121.31(15)		
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{S}(1)$	118.34(12)		
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	120.5		

Table S11. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2ab. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{~S}(1)$	$17(1)$	$20(1)$	$26(1)$	$0(1)$	$11(1)$	$-3(1)$
$\mathrm{F}(1)$	$48(1)$	$45(1)$	$29(1)$	$-3(1)$	$17(1)$	$-19(1)$
$\mathrm{F}(2)$	$55(1)$	$37(1)$	$33(1)$	$3(1)$	$31(1)$	$6(1)$
$\mathrm{F}(3)$	$39(1)$	$37(1)$	$28(1)$	$7(1)$	$16(1)$	$10(1)$
$\mathrm{O}(1)$	$19(1)$	$31(1)$	$35(1)$	$2(1)$	$13(1)$	$3(1)$
$\mathrm{O}(2)$	$26(1)$	$23(1)$	$33(1)$	$-4(1)$	$17(1)$	$-7(1)$
$\mathrm{N}(1)$	$20(1)$	$18(1)$	$23(1)$	$0(1)$	$11(1)$	$-1(1)$
$\mathrm{C}(1)$	$22(1)$	$18(1)$	$26(1)$	$-2(1)$	$13(1)$	$0(1)$
$\mathrm{C}(2)$	$23(1)$	$23(1)$	$22(1)$	$-5(1)$	$14(1)$	$-3(1)$
$\mathrm{C}(3)$	$18(1)$	$19(1)$	$22(1)$	$-2(1)$	$12(1)$	$-1(1)$
$\mathrm{C}(4)$	$18(1)$	$25(1)$	$23(1)$	$-1(1)$	$12(1)$	$-1(1)$
$\mathrm{C}(5)$	$27(1)$	$26(1)$	$24(1)$	$-1(1)$	$11(1)$	$-7(1)$
$\mathrm{C}(6)$	$18(1)$	$17(1)$	$23(1)$	$-2(1)$	$12(1)$	$-3(1)$
$\mathrm{C}(7)$	$22(1)$	$22(1)$	$25(1)$	$-3(1)$	$10(1)$	$2(1)$
$\mathrm{C}(8)$	$29(1)$	$25(1)$	$23(1)$	$-6(1)$	$12(1)$	$0(1)$
$\mathrm{C}(9)$	$21(1)$	$22(1)$	$24(1)$	$-1(1)$	$9(1)$	$-5(1)$
$\mathrm{C}(10)$	$18(1)$	$24(1)$	$30(1)$	$3(1)$	$13(1)$	$2(1)$
$\mathrm{C}(11)$	$24(1)$	$22(1)$	$27(1)$	$-1(1)$	$18(1)$	$0(1)$
$\mathrm{C}(12)$	$31(1)$	$33(1)$	$25(1)$	$-1(1)$	$6(1)$	$0(1)$
$\mathrm{C}(13)$	$22(1)$	$18(1)$	$24(1)$	$-2(1)$	$13(1)$	$-4(1)$
$\mathrm{C}(14)$	$22(1)$	$32(1)$	$25(1)$	$0(1)$	$14(1)$	$-1(1)$
$\mathrm{C}(15)$	$23(1)$	$29(1)$	$26(1)$	$1(1)$	$9(1)$	$-2(1)$
$\mathrm{C}(16)$	$38(1)$	$19(1)$	$20(1)$	$-2(1)$	$12(1)$	$-5(1)$
$\mathrm{C}(17)$	$42(1)$	$19(1)$	$30(1)$	$-2(1)$	$26(1)$	$-1(1)$
$\mathrm{C}(18)$	$25(1)$	$19(1)$	$29(1)$	$0(1)$	$17(1)$	$0(1)$
$\mathrm{C}(19)$	$21(1)$	$19(1)$	$27(1)$	$1(1)$	$16(1)$	$-2(1)$
$\mathrm{C}(20)$	$28(1)$	$17(1)$	$31(1)$	$0(1)$	$20(1)$	$0(1)$
$\mathrm{C}(21)$	$29(1)$	$18(1)$	$31(1)$	$5(1)$	$21(1)$	$4(1)$
$\mathrm{C}(22)$	$28(1)$	$22(1)$	$27(1)$	$2(1)$	$19(1)$	$0(1)$

$\mathrm{C}(23)$	$45(1)$	$18(1)$	$31(1)$	$-2(1)$	$19(1)$	$2(1)$
$\mathrm{C}(24)$	$38(1)$	$18(1)$	$31(1)$	$3(1)$	$16(1)$	$5(1)$
$\mathrm{C}(25)$	$37(1)$	$26(1)$	$29(1)$	$2(1)$	$21(1)$	$-1(1)$

Table S12. Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2ab.

	x	y	z	U(eq)
H(1)	7163(8)	2479(15)	7507(11)	25
H(1A)	6451	4290	6809	26
H(1B)	6853	5119	7636	26
H(2A)	6130	4128	7703	26
H(2B)	6708	3334	8339	26
H(3)	6447	1486	7424	23
H(4)	5513	1974	7597	26
H(5A)	5962	-599	7483	41
H(5B)	5369	62	6778	41
H(5C)	5443	-453	7595	41
H(7)	6064	958	6065	29
H(8)	5408	1270	4690	33
H(10)	4576	4097	5155	29
H(11)	5218	3751	6529	27
H(12A)	4157	2334	3697	52
H(12B)	4663	2701	3584	52
H(12C)	4366	3896	3781	52
H(14)	6985	829	8775	31
H(15)	7534	632	10173	35
H(16)	7123	932	10907	33
H(17)	6143	1379	10220	33
H(18)	5594	1627	8824	28
H(20)	6915	5901	6046	28
H(21)	6258	5813	4642	29

$\mathrm{H}(23)$	6570	1732	4658	39
$\mathrm{H}(24)$	7241	1824	6054	37

Table S12. Hydrogen bonds for 2ab [\AA and ${ }^{\circ}$]

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{N}(1)-\mathrm{H}(1) \ldots \mathrm{O}(2) \# 1$	$0.858(15)$	$2.142(15)$	$2.9811(17)$	$165.6(17)$

Symmetry transformations used to generate equivalent atoms:
\#1-x+3/2,y-1/2,-z+3/2

REFERENCES

[1] Y. Koseki, K. Kitazawa, M. Miyake, T. Kochi, F. Kakiuchi, J. Org. Chem. 2017, 82, 65036510.
[2] Y. Makida, E. Marelli, A. M. Z. Slawin, S. P. Nolan, Chem. Commun. 2014, 50, 8010-8013.
[3] R. M. Carballo, G. Valdomir, M. Purino, V. S. Martín, J. L. Padrón, Eur. J. Org. Chem. 2010, 2010, 2304-2313.
[4] V. Durel, C. Lalli, T. Roisnel, P. van de Weghe, J. Org. Chem. 2016, 81, 849-859.
[5] R. M. Carballo, G. Valdomir, M. Purino, V. S. Martín, J. I. Padrón, Eur. J. Org. Chem. 2010, 2304-2313.
[6] S. Hu, D. Wang, J. Liu, X. Li, Org. Biomol. Chem. 2013, 11, 2761-2765.
[7] A. P. Dobbs, S. J. J. Guisné, R. J. Parker, J. Skidmore, R. A. Stephenson, M. B. Hursthouse, Org. Biomol. Chem. 2010, 8, 1064-1080.
[8] H.-J. Jiang, K. Liu, J. Yu, L. Zhang, L.-Z Gong, Angew. Chem. Int. Ed. 2017, 56, 1193111935.
[9] F. O. Battiti, A. H. Newman, A. Bonifazi, ACS Med. Chem. Lett. 2020, DOI:
10.1021/acsmedchemlett.9b00660.
[10] Y. Kobayashi, S. Inukai, N. Kondo, T. Watanabe, Y. Sugiyama, H. Hamamoto, T. Shioiri, M. Matsugi, Tetrahedron Lett. 2015, 56, 1363-1366.
[11] M. A. Jacobsen, P. G. Williard, J. Org. Chem. 2002, 67, 3915-3918.
[12] M. Dow, F. Marchetti, K. A. Abrahams, L. Vaz, G. S. Besra, S. Warriner, A. Nelson, Chem. Eur. J. 2017, 13, 7207-7211.
[13] E. L. Lucas, K. A. Hewitt, P.-P. Chen, A. J. Castro, X. Hong, E. R. Jarvo, J. Org. Chem. 2020, 85, 1775-1793.
[14] R. Ebule, S. Mudshinge, M. H. Nantz, M. S. Mashuta, G. B. Hammond, B. Xu. J. Org. Chem. 2019, 84, 3249-3259.
[15] M. Noguchi, A. Tsukimoto, A. Kadowaki, J. Hikata, A. Kakehi, Tetrahedron Lett. 2007, 48, 3539-3542.
[16] G. R. Dong, S. Park, D. Lee, K. J. Shin. J. H. Seo, Synlett 2013, 24, 1993-1997.
[17] CCDC $2011491(\mathbf{2 a})$ and $2011492((\pm) \mathbf{- 2 a b})$ contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
[18] C. Q. O’Broin, P. Fernández, C. Martínez, K. Muñiz, Org. Lett. 2016, 18, 436-439.
[19] J. G. Napolitano, J. A. Galvín, C. García, M. Norte, J. J. Fernandez, A. H. Daranas, Chem. Eur. J. 2011, 17, 6338-6347.
[20] (a) K. Pal, M. L. Behnke, L. Tong, Tetrahedron Lett. 1993, 34, 6205-6208. (b) M. Shang, K. S. Feu, J. C. Vantourout, L. M. Barton, H. L. Osswald, N. Kato, K. Gagaring, C. W. McNamara, G. Chen, L. Hu, S. Ni, P. Fernández-Canelas, M. Chen, R. R. Merchant, T. Qin, S. L. Schreiber, B. Melillo, J.-Q. Yu, P. S. Baran, Proc. Natl. Acad. Sci. USA 2019, 116, 8721-8727.
[21] M. A. Schmidt, R. W. Stokes, M. L. Davies, F. Roberts, J. Org. Chem. 2017, 82, 4550-4560.

NMR Spectra

Other files

2a.cif $(407.62 \mathrm{KiB})$	view on ChemRxiv \circ download file
2ab.cif $(0.98 \mathrm{MiB})$	view on ChemRxiv • download file

[^0]: [a] Reactions performed on 0.1 mmol scale. [b] Reactions performed on 1 mmol scale. Percentages represent isolated yields.

