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 We used a general circulation model of Earth’s climate to conduct geoengineering 

experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting 

deposition of sulfate.  When sulfur dioxide is injected into the tropical or Arctic stratosphere, the 

main additional surface deposition of sulfate occurs in midlatitude bands, because of strong 

cross-tropopause flux in the jet stream regions.  We used critical load studies to determine the 

effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit 

of hydration of all sulfate aerosols into sulfuric acid.  For annual injection of 5 Tg of SO2 into the 

tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, the maximum point value of 

sulfate deposition of approximately 1.5 mEq m-2 a-1, and the largest additional deposition that 

would result from geoengineering of approximately 0.05 mEq m-2 a-1, are not enough to 

negatively impact most ecosystems. 
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Faced with the problem of climate change due to increasing global temperatures, some 

scientists and policy makers have suggested the deliberate modification of Earth’s climate, an 

activity that has been termed geoengineering.  There have been many different suggestions for 

geoengineering, both recently [e.g., Angel, 2006; Bower et al., 2006] as well as historically 

[Fleming, 2007].  However, one method that has received a great deal of recent attention is the 

suggestion of Budyko [1974, 1977], Dickinson [1996], and Crutzen [2006] to inject gaseous 

aerosol precursors into the stratosphere.  The creation of highly reflective sulfate aerosols in the 

lower stratosphere would result in some warming of the stratosphere, but the aerosol cloud 

would also tend to increase the planetary albedo, resulting in cooling of the troposphere and the 

surface [Rasch et al., 2008a].  Rasch et al. [2008b] and Robock et al. [2008] calculated climate 

responses to this aerosol cloud using general circulation models. 

Geoengineering will, however, invariably have certain undesirable consequences.  Tilmes 

et al. [2008] and Robock [2008a] discussed the negative impact these sulfate aerosols will have 

on polar stratospheric ozone.  Robock [2008b] listed 20 potential side effects that could result 

from this method.  Our purpose here is to evaluate one of Robock’s concerns, that of quantifying 

the amount of sulfur deposition that would result from two potential scenarios of geoengineering 

with sulfate aerosols.  This is of concern because the sulfate aerosol can hydrate to form sulfuric 

acid, meaning geoengineering with sulfate aerosols can potentially result in an increase in acid 

deposition. 

Acid rain has been studied extensively in terms of its effects on ecosystems.  Sulfur is a 

necessary nutrient for some plants, and the need to add sulfur to crops has long been recognized 

by farmers [Hart and Peterson, 1911].  However, an increase in sulfur deposition will not 
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universally benefit ecosystems, especially ones that are poorly buffered against an increase in 

acidity.  For example, excess acid can decrease or even eliminate freshwater fish populations 

[Leivestad and Muniz, 1976], cause foliar leaching [Wood and Bormann, 1975], affect plant-

parasite interaction [Shriner, 1977], significantly reduce lake bacteria populations [Rao and 

Dutka, 1983], and, through forest dieback and reduced food supply, can affect forest bird 

communities [Graveland, 1998].  These, among other potential problems, could present 

significant ecological concerns, and serve as our motivation for the study of sulfate deposition 

due to geoengineering. 

Whether sulfate deposition (both dry and wet) is harmful depends on both the amount of 

sulfur introduced into the system, the amount of sulfate that is hydrated to form sulfuric acid, and 

the sensitivity of the ecosystem.  We will base our calculations on an upper limit, i.e., that all the 

sulfur deposition is sulfuric acid.  This is likely an overestimation, since wet deposition in the 

model accounts for approximately 65% of total sulfate deposition, and dry deposition accounts 

for the remainder.  Moreover, not all sulfate deposition will result in an increase in acid rain.  

Here we calculate how much additional sulfate would reach the surface from proposed 

geoengineering and compare this to critical load thresholds for different regions. 

As of now, most of the discussion of geoengineering with sulfate aerosols has focused on 

using SO2 as the preferred sulfate aerosol precursor.  Volcanic eruptions can inject a large pulse 

of SO2 into the lower stratosphere, and previous geoengineering studies have considered 

volcanic eruptions as an analog of geoengineering.  However, other precursors, such as hydrogen 

sulfide, carbonyl sulfide, and ammonium sulfate, could also potentially be used.  Regardless, the 

important factor in determining sulfate deposition is the amount of sulfur injected into the 
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stratosphere.  As such, the results presented in this paper need only be scaled appropriately 

according to the aerosol precursor’s molecular weight. 

2.  Experiment 

We studied geoengineering with stratospheric sulfate aerosols using ModelE, a general 

circulation model developed by the National Aeronautics and Space Administration Goddard 

Institute for Space Studies [Schmidt et al., 2006].  We used the stratospheric version with 4° 

latitude by 5° longitude horizontal resolution and 23 vertical levels up to 80 km.  It is fully 

coupled to a 4° latitude by 5° longitude dynamic ocean with 13 vertical levels [Russell et al., 

1995]. 

The aerosol module [Koch et al., 2006] accounts for SO2 conversion to sulfate aerosols, 

as well as transport and removal of the aerosols.  The chemical model calculates the sulfur cycle 

in the stratosphere, where the conversion rate of SO2 to sulfate is based on the respective 

concentrations of SO2 and the hydroxyl radical, the latter of which is prescribed [Oman et al., 

2006].  The dry aerosol effective radius is specified to be 0.25 µm, and the model hydrates the 

aerosols based on ambient humidity values, resulting in a distribution of hydrated aerosols with 

an effective radius of approximately 0.30-0.35 µm.  Radiative forcing from the aerosols is fully 

interactive with the atmospheric circulation. 

Koch et al. [2006] thoroughly analyzed the performance of ModelE concerning sulfur 

deposition from tropospheric sources.  The model has some biases in that it produces 50-67% of 

the observed sulfur deposition in Europe and the East coast of the United States.  In the Western 

United States, the model overpredicts the actual amount by 50-100%, but that region has little 

sulfur deposition anyway.  There are also some other local differences between model output and 

observed values, but none of these biases is in a location that will affect our conclusions. 
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We proceeded with further analysis of climate simulations performed by Robock et al. 

[2008].  We began with a three-member control ensemble of 20-year runs over which time global 

greenhouse gas concentrations increased according to the Intergovernmental Panel on Climate 

Change’s A1B scenario [IPCC, 2007].  The greenhouse gas concentrations at the beginning of 

the simulation were prescribed to be 2007 levels, and they increased to the A1B scenario’s 

estimation of 2026 levels by the end of the simulation. 
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In addition, we used two ensembles, each with three members of 20-year climate 

simulations, covering the same time period.  One involved daily injections of SO2 into the 

tropical lower stratosphere (longitude 120°E, latitude 0°, 16-23 km altitude) for a total of 5 Tg 

per year in addition to the forcing prescribed by the A1B scenario, and one involved daily 

injections of SO2 into the Arctic lower stratosphere (longitude 120°E, latitude 68°N, 10-15 km 

altitude) for a total of 3 Tg per year in addition to the forcing prescribed by the A1B scenario.  

The value of 5 Tg per year was chosen to correspond to a Mount Pinatubo-sized eruption every 4 

years, which was a value determined by Robock et al. as being sufficient to cause substantial 

enough cooling to offset the climatic effects of an increase in greenhouse gas concentrations.  

The smaller value of 3 Tg per year was also chosen by Robock et al., since the goal of the 

original experiment was to limit the climate response only in the Arctic.  The longitude value 

chosen is arbitrary and irrelevant, since the prevailing general circulation will transport the 

gas/aerosol cloud around the globe within a matter of weeks. 

The results of Robock et al. [2008] showed a globally averaged warming of 

approximately 0.5°C by 2026 over the current climate under the A1B scenario.  Under the 

3 Tg a-1 Arctic injection case, the globally averaged temperature immediately reduced to 2000 

levels and only warmed 0.3°C over the current climate by 2026.  Under the 5 Tg a-1 tropical 
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injection case, the globally averaged temperature reduced to 1980 levels and held relatively 

constant at that level through 2026, resulting in cooling by 0.3°C. 

3.  Results 

Figure 1 shows the annual percent increase in total sulfate deposition, averaged over the 

second decade of geoengineering.  In the tropical injection case, there is an increase in sulfate 

deposition over much of the globe, with the exception of the tropics (due to poleward 

stratospheric transport before mixing into the troposphere).  As expected, in the Arctic injection, 

the increase in deposition is mostly confined to the Northern Hemisphere.  The majority of the 

increase is in the form of wet deposition (not shown).  In the polluted midlatitudes of the 

Northern Hemisphere, the increases of sulfate deposition are not noticeable, but in pristine areas, 

such as Antarctica, they are readily apparent.  Although all shaded values in the top panel are 

statistically significant at a 95% confidence level, for the Arctic injection case, many of the 

shaded values in the Southern Hemisphere are most likely due to weather noise. 

Since pristine areas, such as Antarctica, Greenland, and the Southern Pacific Ocean, 

received very little sulfate deposition in the baseline (A1B) case, additional deposition of tens of 

percent may not be consequential, so we must evaluate the actual amount of deposition.  Figure 2 

shows that the increases in actual deposition are strongest in midlatitude bands, some as high as 

10-3 kg m-2 a-1, due to strong cross-tropopause flux in the jet stream region.  Downwind of large 

urban and industrial areas, we find the largest areas of absolute deposition, since these urban 

areas are a significant source of sulfate, but they are also the areas of the largest increase in 

deposition due to geoengineering because they are the jet exit regions, meaning the flux from 

stratosphere to troposphere is comparatively large in these areas.  
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For the purpose of establishing a reference value for comparison, the baseline surface 

sulfur emission levels are 135.8 Tg a-1 globally [Koch et al., 2006].  Since the additional 

stratospheric injections are 1-2 orders of magnitude smaller, we might not expect them to be 

important in any case on a global basis.  Dividing the surface emissions by the surface area of 

Earth, we get an average of 5.41 x 10-5 kg m-2 a-1.  Also according to Koch et al., this sulfate has 

an average atmospheric lifetime of 6.2 days, meaning levels would be expected to be much 

higher than this reference value downwind of large urban and industrial areas and much lower 

(or practically negligible) in unpopulated areas. 

The notable absence of deposition over some of the continental areas (for example, the 

Sahara and Western Australia) is because most of the additional sulfate deposition is in the form 

of wet deposition, and these areas receive little rain.  Other seeming gaps in deposition over 

continents are merely due to the values being small enough that they are obscured by the choice 

in contouring levels.  Model bias may also play a certain role in either enhancing or obscuring 

these gaps, but we do not have sufficient information to make a detailed analysis effects due to 

this. 

These figures only show annually averaged results.  There are small regions of larger 

deposition for certain seasons, but the annual average is sufficient for this analysis.  However, as 

greenhouse gas concentrations increase in the future, the strength of the Brewer-Dobson 

circulation will also increase, resulting in a shorter lifetime for stratospheric aerosols and the 

need for more sulfur to produce the same climate response [Rasch et al., 2008b], which would 

cause an increase in sulfate deposition.  We have not evaluated the effects that an increase in the 

strength of stratospheric circulation would have with regard to our study. 
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The significance of the sulfate deposition increases depends on their potential effects on 

the ecosystems over which the deposition occurs.  The subsequent section is devoted to the 

potential effects on the ocean, so in this section, we concentrate on terrestrial ecosystems.  

Although the graphs only show sulfate deposition, for the purposes of establishing an upper limit 

to potential negative effects, we will assume that all sulfate due to geoengineering reacts to form 

sulfuric acid. 

Kuylenstierna et al. [2001] used a modeling approach to perform a critical load study on 

a global scale in which they rank areas by sensitivity to increased acid deposition, a value they 

determine by evaluating the buffering capacity of each region’s soil.  Our units of sulfate 

deposition, kg m-2 a-1, must be converted to the units found in Kuylenstierna et al. of 

mEq m-2 a-1.  We use the definitions 

mEq =
mass (grams)

mEq mass (grams)
   and   mEq mass (grams) =

atomic weight (g/mol)

valence x  1000
 206 

207 

208 

The  ion has atomic weight 96 g/mole and a valence of 2, giving us mEq mass (grams) of 

0.048.  So 

SO4

2-

.
am

mEq
48

g 1

0.048x  mEq 1

kg 1

g 1000

am

kg 1
22 ⋅

=⋅⋅
⋅

 209 

210 

211 

212 

213 

214 

215 

Figure 3 refers to the 5 Tg a-1 injection scenario.  It shows total annual sulfate deposition 

(taken as an ensemble average over the second decade of geoengineering) and the annual sulfate 

deposition just due to geoengineering (injection minus baseline), both in terms of these new 

units.  The 5 Tg a-1 injection scenario was chosen because it has larger sulfate deposition than the 

Arctic 3 Tg a-1 scenario, although the results presented in Figure 3 are similar for the Arctic 

3 Tg a-1 injection case.  The maximum point value for total deposition is approximately 
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1.5 mEq m-2 a-1 and the largest point value which is solely the result of geoengineering (injection 

minus baseline) is approximately 0.05 mEq m-2 a-1.  According to the critical loading studies of 

Kuylenstierna et al., the most sensitive areas of the globe can receive 25-50 mEq m-2 a-1 of 

sulfate deposition before potentially being negatively impacted. 
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In another study, Skeffington [2006] takes a very conservative approach to critical 

loading.  He uses models for many of his results, but he also uses experimental and field 

evidence when available.  In addition, his purpose is to estimate uncertainty in measurements of 

critical loading, so the low ends of his ranges for which loads are considered critical can be seen 

as conservative estimates. 

Skeffington’s results are given in terms of kEq ha-1 a-1, so we must again perform a 

conversion: 

1 kEq

ha ⋅ a
⋅
106  mEq

1 kEq
⋅

1 ha

104  m2
=100

mEq

m2⋅ a
. 227 

228 

229 
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231 
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233 

234 
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236 

237 

These results, with our conversion factor taken into account, show that our values for acid 

deposition over a year, with the possible exception of poorly buffered terrestrial waterways, are 

well below critical loading levels (Table 1).  In addition, the area in which the total sulfate 

deposition exceeds 1 mEq m-2 a-1 is, according to our model results, very small.  However, due to 

our grid size, which is especially large when compared to the size of most terrestrial waterways, 

there may be localized areas of enhanced deposition from individual precipitation events that we 

cannot assess. 

5.  Ocean Acidification 

 One well-known consequence of an increase in carbon dioxide concentrations in the 

atmosphere is an increase in the acidity of the oceans, as carbon dioxide dissolves in the oceans, 
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238 

239 

forming carbonic acid.  We wish to compare this resultant acidification with our results for 

sulfate deposition to further evaluate significance of our results.  

Raven et al. [2005] estimated that over 500 Gt (5×1017 g) of carbon dioxide has 

dissolved in the oceans over the past 200 years.  Knowing that carbonic acid is a weak acid and 

that the atomic weight of carbon dioxide is 44 g/mol, we can put this value in terms of mEq by 

using our previous definitions.  Thus we conclude that  mEq of carbon dioxide has 

dissolved in the ocean.  Since the ocean covers approximately 70% of the earth’s surface, we can 

divide by the surface area covered by the ocean, as well as dividing by the 200 years over which 

this process occurred, to get 

240 
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19101×
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×

ERπ
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This deposition is two orders of magnitude larger than our highest potential value of sulfuric acid 

deposition, again assuming all sulfate due to geoengineering is reacted to form sulfuric acid, 

leading us to conclude that the increase in acid deposition resulting from geoengineering with 

stratospheric sulfate aerosols is not enough to negatively impact the oceans. 

6.  Conclusions 

Analysis of our results and comparison to the results of Kuylenstierna et al. [2001] and 

Skeffington [2006] lead to the conclusion that the additional sulfate deposition that would result 

from geoengineering will not be sufficient to negatively impact most ecosystems, even under the 

assumption that all deposited sulfate will be in the form of sulfuric acid.  However, although 

these model results are feasible, should geoengineering with sulfate aerosols actually be 

conducted, local results due to weather variability may differ from the results presented here.  

With the exception of terrestrial waterways, every region has a critical loading value a full order 

of magnitude above the largest potential total amount of acid deposition that would occur under 
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the geoengineering scenarios presented in this paper.  Furthermore, our results show that 

additional sulfate deposition tends to preferentially occur over oceans, meaning the chance of 

such a sensitive ecosystem receiving enough additional sulfate deposition to suffer negative 

consequences is very small. 
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Table 1.  Ranges of critical loading of pollutant deposition (including sulfur) for various sites in 

Europe as reported by Skeffington [2006]. 

331 

332 

333  

Region 
Critical Load 

[mEq m
-2

 a
-1

] 

Coniferous forests in Southern Sweden 13-61 
Deciduous forests in Southern Sweden 15-72 
Varied sites in the UK 24-182 
Aber in North Wales 32-134 
Uhlirska in the Czech Republic 260-358 
Fårahall in Sweden 29-134 
Several varied sites in China (sulfur only) 63-880 
Waterways in Sweden 1-44 

334  
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Figure 1.  Ratios of the geoengineering ensembles (Arctic 3 Tg SO2 a
-1 injection and tropical 5 

Tg SO2 a
-1 injection) to the baseline (A1B) ensemble.  Both figures show annually averaged total 

sulfate deposition averaged over years 10-19 for each experiment.  These plots are made from 
the model output of the climate simulations performed by Robock et al. [2008].  All shaded 
values on this figure are statistically significant at a 95% confidence level. 
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Figure 2.  Annually averaged total sulfate deposition anomalies (injection minus baseline, 
revealing only the additional deposition from geoengineering) for the geoengineering scenarios 
of Arctic 3 Tg SO2 a

-1 and tropical 5 Tg SO2 a
-1 injection into the lower stratosphere.  The results 

are averaged over three ensemble members and for years 10-19 of each experiment.  These plots 
are made from the model output of the climate simulations performed by Robock et al. [2008].  
Values not statistically significant at a 95% confidence level are denoted by blue hatching. 
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Figure 3.  Both figures show results for a tropical 5 Tg a-1 injection.  The top figure shows total 
sulfate deposition (geoengineering plus baseline).  The bottom figure shows sulfate deposition 
anomaly (injection minus baseline, revealing only the additional deposition from 
geoengineering).  The largest total sulfate deposition point value is approximately 1.5 mEq m-2 a-

1, and the largest anomaly point value is approximately 0.05 mEq m-2 a-1.  These plots are made 
from the model output of the climate simulations performed by Robock et al. [2008], averaged 
over three ensemble members and years 10-19 for each experiment. Values not statistically 
significant at a 95% confidence level are denoted by blue hatching. 
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