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involve environmentally hazardous reagents, and hence are infeasible for mass production. Here, we 
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Abstract 
       

Sulfur has recently received considerable attention as the cathode material for lithium-sulfur 

batteries (LSBs) because of its higher theoretical capacity (~ 1675 mAh g-1) and energy 

density (~ 2600 Wh kg-1). Although much progress has been made to develop high-

performance LSBs, the reported physical or chemical routes to sulfur cathode materials are 

often multistep/complex and even with environmentally hazardous reagents, and hence 

infeasible for mass production. Here, we report a simple ball-milling technique to combine 

both the physical and chemical routes into one-step process for low-cost, scalable, and eco-

friendly production of graphene nanoplatelets (GnPs) edge-functionalized with sulfur (S-

GnPs) as highly-efficient LSB cathode materials of practical significance. LSBs based on the 

S-GnPs cathode produced by ball-milling 70 wt% sulfur and 30 wt% graphite delivered a 

high initial reversible capacity of 1265.3 mAh g-1 at 0.1 C in the voltage range of 1.5 - 3.0 V 

http://case.edu/cse/eche/daigroup/mailto%20liming.dai@case.edu
mailto:jbbaek@unist.ac.kr
mailto:shi_dou@uow.edu.au
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with an excellent rate capability, followed by a high reversible capacity of 966.1 mAh g-1 at 

2 C with a low capacity decay rate of 0.099% per cycle over 500 cycles - outperformed the 

current state-of-the-art cathode materials for LSBs. The observed excellent electrochemical 

performance is attributable to the 3D porous ‘sandwich-like’ structure of S-GnPs, coupled 

with the newly-discovered ‘spin-effect’ induced by S-doping, leading to enhanced ionic 

conductivity and lithium insertion/extraction during the discharge-charge process. 

   

     With the global energy consumption, along with air pollution and associated global warming, 

accelerating at an alarming rate, it has become more important than ever to develop electric 

vehicles (EVs) with low greenhouse gas emissions (GHG, such as CO2 and CH4). However, the 

large-scale application of EVs for transportation will not be realized if there is no cost-effective 

commercialization capability for the development of electrical energy storage systems of high 

specific energy, high power density, and long cycle life. So far, lithium ion batteries (LIBs) have 

been widely used as the state-of-the-art energy storage system in various portable and smart 

devices, including cell phones, MP3 devices, cameras, and laptops, due to their high energy density 

and long cycle life1, 2. Nevertheless, the specific capacities that can be obtained from current 

cathode materials for LIBs are insufficient to meet the ever increasing requirements for EV and 

other energy-demanding applications. In comparison with current state-of-the-art cathode 

materials, such as lithium metal oxides (140 ─ 200 mAh g-1 and 500 ─ 700 Wh kg-1) and lithium 

metal phosphates (140 ─ 190 mAh g-1 and 560 ─ 800 Wh kg-1), sulfur has recently received 

considerable attention as the cathode material for lithium-sulfur batteries (LSBs) because of its 

much higher theoretical capacity (~ 1675 mAh g-1) and energy density (~ 2600 Wh kg-1)3. This, 

together with its low cost, earth abundance, and eco-friendliness, makes sulfur as one of the most 

promising cathode materials for next generation LIBs. However, sulfur-based cathode materials 

are still suffered from multiple drawbacks, including 1) the low electrical conductivity of sulfur S8 

(5×10-30 S cm-1 at 25 oC); 2) the large volume (~ 76%) and morphology changes of the sulfur 

electrodes during the discharge-charge process; and 3) the easiness with which intermediate 

products (e.g., lithium polysulphides, Li2S4-8, Li2S2, Li2S) can be dissolved (Li2S4-8) in the 

electrolyte solution or deposited (Li2S2, Li2S) on the lithium anode surface to increase the 

resistance and shorten the cycle life4, 5. 

app:ds:intermediate
app:ds:products
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      To overcome the above-mentioned obstacles, carbon based materials with various hierarchical 

structures, including meso-/micro-porous carbons6-11, hollow carbon spheres12-14, carbon 

nanotubes/nanofibers15-19, graphene derivatives20-30, and flexible carbon membranes31, have been 

developed as conductive and structurally stable supports for compositing with sulfur. Meanwhile, 

coating the sulfur cathodes with appropriate polymers (e.g., conducting polymers) was 

demonstrated to not only effectively eliminate the dissolution of sulfur into the electrolyte solution 

but also reduce volume expansion of the sulfur electrode, leading to enhanced cycling stability32-

37. On the other hand, both physical and chemical routes have been devised for the preparation of 

LSB cathode materials from sulfur composites with carbon materials or polymers. Examples 

include LSB cathodes based on sulfur mixed with either meso-porous single-walled carbon 

nanotube (SWCNT)-graphene18 or three-dimensional (3D) ‘sandwich-like’ 

cetyltrimethylammonium bromide (CTAB)─graphene oxide (GO) hybrids (up to  800 mAh g-1 at 

6 C with a low decay rate of 0.039% per cycle over 1500 cycles)25, a sulfur-graphene composite 

with ~ 63.6 wt% sulfur uniformly coated on graphene through reduction of GO and concomitant 

sulfurization (440 mAh g-1 after 500 cycles at 0.75 C)22, and polyvinylpyrrolidone (PVP)-

encapsulated hollow S nanospheres (i.e., S@PVP nanospheres) from the reaction of Na2S2O3 and 

HCl in an aqueous of PVP (849 mAh g-1 at 2 C with a capacity decay of 0.046% per cycle over 

1000 cycles at 0.5 C)35. Although much progress has been made, the achieved capacities for sulfur-

composite cathodes are still far below than the theoretical value (i.e., ~ 1675 mAh g-1).  

Furthermore, most of the reported physical and chemical routes to sulfur composites are multistep 

and complex, and hence too expensive for mass production; they often involve environmentally 

hazardous reagents (e.g., strong acids for GO production by Hummers’ method)38.  

      We have recently developed a simple low-cost, but effective and eco-friendly, ball-milling 

method for large-scale production of various graphene nanoplatelets (GnPs) edge-functionalized 

with different moieties without the basal plane damage, and hence good electrical/thermal 

conductivity39-42. Through the one-step ball-milling of graphite in the presence of sulfur (Fig. S1, 

Supporting Information), we revealed in the present study that sulfur can not only act as a chemical 

reagent to produce GnPs edge-functionalized with sulfur (S-GnPs) but also homogenously 

adsorbed on and intercalated into the GnPs, leading to highly efficient LSB cathode materials. 

Thus, the ball-milling technique effectively combines both the physical and chemical routes into 

one-step process for low-cost, scalable, and eco-friendly production of highly-efficient LSB 



4 

 

cathode materials of practical significance. We found that LSBs based on the S-GnPs cathode 

produced by ball-milling 70 wt% sulfur and 30 wt% graphite (denoted as: 0.7S-0.3GnP) delivered 

a high initial reversible capacity of 1265.3 mAh g-1 at 0.1 C in the voltage range of 1.5 - 3.0 V with 

an excellent rate capability, followed by a high reversible capacity of 966.1 mAh g-1 at 2 C with a 

low capacity decay rate of 0.099% per cycle over 500 cycles. Both the initial and reversible 

capacities observed for the 0.7S-0.3GnP are among the highest values reported so far,11, 25, 28, 37 

attributable to its 3D porous ‘sandwich-like’ structure (vide infra), coupled with the newly-

discovered ‘spin-effect’ induced by S-doping, leading to enhanced ionic conductivity and lithium 

insertion/extraction during the discharge-charge process. 

 

Material preparation, morphology and structural analysis. Fig. 1a shows the schematic 

representation of the S-GnP preparation. Briefly, stoichiometric amounts of commercial graphite 

and sulfur were placed into a stainless steel jar containing stainless steel balls and sealed under 

argon for agitating at 500 rpm for 48 h in a planetary ball-mill machine (TCI, USA). The resultant 

xS-yGnP (x and y represent the weight percentage of S and graphite, respectively, in the starting 

material) powder was then heated at 700 C with a temperature ramp of 2 oC min-1 in a tube furnace 

for 2 h under an argon flow ( 1000 s.c.c.m.) to remove physically adsorbed sulfur from the final 

product (designated as: xS-yGnP-700C). Fig. 1b-e reproduces scanning electron microscope 

(SEM) images of the S-GnP samples with different sulfur loadings from 50 to 80 wt%, which show 

large particles of ~ 3-10 m in size with a similar morphology to that of sulfur (Fig. S1b) but 

different from the ‘plate-like’ graphite (Fig. S1a). More close examination under a higher 

magnification (Fig. 1f-i) revealed a morphological change from the “sulfur-like” bulk particles 

(Fig. 1f, 0.5S-0.5GnP), through randomly-distributed fragments with meso-/macro-pores (Fig. 1g, 

0.6S-0.4GnP) and  “sandwich-like” layered meso-/macro-pores (Fig. 1h, 0.7S-0.3GnP), to a 

uniform meso-/macro-porous structure (Fig. 1i, 0.8S-0.2GnP), indicating that the presence of 

sulfur in the ball-milled graphite facilitated the formation of 3D nanostructured carbon foams, 

presumably due to the strong S-S interaction between the edge-functionalized S-GnP particles. 

While the edge-functionalization without basal plane damage would ensure good 

electrical/thermal conductivities for the resultant 3D network, the meso-/macro-porous structures 

in both the ‘sandwich-like’ and “foam-like’ S-GnPs with a relatively large specific surface area 

(138.1 ~ 182.6 m2 g-1, Table S1) could allow for an efficient sulfur dispersion between the 
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mechanically-stable GnP networks to alleviate the volume expansion/shrinkage of sulfur even 

during repeated discharge-charge cycles. 

      Fig. 1j shows a typical TEM image for 0.7S-0.3GnP with the corresponding selected area 

electron diffraction (SAED) patterns at the edge (top inset) and basal plane (bottom inset), 

respectively. Compared to the bottom SAED pattern in the inset of Fig. 1j, the more diffusive rings 

shown in the top SAED pattern indicates a more amorphous carbon edge, as also revealed by the 

edge-on view of TEM image given in Fig. 1j. While the edge-functionalization of GnPs by ball 

milling in general has been verified in our previous studies39-42, we further carried out the energy 

dispersive spectroscopic (EDS) mapping for 0.7S-0.3GnP. As shown in Fig. 1k-m, sulfur, carbon 

and oxygen all uniformly distributed throughout the sample. The observed homogenous 

distribution of sulfur for the S-edge-functionalized GnP could be taken as an evidence for the 

homogenous adsorption/intercalation of sulfur on/into the GnPs, as mentioned above, though it 

can also be rationalized by considering the fact that the EDS sample consists of randomly 

overlapped multilayer GnPs. The presence of oxygen is due to the post-ball-milling conversion of 

the reactive edge-sulfur and carbon species into oxygen-containing functional groups, such as -

OH, -SO2, -COOH, and -SO3H through spontaneous reactions with oxygen/moisture in air upon 

opening the ball-milling reactor42.   

      To further investigate chemical structures of the S-GnP samples, we performed X-ray 

photoelectron spectroscopic (XPS) measurements. As expected, XPS survey spectra for all of the 

S-GnPs showed O 1s, C 1s, S 2s, and S 2p peaks  at ~ 534 eV, ~ 285 eV, ~ 229 eV, and ~ 165 eV, 

respectively (Fig. 2a)42. The high-resolution XPS O 1s, C 1s and S 2p spectra of the 0.7S-0.3GnP 

sample were shown in Fig. S2a-c, respectively. As can be seen in Fig. S2a, the C1s peak can be 

deconvoluted into three peaks attributable to C-C bond at 285.1 eV, C-OH and C-S at 286.1 eV, 

and O=C-OH at 289.6 eV while the corresponding O1s spectrum shows O=C-OH and C-OH peaks 

at 532.2 and 533.9 eV, respectively (Fig. S2b). The S2p peak was well fitted to C-SO3 at 168.3 eV 

and C-S at 165.2 /164.3 eV42. 

       Thermogravimetric analyses (TGA) were performed under argon atmosphere to estimate the 

sulfur content in the S-GnP samples. Fig. 2b shows significant weight losses over 200 ─ 500 C 

for all of the S-GnP samples, due, most probably, to the evaporation of physically adsorbed sulfur. 

At 700 C, the non-stoichiometric weight losses for the S-GnP samples were 44.4% (0.5S-

0.5GnP), 55.6% (0.6S-0.4GnP), 65.5% (0.7S-0.3GnP), and 75.8% (0.8S-0.2GnP), indicating that 



6 

 

about 4 wt% (Table S2) sulfur has been chemically doped in the carbon networks. To confirm the 

chemical doping with sulfur, we heated up the 0.7S-0.3GnP at 700 oC under argon for 2 hours, and 

then purified by washing with 1M HCl (the final product was designed as: 0.7S-0.3GnP-700C -

1M HCl) to remove physically adsorbed S and Fe residues from the ball-milling reactor and steel 

ball, if any. As shown in Fig. S3, the XRD pattern of 0.7S-0.3GnP before the heating/HCl washing 

revealed characteristic peaks for the crystalline sulfur, indicating a complete exfoliation for the 

GnP (cf. Fig. 2e). Upon heating up to 700 C with and without the HCl washing, all the sulfur 

peaks disappeared whereas the typical graphitic carbon peak (cf. Fig. 2e) appeared (Fig. S3), 

indicating that the exfoliated GnP partially restacked during the heat treatment due to the removal 

of the absorbed sulfur. However, the presence of the XPS peaks of sulfur in Fig. 2c and S2f and 

the corresponding elemental EDS mapping (Fig. S4b) for 0.7S-0.3GnP-700C -1M HCl clearly 

indicate that a considerable amount (3.8 at%, Table S2) of S-dopants have been strongly bonded 

into the carbon network through C-S (164.5 eV and 165.9 eV) and C-SO3 (168.3 eV) bonds, apart 

from those physically adsorbed sulfur.  

       Fig. 2d shows typical Raman spectra for the pristine graphite, sulfur, and S-GnPs. A 

comparison of spectra for the S-GnPs to that of sulfur in Fig. 2d indicates the sulfur origin for 

those peaks in the range of 50 - 525 cm-1. In addition, the S-GnP samples exhibited two peaks at 

~ 1330 and ~ 1600 cm-1 characteristic of the D and G bands, respectively39-42.  For all the S-GnPs, 

the intensity of the D band is higher than that of the G band due to the presence of defects induced 

by S-doping. Fig. 2d further shows that the relative peak intensities of the sulfur peaks to the GnP 

peaks increased with increasing mass ratio of S/GnP. As shown in Fig. 2d and Fig. S5, the G band 

for all of the S-GnP samples can be fitted into two sub-peaks (A and B in Fig. S5), indicating the 

successful doping of S heteroatoms into the carbon networks, as is the case for N-doped graphene 

sheets.43   

      Fig. 2e shows X-ray diffraction (XRD) patterns of the pristine graphite, sulfur, and S-GnPs. 

As expected, the pristine graphite exhibited a prominent (002) peak at 26.5°, corresponding to an 

interlayer d-spacing of 0.34 nm, as well as two characterized peaks ((101) peak at 44.8o and (004) 

peak at 54.8o)44. The salient feature to note is that the ball-milling caused a high degree of 

exfoliation, as reflected by the dramatic reduction in intensity for graphitic peaks, along with a 

concomitant down-shift of the (002) band with increasing sulfur content, in a good consistence 

with the Raman results (Fig. 2d). The almost fully exfoliated S-GnPs with a large surface area, 
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good electrical conductivity, and meso-/micro-pores are ideal LSB cathode materials, as described 

below.      

 

Electrochemical performance. Fig. 3a shows typical discharge-charge profiles for the S-GnP 

cathodes at 0.1C over 1.5 - 3.0 V. During the discharge process, two plateaus at ~ 2.35 V and ~ 

2.10 V were seen for all of the S-GnP samples, corresponding to the intercalation of lithium into 

S8 to form a long chain (Li2Sx, 2 ≤ x ≤ 4) and short chain (Li2Sx, 1 ≤ x ≤ 2) of lithium polysulfides, 

respectively. The discharge-charge profiles for 0.7S-0.3GnP at various C-rates are given in Fig. 

3b, which shows increasingly shortened discharge-charge plateaus with increasing C-rate due to 

electrode polarization. Similar electrochemical behavior has been previously reported for sulfur 

cathodes in LIBs7, 8. To test the rate and cycling performance, we discharged and charged LSBs 

based on the S-GnP cathodes for 90 cycles in the voltage range of 1.5 - 3.0 V at C-rates from 0.1 

C to 10 C (Fig. 3c). As can be seen, the 0.6S-0.4GnP cathode showed the highest initial discharge 

capacity of 1356.3 mAh g-1 at 0.1 C, followed by the 0.5S-0.5GnP (1311.7 mAh g−1), and then the 

0.7S-0.3GnP (1265.3 mAh g−1) and 0.8S-0.2GnP (889.5 mAh g−1), and all are among the highest 

values reported so far11, 25, 28, 37. By increasing the C rate from 0.2 to 10 C, however, the 0.7S-

0.3GnP cathode showed the highest reversible capacity and rate capability (inset of Fig. 3c) among 

all the S-GnPs studied in this work. The average discharge capacities of the 0.7S-0.3GnP cathode 

at 0.2 C, 0.5 C, 1 C, 2 C, 5 C and 10 C were 1043.1, 885.6, 756.8, 610.4, 404.8, and 186.5 mAh g-

1, respectively.  When the C-rate was reduced back to 0.1 C after 80 cycles, the 0.7S-0.3GnP 

cathode can still deliver a higher reversible discharge capacity of 1063.2 mAh g-1 than those of 

0.5S-0.5GnP (762.4 mAh g-1), 0.6S-0.4GnP (817.8 mAh g-1), and 0.8S-0.2GnP (598.1 mAh g-1) 

as well as many reported LSB cathodes LIBs11, 25, 28, 37.   

      The excellent electrochemical stability of 0.7S-0.3GnP was also supported by cyclic 

voltammetry (CV) curves in Fig. S6a, which shows highly overlapping CV curves over 4 cycles 

at 0.1 mV s-1 with well-defined and strong redox peaks even after 90 cycles (Fig. S6a). To 

investigate the kinetics of the S-GnP cathodes, we compared the electrochemical impedance 

spectroscopic (EIS) results for the cells cycled over 90 cycles. As shown in Fig. S6b, the 

impedance curves for all of the S-GnP samples exhibited two apparent semicircles in the high and 

medium frequency regions, attributable to the lithium ion diffusion through the electrolyte (Re) 

(intercept of the 1st semicircle), the solid electrolyte interface (SEI) film resistance (Rs) (diameter 
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of the 1st semicircle), and the charge transfer resistance (Rct) (diameter of the 2nd semicircle). The ∼ 45 inclined line in the low-frequency range corresponds to a Warburg impedance45. The 

equivalent circuit model (inset of Fig. S6b) was constructed to analyze the impedance spectra. The 

fitting results from this model are listed in Table S3. The lowest Rct (79.9 Ω) and Rs (34.5 Ω) seen 

in Table S3 indicate the highest ionic conductivity for 0.7S-0.3GnP among all of the S-GnP 

samples investigated in the present study. 

       The S-GnP cathodes were further subjected to testing the relatively long cycling performance 

at 2 C in the voltage range of 1.5 - 3.0 V. Fig. 3d shows initial discharge capacities of 966.1 mAh 

g-1 (0.7S-0.3GnP), 919.9 mAh g-1 (0.6S-0.4GnP), 722.7 mAh g-1 (0.5S-0.5GnP), and 483.2 mAh 

g-1 (0.8S-0.2GnP). After 500 cycles, these S-GnP cells can maintain discharge capacities of 485.6 

mAh g-1 (0.7S-0.3GnP), 352.9 mAh g-1 (0.5S-0.5GnP), 344.8 mAh g-1 (0.6S-0.4GnP), and 200.2 

mAh g-1 (0.8S-0.2GnP) with the initial capacity retentions of 50.3%, 48.8%, 37.5%, and 41.4%, 

corresponding to the capacity decay rate of  0.099%, 0.102%, 0.125%, and 0.117% per cycle, 

respectively. Despite their differences in the capacity and capacity retention, all of the S-GnP 

electrodes showed high Coulombic efficiencies around 100% due to their excellent structural 

stability during each of the discharge-charge cycles. Among all of the S-GnP cathodes, the 0.7S-

0.3GnP showed the highest capacity and capacity retention at 2 C over 500 cycles due, most 

probably, to its unique 3D porous ‘sandwich-like’ structure (cf. Fig. 1h) with a large surface area, 

good electronic/ionic conductivity, and high sulfur uptake. In addition, we found that the magnetic 

effect induced by S-doping41, 42 also makes its contribution to the excellent cathodic performance 

of the S-GnP samples 

Spin effect of S-GnP. We measured magnetic properties for the 0.7S-0.3GnP and found 

ferromagnetic behavior with a hysteresis loop under 0.4 T magnetic field at 300 K  (Fig. 4b) and 

5 K (Fig. 4c), though 0.7S-0.3GnP exhibited apparent diamagnetic behavior with a magnetic 

susceptibility (χ) of -1.88×10-6  above 0.4 T (Fig. 4a). To rule out possible effects of any Fe 

impurities from the ball-milling reactor and steel balls during ball-milling, we further measured 

the magnetic properties of 0.7S-0.3GnP-700oC-1M HCl for comparison. Unlike 0.7S-0.3GnP, the 

0.7S-0.3GnP-700C-1M HCl showed diamagnetism with a χ of -1.06×10-5 under 0.4 T at both 300 

K and 150 K (Fig. 4d-e), indicating free from Fe2+. When the temperature was decreased to 5 K, 

however, the 0.7S-0.3GnP-700C-1M HCl showed ferromagnetic behavior with a saturation 

http://dict.youdao.com/w/magnetic/
http://dict.youdao.com/search?q=susceptibility&keyfrom=E2Ctranslation
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magnetic moment reached 0.02 emu g-1 (Fig. 4f) due to the reduction in thermal fluctuation46, 47, 

further supporting the intrinsic ferromagnetic properties in 0.7S-0.3GnP. This first experimentally 

confirmed intrinsic ferromagnetic properties in GnPs produced by ball-milling can be attributed to 

localized unpaired spins induced by the edge-doped sulfur heteroatoms. The presence of such 

unpaired electrons could increase the ionic conductivity in the 0.7S-0.3GnP to facilitate the lithium 

insertion/extraction during the discharge-charge process, and hence improve the S-GnP 

performance in LSBs.  

 To further test the effects of the S-doping-induced magnetic property and ‘sandwich-like’ 

meso-/macro-porous structure on the electrochemical performance of the 0.7S-0.3GnP cathode in 

LSBs, we prepared a reference sample by physically mixing 70 wt% sulfur with 30 wt% GnP 

(designated as: 70%S-30%GnP), in which the GnP was obtained through the same ball-milling 

procedure as for the S-GnP with only graphite as the starting material. We compared the 

electrochemical performance of 0.7S-0.3GnP with 70%S-30%GnP and GnP, respectively, after 

detecting no ferromagnetic behavior or ‘sandwich-like’ meso-porous structure for both 70%S-

30%GnP and GnP. As shown in Fig. S7, the 0.7S-0.3GnP showed significantly higher capacity 

and rate capability than both the 70%S-30%GnP and GnP, indicating, once again, the important 

contributions of the ‘spin effect’ and ‘sandwich-like’ meso-porous structure induced by the edge-

doping with S to improve electrochemical performance of the 0.7S-0.3GnP sample. 

        In conclusion, we have developed a simple one-step ball-milling method for low-cost and 

eco-friendly mass production of S-GnPs as efficient cathode materials (especially, 0.7S-0.3GnP) 

in lithium-sulfur batteries (LSBs). The 0.7S-0.3GnP cathode was demonstrated to deliver an initial 

reversible charge capacity of 1265.3 mAh g-1 at 0.1 C in the voltage range of 1.5 - 3.0 V with a 

high reversible capacity of 966.1 mAh g-1 at 2 C, a low capacity decay rate of 0.099% per cycle 

over 500 cycles, an excellent rate capability; attributable to the ‘spin effect’ and ‘sandwich-like’ 

mesoporous structure induced by the edge-doping with S. These results clearly indicate that the 

newly-developed S-GnP composites outperformed the current state-of-the-art cathode materials 

for LSBs and have a great potential for next generation high energy LIBs. Furthermore, the S-

edge-doping-induced ‘spin effect’ and ‘sandwich-like’ mesoporous structure formation can be 

applied for the development of high-performance electrode materials for applications in other 

energy-related devices (e.g., fuel cells, metal-air batteries, dye-sensitized solar cells) and chemical-

/bio-sensors of practical significance. 
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Methods 

Synthesis of S-graphene nanoplatelet (GnP) composites. To start with, stoichiometric amounts 

of commercial graphite and sulfur were placed into a stainless steel jar containing stainless steel 

balls (500 g, diameter 5 mm). Then, the jar was sealed and charged with argon after several 

charging–discharging cycles. Thereafter, the jar was fixed in a planetary ball-mill machine (TCI, 

USA) and agitated at 500 rpm for 48 h. Finally, the resultant powders were obtained and denoted 

as xS-yGnP (here, x and y represent the weight percentage of S and graphite, respectively, in the 

starting material; for example, 0.7S-0.3GnP stands for ball-milling with 70 wt% sulfur and 30 wt% 

graphite in the starting materials). The xS-yGnP samples were further heated at 700 C with a 

temperature ramp of 2 oC min-1 in a tube furnace for 2 h under an argon flow (1000 s.c.c.m.) to 

remove physically adsorbed sulfur to produce the sample denoted as xS-yGnP-700C. To get rid 

of any metallic impurities possibly from the ball-milling reactor and steel balls, the xS-yGnP-

700C samples were further purified by washing with 1M HCl to obtain xS-yGnP-700oC-1M HCl 

samples. Meanwhile, a GnP sample was prepared by the same ball-milling procedure as those for 

the S-GnP samples, but without sulfur being introduced into the starting material. 

 
Characterization. The phase identification of S-GnP compounds was carried out by powder X-

ray diffraction (XRD, GBC MMA 017). The morphology of S-GnP was characterized by scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM), using JSM-7500FA and 

JEOL JEM-2011 instruments, respectively. The elemental mapping of 0.7S-0.3GnP and 0.7S-

0.3GnP-700oC-1M HCl were carried out by energy dispersive X- ray spectroscopy (EDS) using 

the JSM-7500FA. The sulfur content of the S-GnP composites was determined by 

thermogravimetric analysis (TGA, TA Instruments 2000) under argon over a temperature range of 

25 – 900 C with a temperature ramp of 10 °C min-1. The specific surface area was measured using 

15 point N2 absorption Brunauer-Emmett-Teller (BET) method using Quanta Chrome Nova 1000. 

X-ray photoelectron spectroscopy (XPS) measurements were carried out on a VG Scientific 

ESCALAB 2201XL instrument using aluminium Kα X-ray radiation. Raman spectra were 

collected using a Raman spectrometer (Lab RAM HR, Horiba Jobin Yvon SAS).  

 
Electrochemical measurements. The electrochemical characterization of the S-GnP composites 

was carried out using coin cells. The electrodes were fabricated by blending the active material S-
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GnP or 30%S-70%GnP (mixture of 30 wt% sulfur and 70 wt% GnP) powders with acetylene black 

and polyvinylidene fluoride (PVDF) binder in a weight ratio of 8 : 1 : 1. N-methyl-2-pyrrolidone 

(NMP) was used as the blending solvent for the mixture. The slurries were prepared using a Kurabo 

MAZERUSTAR planetary mixer, model KK-250S, for 15 min. The obtained slurry was coated on 

an Al foil, dried at 50 C for 48 h, and then pressed under moderate pressure. 2032 coin-type cells 

were assembled in an Ar-filled glove box by stacking the as-prepared electrode as the working 

electrode, with Li foil as the counter electrode and reference electrode, a porous polypropylene 

film as separator, and 1 M lithium bis(trifluoromethanesulfonyl)imide in 1,3-dioxolane 

(DOL)/dimethoxyethane (DME) (1 : 1, v/v), including 0.1M LiNO3, as the electrolyte. The cells 

were galvanostatically discharged and charged using an automatic battery testing system (Land®, 

China) at various current densities in a voltage range of 1.5 - 3.0 V at room temperature. 

Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements were 

performed on a Biologic MVP 3 electrochemical workstation. Electrochemical impedance 

spectroscopy (EIS) measurements were performed over the frequency range of 10 mHz to 1 M Hz. 

Cyclic voltammogram measurements were performed at a scan rate of 0.1 mV s-1 in a voltage 

range of 1.5 - 3.0 V. 
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Figures 

 

Figure 1. Preparation of S-GnPs by ball milling and microscopic characterization. (a) 

Schematic representation of the S-GnP preparation; and SEM images at different magnifications 

for samples with different starting compositions: (b, f) 0.5S-0.5GnP; (c, g) 0.6S-0.4GnP; (d, h) 

0.7S-0.3GnP; and (e, i) 0.8S-0.2GnP. (j) TEM image of 0.7S-0.3GnP, with the insets showing the 

corresponding SAED patterns from the edge (top) and basal plane (bottom), respectively; SEM 

elemental mappings for 0.7S-0.3GnP:  (k) sulfur, (l) carbon and (m) oxygen by energy dispersive 

X-ray spectroscopy (EDS). 
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Figure 2. Spectroscopic characterization of S-GnPs. (a) X-ray photoelectron spectroscopy 

(XPS) for the S-GnPs; (b) thermogravimetric analysis (TGA) for the S-GnPs, graphite and sulfur; 

(c) XPS for the 0.7S-0.3GnP and 0.7S-0.3GnP-700C-1M HCl (see text); (d) Raman spectroscopy 

for the S-GnPs, graphite, and sulfur; and (e) X-ray diffraction (XRD) patterns for the S-GnPs, 

graphite, and sulfur. 
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Figure 3. Evaluation of S-GnP cathodes for LSBs. (a) Discharge-charge profiles of S-GnPs at 

0.1 C; (b) discharge-charge profiles for 0.7S-0.3GnP at various C-rates; (c) rate capabilities of S-

GnPs, with the inset showing the percentage capacity retention as a function of the C-rate; and (d) 

cycling performance of S-GnPs at 2 C (3350 mAh g-1) in the voltage range of 1.5 - 3.0 V. 
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Figure 4. Ferromagnetic property of GnPs and its effects on their cathodic performance. 

Temperature-dependent magnetization curves for (a) 0.7S-0.3GnP at 5 K and 300 K, 

magnifications of (a) at 300 K(b) and 5 K(c); and (d) 0.7S-0.3GnP-700oC-1M HCl at 5 K, 150 K, 

and 300 K, magnifications of (d) at 150 K(e) and 5 K(f). 

 




