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Abstract 22 

The current understanding of organic carbon inputs into ecosystems lacking photosynthetic primary 23 

production is predicated on data and inferences derived almost entirely from metagenomic analyses. 24 

The elevated abundances of putative chemolithoautotrophs in groundwaters suggest that dark CO2 25 

fixation is an integral component of subsurface trophic webs. To understand the impact of 26 

autotrophically-fixed carbon, the flux of CO2-derived carbon through various subpopulations of 27 

subsurface microbiota must first be resolved, both quantitatively and temporally.  Here, we 28 

implement novel stable isotope cluster analysis to render a time-resolved and quantitative 29 

evaluation of 13CO2-derived carbon flow through a groundwater microbiome stimulated with reduced 30 

sulfur compounds. We demonstrate that mixotrophs, not obligate chemolithoautotrophs, were the 31 

most abundant active organisms in groundwater microcosms. Species of Hydrogenophaga, 32 

Polaromonas, Dechloromonas, and other metabolically versatile mixotrophs drove the recycling of 33 

organic carbon and, when chance afforded, supplemented their carbon requirements via 34 

chemolithoautotrophy and uptake of available organic compounds. Mixotrophic activity facilitated 35 

the replacement of 43 and 80% of total microbial carbon stores with 
13

C in just 21 and 70 days, 36 

respectively. This opportunistic “utilize whatever pathways net the greatest advantage in fitness” 37 

strategy may explain the great abundances of mixotrophs in other oligotrophic habitats, like the 38 

upper ocean and boreal lakes.  39 
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From soils to deep-sea sediments, the vast majority of cells on Earth must find a way to thrive in 40 

environments devoid of photosynthesis1. To truly appreciate the global carbon cycle in all its 41 

grandeur, it is important to understand the extent to which various types of cells rely upon 42 

allochthonous or autochthonous carbon input. This dependence invokes selective pressures that 43 

favor heterotrophic or chemolithoautotrophic lifestyles and provides the foundation upon which 44 

trophic webs linking the entire subsurface biome are structured. Accurately gauging CO2 fixation 45 

rates and turnover in these habitats is remarkably challenging despite the invaluable utility afforded 46 

by metagenomics to shed light on the metabolic capabilities of thousands of the organisms present2-47 

5.  48 

Modern groundwater, i.e., water having ingressed into the subsurface within the past 50 years6, is a 49 

transitionary ecosystem that connects surface habitats dominated by recently photosynthetically 50 

fixed carbon with the subsurface, which is devoid of this carbon source entirely7-9. Here, inorganic 51 

electron donors like reduced nitrogen, iron, and sulfur fuel chemolithoautotrophic primary 52 

production
9-12

. Metagenomic-based studies have elucidated a diverse array of microorganisms 53 

bearing the metabolic potential for chemolithoautotrophy
4,13-16

, accounting for 12 to 47% of the 54 

microbial population detected in groundwater
17-20

. Discoveries like these have cast doubt on 55 

paradigms portraying modern groundwater as being dominated by heterotrophic microbes fueled by 56 

organic material from the surface. We hypothesize that chemolithoautotrophic primary production 57 

dictates the rates by which carbon is cycled in the modern groundwater microbiome. 58 

To validate this hypothesis, we implemented a novel approach - stable isotope cluster analysis 59 

(SIsCA), to render a time-resolved, quantitative assessment of CO2-derived carbon flow through the 60 

groundwater food web. By coupling stable isotope probing (SIP) with genome-resolved 61 

metaproteomics21,22, we leveraged the high sensitivity of Orbitrap mass spectrometry in SIP-62 

metaproteomics to acquire exceedingly accurate quantitative data on 13C incorporation23,24. SIsCA 63 

then employs a dimensionality reduction approach to incorporate the molecule-specific temporal 64 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.01.26.428071doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.26.428071
http://creativecommons.org/licenses/by/4.0/


4 

 

dynamics of the acquired isotopologue patterns resulting from 13C-SIP time-series experiments – 65 

ultimately discerning trophic interactions between individual members of the microbial community. 66 

To examine the role of chemolithoautotrophy in the groundwater microbiome, we amended 67 

groundwater microcosms with 13CO2. Thiosulfate was used as an electron donor, as it is regularly 68 

released into groundwater via rock weathering25-28. While organisms bearing the genetic potential to 69 

oxidize reduced sulfur compounds are widespread in groundwater, little is known about their 70 

lifestyles15,16,29. Under conditions favoring lithotrophic growth, we expected chemolithoautotrophy to 71 

be the primary source of organic carbon, and a unidirectional carbon flux from autotrophs to 72 

heterotrophs. By mapping the quantitative information derived from SIsCA to MAGs, we were able to 73 

characterize carbon utilization and trophic interactions between active autotrophs and heterotrophs 74 

in the groundwater microbiome over a period of 70 days. High-resolution monitoring of carbon 75 

cycling and taxon-specific activities demonstrated that metabolically versatile mixotrophs, not strict 76 

autotrophs, drove carbon flux in the groundwater, supplying up to 80% of the entire microbial 77 

carbon. Insights into these microbes’ lifestyles, as well as a discussion on how a metabolically flexible 78 

mixotrophic lifestyle is optimally fit to flourish in an oligotrophic ecosystem, ensues. 79 

  80 
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Materials and Methods 81 

Groundwater sampling and microcosms setup 82 

Groundwater was collected from Hainich Critical Zone Exploratory (CZE) well H41 (51.1150842N, 83 

10.4479713E) in June 2018. Well H41 provides access to an aquifer assemblage at 48 m depth in a 84 

trochite limestone stratum. Sourced by a beech forest (Fagus sylvatica) recharge area, the oxic 85 

groundwater in this well maintains mean dissolved oxygen concentrations of 5.0 ± 1.5 mg L
-1

, < 0.1 86 

mg L
-1

 ammonium, 1.9 ± 1.5 mg L
-1

 dissolved organic carbon, 70.8 ± 12.7 mg L
-1

 total inorganic 87 

carbon, and a pH of 7.2 
27,30

. A total of 120 L of groundwater was sampled using a submersible pump 88 

(Grundfos MP1, Grundfos, Bjerringbro, Denmark). To collect biomass from the groundwater, 5-liter 89 

fractions were filtered through each of twenty 0.2-µm Supor filters (Pall Corporation, Port 90 

Washington, NY, USA). The natural background of inorganic carbon in the groundwater was then 91 

replaced with defined concentrations of 12C or 13C. Two 3-liter volumes of filtered groundwater were 92 

acidified to pH 4 in 5-liter bottles to eliminate any bicarbonate. Following that, 12C- or 13C-93 

bicarbonate was dissolved in the groundwater to a final concentration of 400 mg L-1, corresponding 94 

to a near in situ concentration of 79 mg C L-1. The pH of groundwater samples was then adjusted to 95 

7.2 by addition of 12C- or 13C-CO2.  96 

Eighteen distinct microcosms were initiated for the 13C-SIP experiment. For each microcosm, one 97 

sample-laden 0.2-µm filter was placed into a 500-mL bottle containing 300 mL of treated 98 

groundwater (as described above). Nine microcosms were sourced with water containing 12C-99 

bicarbonate and the other nine with water containing 13C-bicarbonate. Two additional microcosms 100 

were prepared, each by transferring one 0.2-µm filter into a 1-liter bottle containing 350 mL of 101 

untreated groundwater. One of these bottles was supplemented with 150 mL sterile D2O (final 102 

concentration 30%, v:v) and the other with 150 mL sterile milliQ H2O. Sodium thiosulfate and 103 

ammonium chloride were then was added to all microcosms to a final concentration of 2.5 mM and 104 
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15 µM, respectively. Finally, all microcosms were incubated with shaking (100 rpm) at 15 °C in the 105 

dark. 106 

Hydrochemical analyses  107 

While incubating the 18 microcosms supplemented with 12C- or 13C-bicarbonate, concentrations of 108 

oxygen, thiosulfate, and sulfate were determined at regular intervals. Oxygen concentrations were 109 

determined using a contactless fiber-optic oxygen sensor (Fibox 4 trace with SP-PSt3-SA23-D5-YOP-110 

US dots [PreSens Precision Sensing GmbH, Regensburg, Germany]). Measurements were collected 111 

from three 12C microcosms and three 13C microcosms every two days for the first three weeks, and 112 

once weekly thereafter. Thiosulfate concentrations were determined via colorimetric titration assays 113 

with iodine31. Samples from all microcosms were evaluated every four to seven days. For each 114 

measurement, 2 mg potassium iodide was mixed into 1 mL of sample, followed by the addition of  10 115 

µL of zinc iodide-starch solution (4 g L-1 starch, 20 g L-1 zinc chloride and 2 g L-1 zinc iodide) and 10 µL 116 

of 17% (v:v) phosphoric acid. Titration was performed by adding 5 µL of 0.005 N iodine at a time until 117 

the solution turned faint blue. Thiosulfate concentrations (cthiosulfate in mg L-1) were then calculated 118 

according to equation (1), where Viodine is the volume of iodine solution added and Vsample is the 119 

sample volume: 120 

���������	�
 �
����������

����	
�
 (1) 121 

Sulfate concentrations were determined via a turbidimetric assay
32

 from all microcosms every four to 122 

seven days. For each measurement, 1 mL of either microcosm sample, standard (50 µM to 1000 µM 123 

potassium sulfate) or blank (dH2O) was mixed with 0.4 mL 0.5 M HCl and 0.2 mL BaCl2-gelatin reagent 124 

(0.5 g gelatin and 8 g BaCl2 in 200 mL dH2O). Following 1 h incubation in the dark, absorbances were 125 

measured at 420 nm in a DR3900 spectrophotometer (HACH, Düsseldorf, Germany). 126 
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Detection of cellular activity by Raman microspectroscopy 127 

Microcosms supplemented with D2O or H2O were sampled regularly during the first seven weeks of 128 

incubation to quantify the incorporation of deuterium into the biomolecules of active cells (i.e.,  129 

carbon-deuterium [C-D] bonds) via single-cell Raman microspectroscopy analysis. In preparation for 130 

Raman microspectroscopy, 1 mL of sample was pre-filtered through a 5-µm filter, and then the cells 131 

contained in the filtrate were washed three times with ddH2O via centrifugation (10,000g, 2 min). 132 

Pellets were then resuspended in 50 µL ddH2O, and 10 µL of the final suspension was placed on 133 

nickel foil (Raman substrate) and allowed to air dry at RT. Microbial cells were located via dark field 134 

microscopy, and measurements were collected using a Raman microscope (BioParticleExplorer 0.5, 135 

rap.ID Particle Systems GmbH) with an excitation wavelength of 532 nm (solid-state frequency-136 

doubled Nd:YAG module [Cobolt Samba 25 mW]; laser power = 13 mW at sample). The laser was 137 

focused with an x100 objective (Olympus MPLFLN 100xBD) across a lateral spot of < 1 µm. 138 

Backscattered light (180°) was diffracted using a single-stage monochromator (Horiba Jobin Yvon HE 139 

532) with a 920 line mm-1 grating. Spectra were then registered with a thermoelectrically cooled CCD 140 

camera (Andor DV401-BV), resulting in a resolution of ~ 8 cm-1. A 5 s integration period was applied 141 

per Raman spectrum (-57 to 3203 cm-1).  142 

Processing and analysis of Raman data 143 

Processing and statistical analysis of raw Raman data were achieved with GNU R software33. Cosmic 144 

spikes were removed from the spectra34. A wavenumber calibration was then applied using 4-145 

acetamidophenol standard spectra35, while an intensity calibration was performed using the 146 

SRM2242 standard36,37. The contribution of fluorescence was removed from spectra using the 147 

asymmetric least-squares baseline correction method38. Finally, spectra were vector-normalized and 148 

subjected to dimensionality reduction via principal component analysis (PCA). Five principal 149 

components were used to build a linear discriminant analysis classification model, which was applied 150 

to differentiate between deuterium-labeled and unlabeled bacterial cells. Deuterium uptake was 151 
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expressed as the C-D ratio, i.e., A(C-D) / [A(C-D) + A(C-H)], which was calculated by integrating the 152 

areas of the C-H (2800 - 3100 cm-1) and C-D (2040 - 2300 cm-1) stretching vibration bands. Monitoring 153 

deuterium incorporation into microbial cells helped gauge metabolic activity, as well as determine 154 

optimal time points to sample microcosms.  155 

Sampling and biomolecule extraction 156 

After 21, 43, and 70 days of incubation, biomass was recovered from microcosms by filtering 157 

aqueous phases through 0.2-µm Supor filters (Pall Corporation). Filters used for pre-incubation 158 

biomass enrichment were combined with the filters used to remove the aqueous phases. A 159 

combined DNA and protein extraction was performed using a phenol/chloroform/isoamylalcohol-160 

based protocol, as previously described39. Details regarding 16S rRNA gene amplicon sequencing and 161 

quantitative SIP of DNA are provided in Supp. Info. 162 

Metagenomic analysis 163 

Metagenomic sequencing was performed on DNA samples selected from four 12C microcosms: one 164 

replicate each following 21 and 43 days of incubation, and two replicates following 70 days of 165 

incubation. Samples were selected with the aim of covering greatest taxonomic diversity, as per the 166 

results of PCA of 16S rRNA gene amplicon sequencing data. DNA fragment sizing, quantitation, 167 

integrity, and purity were determined using an Agilent 2100 Bioanalyzer (Santa Clara, CA, USA). 168 

Library preparation was achieved with a NEBNext Ultra II DNA Lib Prep Kit (New England Biolabs, 169 

Ipswich, MA, USA) in accordance with protocols provided by the manufacturer. Multiplexed 170 

sequencing in one flow cell of an Illumina NextSeq 500 system (300 cycles) ensued to generate 150-171 

bp paired-end reads. 172 

Raw sequencing data was quality filtered using BBDuk40 and subjected to assembly with metaSPAdes 173 

v3.13.0
41

. Applying only contigs greater than 1,000 bp in length, three different algorithms facilitated 174 

genomic binning: MaxBin 2.0 v2.2.7
42

, MetaBAT 2 v2.12.1
43

, and BinSanity v0.2.7
44

. Bin refinement 175 
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was accomplished using the MetaWRAP pipeline v1.1.345. Only bins that were both more than 50% 176 

complete and contained less than 10% contamination were considered. Bins were classified with 177 

GTDB-Tk v0.3.246, and completeness parameters were appraised with CheckM v1.0.1247. Bins from 178 

different samples were dereplicated using FastANI v1.048. The Prokka pipeline v1.13.349 was used to 179 

assign functional annotations to gene sequences and to translate into amino acid sequences for 180 

metaproteomics analysis. Metagenomic bins of particular interest (per metaproteomics analysis) 181 

were manually refined with Anvi’o v6.150, rendering the completed MAGs. Normalized coverage 182 

values for all MAGs were calculated by dividing raw coverage values by the relative abundance of 183 

rpoB genes in each metagenome. Gene abundances of rpoB were determined using ROCker51. Table 184 

S1 provides an overview of the curated MAGs referred to in the study. 185 

Metaproteomics analysis 186 

Proteins extracted from microcosms were first subjected to SDS polyacrylamide gel electrophoresis, 187 

followed by in-gel tryptic cleavage as previously described39. After reconstitution in 0.1% formic acid 188 

(v:v), LC-MS/MS analysis was performed in LC chip coupling mode on a Q Exactive HF instrument 189 

(Thermo Fisher Scientific, Waltham, MA, USA) equipped with a TriVersa NanoMate source (Advion 190 

Ltd., Ithaca, NY, USA). Raw data files were analyzed using the Sequest HT search algorithm in 191 

Proteome Discoverer (v1.4.1.14, Thermo Fisher Scientific, Waltham, MA, USA). Amino acid sequences 192 

derived from the translation of genes present in metagenomes were compiled into a reference 193 

database to facilitate protein identification. The following parameters were applied: enzyme 194 

specificity was set to trypsin, two missed cleavages were allowed, oxidation (methionine) and 195 

carbamidomethylation (cysteine) were selected as modifications, and peptide ion and Da MS/MS 196 

tolerances were set to 5 ppm and 0.05, respectively. Peptides were considered identified upon 197 

scoring a q-value < 1% based on a decoy database and obtaining a peptide rank of 1. Functional 198 

classification of peptides was achieved in accordance with gene annotations generated by Prokka
49

, 199 

and taxonomic classification was based on the dereplicated and refined MAGs described above. 200 
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Stable Isotope Cluster Analysis  201 

Peptide identifications from 
12

C microcosms samples were mapped to mass spectra of corresponding 202 

13
C-labeled samples, and the incorporation of 

13
C was quantified by comparing expected peptide 203 

masses, chromatographic retention times, and MS/MS fragmentation patterns. Molecular masses of 204 

peptides were calculated based on amino acid sequences, isotopologue patterns of labeled peptides 205 

were extracted manually from mass spectral data using the Xcalibur Qual Browser (v3.0.63, Thermo 206 

Fisher Scientific, Waltham, MA, USA), and 13C incorporation was calculated as previously described24.  207 

The conventional approach of calculating the most probable 13C relative isotope abundance (RIA) of a 208 

peptide does not take into account the information contained in isotopologue patterns, which 209 

provide detailed information about the carbon utilization of an organism. To include this information 210 

in the analysis, we developed Stable Isotope Cluster Analysis (SIsCA). Stable Isotope Cluster Analysis 211 

(SIsCA) was performed using R33, with scripts being available on github (https://github.com/m-212 

taubert/SIsCA). Measured isotopologue patterns were compared to 21 predicted isotopologue 213 

patterns varying in 13C RIA (5% intervals from 0 to 100% 13C RIA), and coefficients of determination 214 

(R2) were calculated for each comparison. With this approach, all information from isotopologue 215 

patterns is retained, while still data from different peptides is comparable, time series can be 216 

integrated, and the dataset can easily be used for downstream statistical analysis. To differentiate 217 

microbial lifestyles, R2 values were averaged from samples obtained from replicate microcosms and 218 

peptides assigned to the same MAG. Resulting datasets of 21 R
2
 values per time point per MAG were 219 

compared via PCA with the vegan software package
52

, and clusters of MAGs were defined manually 220 

and validated by testing for overlapping confidence intervals. 221 

Generation times of individual taxa were calculated by comparing the relative intensity of unlabeled 222 

and labeled peptide signals in mass spectrometric data, as previously described
23

. The number of 223 

doublings, �, was calculated according to equation (2) where ���� and ���� are the signal intensities 224 

of the unlabeled peptide and labeled peptide, respectively:  225 
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� � log�
���

�����

����

  (2) 226 

If the mass spectrometric signals of unlabeled and labeled and peptides overlapped, the 227 

monoisotopic peak was used to determine the total abundance of unlabeled peptide based on the 228 

natural distribution of heavy isotopes, as previously described
24

. Generation time, 	� , was calculated 229 

with equation (3), where ∆	 is incubation time: 230 

	� �
∆�

�
 (3) 231 

Results 232 

Sulfur oxidation by active groundwater microbes 233 

Groundwater microbiota responded immediately to the addition of thiosulfate, yielding increasing 234 

rates of sulfur oxidation. During the first three weeks of incubation, thiosulfate and oxygen 235 

consumption rates remained relatively low (1.7 ± 1.9 and 5.5 ± 2.0 µmol d-1 [mean ± SD], 236 

respectively; Fig. S1). Raman microspectroscopic analyses suggested that > 95% of cells were active 237 

within the first 12 days of incubation. A distinct C-D band was observed at wavelength positions 238 

between 2,100 and 2,300 cm
-1

 in the single-cell Raman spectra of the microcosm amended with D2O 239 

(Fig. 1, Fig. S2), which demonstrated new biomolecules were being synthesized by incorporating 240 

deuterium from D2O into carbon-deuterium bonds. The relative intensity of the C-D band increased 241 

from 18.3% after 12 days to 25.7% after 47 days of incubation (median values; p < 2.2 × 10
-16

, t = -242 

14.038, df = 141.68, two-sided Welch’s t-test), indicative of continued microbial proliferation and 243 

cross-feeding on deuterium-labeled organic carbon. 244 

After 70 days of incubation, consumption rates of thiosulfate (7.2 ± 2.0 µmol d-1) and oxygen (12.8 ± 245 

3.2 µmol d-1) had increased significantly (p = 6.48 × 10-4, t = 5.4332, df = 7.8999 [thiosulfate] and p = 246 

1.27 × 10-3, t = 4.7692, df = 8.3019  [oxygen], two-sided Welch’s t-test, Fig. S1). Sulfate was produced 247 
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at a consistent rate ranging between 8.1 and 9.6 µmol d-1 (no significant changes) throughout the 248 

duration of the experiment. Recorded stoichiometry for oxygen:thiosulfate:sulfate was roughly 2.8 : 249 

1 : 2.6 over the course of incubation, very near the theoretical ratio of 2 : 1 : 2 for oxygen-dependent 250 

thiosulfate oxidation. 251 

Organism-specific 13C incorporation reveals distinct lifestyles 252 

To address the carbon utilization schemes of key microbes, we conducted genome-resolved SIP-253 

metaproteomic analyses after 21, 43, and 70 days of incubation. SIsCA then clustered the 31 most 254 

abundant MAGs into five distinct groupings, based on carbon utilization (Fig. 2, Fig. S3, Dataset S1). 255 

Organisms represented by MAGs in cluster I were related to Thiobacillus (Burkholderiales) and 256 

exhibited a stable 13C RIA of 95% over throughout the 70 day experiment (Fig. 2). Such a high (>90%) 257 

13C RIA indicated exclusive CO2 fixation. However, these strict autotrophs accounted for only 11% of 258 

the total number of MAGs across the five clusters and 3.2 ± 3.1% (mean ± sd) of the total biodiversity 259 

enveloped by the community, based on normalized coverages of the metagenomics dataset and 16S 260 

rRNA gene profiles, respectively (Fig. S4, Fig. S5, Supp. Info.). By comparing the signal intensities of 261 

12C- and 13C-enriched peptides, the generation time of these autotrophs was determined to be less 262 

than 2 days (Fig. 3), highlighting the rapid production of new 13C-labeled biomass from 13CO2. 263 

Organisms represented by MAGs in cluster II were most closely related to species of 264 

Methyloversatilis, Polaromonas and Dechloromonas (all Burkholderiales). These microbes exhibited a 265 

moderate 65% 
13

C RIA after 21 days of incubation (Fig. 2), which suggested the utilization of labeled 266 

organic carbon from primary production as well as unlabeled organic carbon from the groundwater. 267 

After incubating for 43 and 70 days, however, 
13

C
 
RIA increased to 91% (p = 1.573 × 10

-3
, t = -3.5225, 268 

df = 26.464, two-sided Welch’s t-test), indicative of a switch to chemolithoautotrophic growth as 269 

organic carbon became limited. Exhibiting generation times between 2 and 4 days (Fig. 3), MAGs 270 

representing these mixotrophs were more than twice as abundant as those of cluster I, accounting 271 

for 26% of the total normalized coverage. 272 
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Over the first 21 days of incubation, mean 13C RIAs of cluster III and IV microbes increased from 65 to 273 

76% and from 18 to 53%, respectively (p = 2.211 × 10-13, t = -8.4984, df = 97.694 [cluster III] and p < 274 

2.2 × 10-16, t = -11.626, df = 58.764 [cluster IV], two-sided Welch’s t-test; Fig. 2). This increasing trend 275 

of 13C RIA demonstrated two important points: First, it clearly indicated heterotrophic growth, based 276 

in part on organic carbon produced by chemolithoautotrophic organisms of clusters I and II. Second, 277 

it illustrated the increased labeling of available organic carbon, through the fixation of 13CO2. 278 

Variations observed in 13C RIAs between species suggested different extents of cross-feeding on 279 

chemolithoautotrophically produced organic carbon, potentially due to preferences for different 280 

organic carbon compounds. Cluster III housed the largest fraction of the MAG population, accounting 281 

for 28% of the total normalized coverage, while cluster IV accounted for 20% of this total. The vast 282 

majority of organisms represented by MAGs in these clusters exhibited generation times between 3 283 

and 4 days (Fig. 3). However, cluster III microbes most closely related to species of Hydrogenophaga, 284 

Vitreoscilla, and Rubrivivax exhibited growth rates as fast as their cluster I counterparts. 285 

In cluster V, average 
13

C RIAs reached 6% after 21 days of incubation and did not change thereafter, 286 

which hinted at active heterotrophic lifestyles early on in the experiment. Nonetheless, these 287 

organisms represented 15% of the total normalized coverage of all clusters. Generation times for 288 

cluster V microbes were slightly longer and more variable, ranging from 3.5 days for species of 289 

Acidovorax to eight days for Aquabacterium spp. (Fig. 3).  290 

Analyses of corresponding peptide RIAs of all analyzed MAGs showed that 43, 68, and 80% of all 291 

carbon available to the microbial population was replaced with 
13

C following 21, 43, and 70 days of 292 

incubation, respectively. Quantitative DNA-SIP confirmed this labeling pattern via increases in the 293 

number of, and buoyant density shifts associated with, 13C-labeled OTUs (Fig. S6; Supp. Info.). SIsCA 294 

revealed carbon transfer from autotrophic cluster I to mixotrophic cluster II, and from these two 295 

further to the heterotrophs of cluster III through V through cross-feeding on 13CO2-derived organic 296 

carbon. 297 
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Functional characterization of MAGs reveals putative mixotrophs 298 

All of the putative autotrophs detected employed the Calvin-Benson-Bassham (CBB) cycle for CO2 299 

fixation (Fig. 4). Subunits of the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) 300 

were detected in the proteomes of 15 of 31 MAGs, and 14 of these contained additional enzymes of 301 

the CBB cycle. No other complete CO2 fixation pathways were identified. Proteins of the CBB cycle 302 

were present not only in strict or facultative autotrophs of cluster I (i.e., relatives of Thiobacillus spp.) 303 

or cluster II (e.g., relatives of Methyloversatilis, Polaromonas, and Dechloromonas spp.), but also in 304 

heterotrophic organisms most closely related to species of Hydrogenophaga, Rhodoferax, 305 

Paucibacter, and Rubrivivax of clusters III and IV. Mixotrophs comprised > 50% of all microbial taxa 306 

represented across all clusters, which underscored the immense importance of their contributions to 307 

carbon cycling in modern groundwater. The mixotrophic lifestyle, by no means a rare or insignificant 308 

trait in these groundwater microcosms, appeared to bestow fitness on the microbes.  309 

MAGs express pathways for the utilization of reduced sulfur compounds 310 

Sixteen MAGs expressed proteins for sulfur oxidation via the Sox or Dsr enzyme system (Fig. 4). 311 

Cluster II, III, and IV microbes phylogenetically affiliated with species of Methyloversatilis, 312 

Dechloromonas, Hydrogenophaga, Rhodoferax and other Betaproteobacteriales utilized the Sox 313 

system exclusively. MAGs harbored gene clusters of the conserved soxCDYZAXB gene order (Fig. S7), 314 

featuring the core components of the Kelly-Friedrich pathway53,54. This pathway facilitates the 315 

complete oxidation of thiosulfate to sulfate, without free intermediates29. Accessory genes soxVW, 316 

soxEF, soxTRS, and soxH were randomly distributed through the MAGs disconnected from the main 317 

operon.  318 

Cluster I microbes most closely related to Thiobacillus spp. produced enzymes for both the Sox and 319 

Dsr system, and corresponding MAGs housed a truncated soxXYZAB gene cluster that lacked genes 320 

soxCD required to oxidize the sulfane group of thiosulfate. As such, these organisms likely used the 321 

branched thiosulfate oxidation pathway typical for Thiobacillus spp.
55

, whereby Dsr operating in 322 
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reverse oxidizes the sulfane-derived sulfur atom to sulfite, with elemental sulfur as intermediate29. 323 

Cluster I MAGs maintained the conserved operon structure dsrABEFHCMKLJOPNR, including genes 324 

dsrEFH and dsrL typical for sulfur oxidizers but lacking gene dsrD for sulfate reduction28. These 325 

organisms also expressed aprAB and sat, which encode Adenosine-5’-phosphosulfate reductase and 326 

ATP sulfurylase, respectively, each of which can function in reverse to oxidize sulfite to sulfate 56. 327 

Hence, groundwater facultative chemolithoautotrophs employed the Sox system to oxidize 328 

thiosulfate to sulfate, while obligate chemolithoautotrophs utilized an incomplete version of this 329 

system to oxidize the sulfone group and the Dsr/Apr/Sat system to oxidize the sulfane group of 330 

thiosulfate. 331 

Use of alternative electron acceptors and donors in sulfur oxidizers 332 

Cytochrome c oxidase and other enzymes of the respiratory chain were detected in 15 sulfur oxidizer 333 

MAGs, 12 of which also harbored enzymes for nitrate reduction (i.e., nitrate reductase, nitrite 334 

reductase, nitric oxide reductase; Fig. 4). Several sulfur oxidizers related to species of Dechloromonas 335 

and Rhodoferax expressed both pathways concurrently. Proteins for ammonia oxidation (i.e., 336 

ammonia monooxygenase, hydroxylamine oxidoreductase) were produced by a variety of cluster I 337 

and IV microbes, such as Thiobacillus and Methyloversatilis species. MAG_77 (Thiobacillus), MAG_55 338 

(Dechloromonas) and MAG_7 (Hydrogenophaga) even expressed [NiFe]-hydrogenase genes.  339 

Utilization of organic carbon in oligotrophic groundwater 340 

Cluster I, II, and III MAGs exhibited a gradient of increased versatility in utilizing various organic 341 

carbon compounds. While cluster I’s strict autotrophs only expressed pathways for sugar 342 

degradation, MAGS of clusters II through V produced proteins germane to the breakdown and 343 

transport of simple sugars (e.g., glycolysis, pentose phosphate pathway), amino acids (TCA cycle), 344 

fatty acids (beta-oxidation), C1 compounds, and aromatics (Fig. 4). The TCA cycle was one of the most 345 

abundant metabolic modules observed in MAGs of cluster II to V. Degradation pathways for toluene 346 

and ethylbenzene were expressed by organisms most closely related to species of Dechloromonas 347 
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and Rhizobacter (Betaproteobacteriales), respectively. Enzymes for naphthalene and catechol 348 

catabolism were detected in MAGs representing organisms related to Hydrogenophaga and 349 

Pseudomonas spp., while gene products germane to the degradation of complex carbohydrates (e.g., 350 

starch, chitin) were produced by MAGs representing relatives of Microbacterium and 351 

Sediminibacterium species. The metabolic machinery required to metabolize C1 compounds was 352 

detected primarily in microbes related to Methyloversatilis spp., which typically possessed methanol 353 

dehydrogenase, formate dehydrogenase, and other enzymes involved in tetrahydromethanopterin-354 

dependent C1-cycling.  355 

Gene products relevant to import systems for amino acids and carboxylic acids (e.g., alpha-keto 356 

acids, C4-dicarboxylates, lactate) were overly abundant in mixotrophs and heterotrophs of clusters II 357 

to V (Fig. 4). Cluster III to V microorganisms that had grown exclusively heterotrophically exhibited 358 

the greatest diversity of import-related proteins, including those for the transport of carbohydrates 359 

and nucleotides. Only transporters targeting cations (predominantly iron) and phosphate were 360 

detected in MAGS representing cluster I obligate autotrophs.   361 

Discussion 362 

Despite conditions strongly favoring autotrophic sulfur oxidizers, mixotrophs – not obligate 363 

chemolithoautotrophs, were the most abundant active microorganisms in the groundwater 364 

microcosms. While a diverse microbial consortium was detected, strict chemolithoautotrophs 365 

accounted for only 3% of the total groundwater biodiversity. This is astonishing since thiosulfate and 366 

oxygen were readily available throughout the experiment, which should have selectively promoted 367 

the proliferation of chemolithoautotrophic microbes. Genome-resolved SIP-Metaproteomics 368 

combined with our novel SIsCA approach facilitated identification of active microbes, 369 

characterization of their expressed gene products (and linked pathways), and quantification of 370 

carbon uptake and transfer within a diverse community over time (Fig. 5). Furthermore, highly 371 

sensitive Raman spectroscopy showed that microbes were active at the outset of the incubation (no 372 
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discernable lag phase), despite low sulfur oxidation rates. Shedding new light on the mechanisms by 373 

which CO2-derived carbon is assimilated and cycled by groundwater microflora, this approach far 374 

surpasses others that have implicated the importance of chemolithoautotrophy in groundwater 375 

based solely on functional gene and metagenomics data13,14,17,57. Within 21 and 70 days of 376 

incubation, 43 and 80% of the total groundwater biomass consisted of CO2-derived carbon, 377 

respectively. It is convincingly clear that this rapid enrichment of CO2-derived carbon did not occur in 378 

fixed, linear progression from chemolithoautotrophs to heterotrophs, but through a highly complex 379 

and reticulated web of trophic interactions dominated by mixotrophs – the experts of organic carbon 380 

recycling.  381 

These mixotrophs strongly preferred heterotrophic growth to the fixation of CO2, presumably a 382 

consequence of the greater metabolic cost of carbon assimilation via the CBB cycle58,59. The ability to 383 

fix CO2 affords these microbes the luxury of an opportunistically selective lifestyle, which lends itself 384 

to bolstered fitness (and rapid dominance) when organic carbon becomes limited in oligotrophic 385 

systems. Cluster II mixotrophs, for example, transitioned from heterotrophy to CO2 fixation late in 386 

the incubation, likely due to such limitations. In a similar vein, cluster III mixotrophs expressed 387 

pathways for autotrophic growth but were never required to fix CO2. These microbes were able to 388 

access a more diverse repertoire of carbon sources due to a greater metabolic versatility in organic 389 

carbon utilization. 390 

In support of the higher fitness associated with the opportunistic CO2 fixation, mixotrophs grew 391 

considerably faster (generation times of two days or less) than cluster IV and V organisms restricted 392 

to an exclusively heterotrophic lifestyle (generation times up to 8 days). Surprisingly, however, these 393 

heterotrophs were also able to oxidize reduced sulfur compounds, suggestive of a 394 

chemolithoheterotrophic lifestyle. With respect to energy conservation, the constant influx of 395 

reduced sulfur via weathering of interspersed pyrite minerals25-27 renders sulfur oxidation an 396 

attractive alternative to the oxidation of organic compounds, both in Hainich CZE groundwaters and 397 
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beyond. As the energetic requirement for CO2 fixation is greater than the potential gain from organic 398 

carbon oxidation, the most efficient strategy for both mixotrophs and heterotrophs is to net the 399 

greatest amount of possible from sulfur oxidation and preserve precious organic carbon for anabolic 400 

demands. 401 

The diversity of organic carbon utilization motifs shifted gradually, and inversely, with CO2 fixation. At 402 

one end of the transition were the strict autotrophs of cluster I, relying exclusively on CO2 as carbon 403 

source. No organic carbon transporters were detected for any of these organisms. Their limited 404 

metabolic breadth restricted growth to that from simple sugars, likely to utilize carbon assimilated 405 

via the CBB cycle58. At the other end of the transition were organisms from clusters IV and V that 406 

assimilated organic carbon exclusively. To endure the groundwater environment sans autotrophic 407 

CO2 fixation machinery, these organisms had to maintain and express a wide variety of organic 408 

carbon transport and assimilation pathways. The most fit organisms in this modern groundwater 409 

ecosystem, however, were the mixotrophs of clusters II and III. Establishing dominance by 410 

opportunistically exploiting their physiological flexibility, these organisms rapidly outcompeted their 411 

strictly autotrophic brethren (5-fold greater abundance). 412 

 Organisms most closely related to Burkholderiales spp., the key mixotrophic taxa in our groundwater 413 

microcosms, gave rise to the greatest number of RuBisCO-encoding transcripts in a previous study at 414 

our groundwater site
17

. For taxa like Polaromonas, Dechloromonas, Hydrogenophaga, and 415 

Rhodoferax spp., the ability to oxidize sulfur has been posited based solely on genomic evidence
60-63

. 416 

Hitherto, chemolithoautotrophic growth on reduced sulfur compounds has not been observed from 417 

any of these genera in pure culture. Our study demonstrates that these organisms can use reduced 418 

sulfur as an energy source, and species of Polaromonas, Dechloromonas, and potentially 419 

Hydrogenophaga used it to fuel autotrophic growth. These sulfur oxidizers expressed pathways for 420 

both aerobic respiration and denitrification, despite the fact that no nitrate was added and nitrate 421 

concentrations in the groundwater of this well never exceeded 10 mg/L27. Constitutive maintenance 422 
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and expression of denitrification enzymes is likely more energetically cost effective than regulating 423 

gene expression64. This strategy also affords these microbes the advantage of utilizing different 424 

electron acceptors when oxygen becomes limited.  425 

Utilizing an incomplete TCA cycle that precludes heterotrophic growth, the Thiobacillus-related 426 

organisms of cluster I are known to be obligately autotrophic65. Previously, by carrying out 427 

thiosulfate- and hydrogen-driven denitrification, Thiobacillus spp. grew up to represent upwards of 428 

50% of an enrichment culture obtained from Hainich CZE groundwater66. In situ, however, 429 

Thiobacillus spp. are typically found in lower numbers17, and most commonly appear in deeper, more 430 

CO2-rich subsurface systems13. This suggests diminished fitness and inability to compete with more 431 

physiologically fit mixotrophs in oligotrophic modern groundwater. Thiobacillus can store the 432 

elemental sulfur produced as intermediate by the Dsr enzyme system in periplasmic granules65,67. 433 

This storage might allow the organism to withstand times where no reduced sulfur compounds in the 434 

groundwater are available. 435 

There are two key advantages to being a mixotrophic sulfur oxidizer in the groundwater habitat. First 436 

and foremost, these cells exist completely independent of surface carbon input dynamics. The energy 437 

sources they rely on is produced autochthonously in the geological setting. Second, their diverse 438 

breadth of physiological capabilities allows these microbes to modulate the means by which they 439 

satisfy their anabolic requirements and energy demands based on the types of carbon available. This 440 

includes carbohydrate degradation pathways for surface-derived plant polymers
8,68

, amino acid and 441 

nucleotide uptake systems for microbially-derived carbon
69,70

, C1 metabolic functions for C1 carbon 442 

compounds from biomass degradation
71

, and hydrocarbon degradation pathways for rock-derived 443 

carbon72,73. We hypothesize that similar strategies exploiting a myriad of carbon assimilation 444 

pathways and versatile energy acquisition motifs benefit microbes dominating other oligotrophic 445 

systems, such as boreal lakes or the upper ocean74,75.  446 
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Conclusions 447 

Our novel SIsCA-based approach facilitated the quantitative and temporal resolution of carbon flux 448 

through key subpopulations of a modern groundwater microbiome. Mixotrophs dominated this 449 

oligotrophic environment by fulfilling and supplementing their organic carbon requirements via 450 

opportunistic fixation of CO2.  This CO2-derived organic carbon was rapidly incorporated into, and 451 

recycled throughout, microbial biomass through a highly efficient and complex trophic network. To 452 

mitigate low levels of organic carbon, autotrophic, mixotrophic, and heterotrophic microorganisms 453 

utilized reduced sulfur compounds as energy sources and preserved what organic carbon was 454 

available for anabolic demands. A wide variety of carbon assimilation pathways enabled mixotrophs 455 

and heterotrophs to make optimal use of the scarce amounts of organic carbon characteristic of 456 

oligotrophic environments. We posit that the concerted, opportunistic deployment of a wide variety 457 

of highly versatile pathways for assimilating carbon and generating energy from inorganic sources is 458 

key to microbial success in oligotrophic environments. The findings of this investigation significantly 459 

enhance our understanding of microbial survival strategies and their role in ecosystem functioning 460 

while demonstrating the powerful utility of next-generation physiology approaches like SIsCA in 461 

testing hypotheses established in metagenomics-based endeavors. 462 
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Figures 705 

Figure 1 706 

 707 

Figure 1: Quantification of deuterium incorporation by single-cell Raman microspectroscopy. 708 

Boxplots depict the relative intensity of Raman C-D bands, determined by A(C-D) / [A(C-D) + A(C-H)], 709 

from single-cell Raman spectra. Spectra were obtained from groundwater microcosms with 30% D2O 710 

(shaded) or H2O (empty) at various time points. Boxes show median, and first and third quartile; 711 

whiskers denote 5
th

 and 95
th

 percentile. Outliers are depicted as dots. A minimum of 147 spectra 712 

were obtained at each time point. 713 
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Figure 2 715 

 716 

Figure 2: Clustering of selected MAGs based on carbon utilization. (a) Stable isotope cluster analysis 717 

based on PCA of 
13

C incorporation profiles over incubation time obtained from SIP-metaproteomics 718 

of 
13

C-microcosm samples. Each point represents a distinct organism represented by one MAG. MAG 719 

clusters are indicated by Latin numbers. Ellipses depict 95% confidence intervals. All MAGs shown 720 

facilitated the acquisition of at least two replicates of 13C incorporation patterns per time point. (b) 721 

Representative 13C incorporation profiles of MAGs marked with asterisks are given for each cluster. 722 

Heatmaps depict the extent of 13C incorporation in peptides of the corresponding MAG after 21 (T1), 723 

43 (T2), and 70 days (T3) of incubation (5% intervals, ranging from 0 to 100% 13C relative isotope 724 

abundance). 725 
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Figure 3 727 

 728 

Figure 3: Generation times of groundwater microorganisms. Values were determined for the first 3 729 

weeks of incubation, based on the relative abundance of 
12

C and 
13

C peptides. Shown are mean and 730 

standard deviation based on n ≥ 4 replicate determinations. Colored horizontal lines indicate average 731 

generation time for each cluster. bdl: generation time fell below the detection limit of 2 days. na: 732 

quantification of generation time was not possible. 733 
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Figure 4 735 

 736 

Figure 4: Metabolic functionality of selected MAGs. The sizes of the bubbles correspond to the total 737 

number of peptides detected for each MAG and each functional category identified at any time 738 

point. Metabolic functions are grouped into CO2 fixation (red), sulfur cycling (yellow), nitrogen cycling 739 

(green), aerobic respiration and ATP synthesis (blue), organic carbon utilization (black), and import 740 

functions (brown). The taxonomic categories “other” include peptides that were assigned to multiple 741 

MAGs affiliated with the same genus. Only MAGs considered in the stable isotope cluster analysis are 742 

shown. RuBisCO: ribulose-1,5-bisphosphate carboxylase/oxygenase, CODH/ACS: carbon monoxide 743 

dehydrogenase/acetyl-CoA synthase, TCA cycle: tricarboxylic acid cycle. 744 
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Figure 5 746 

 747 

Figure 5: Carbon flux between microbial clusters. Red arrow inlays illustrate the fraction of 13CO2-748 

derived carbon assimilated by each microbial cluster after 21, 43, and 70 days. Arrow width scales 749 

with the total amount of carbon assimilated based on the relative abundance of the respective 750 

microbial cluster in the metagenomics analysis. Fading grey arrows indicate uptake of unlabeled 751 

organic carbon from the groundwater. Checkboxes highlight the presence and activity of metabolic 752 

functions for CO2 fixation, utilization of organic carbon, and sulfur oxidation. 753 
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