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Abstract—To support high-level analysis of spaceborne imag-
ing spectroscopy (hyperspectral) imagery, spectral unmixing has
been gaining significance in recent years. However, from the in-
evitable spectral variability, caused by illumination and topogra-
phy change, atmospheric effects and so on make it difficult to ac-
curately estimate abundance maps in spectral unmixing. Classical
unmixing methods, e.g., linear mixing model (LMM) and extended
LMM, fail to robustly handle this issue, particularly facing com-
plex spectral variability. To this end, we propose a subspace-based
unmixing model using low-rank learning strategy, called subspace
unmixing with low-rank attribute embedding (SULoRA), robustly
against spectral variability in inverse problems of hyperspectral
unmixing. Unlike those previous approaches that unmix the spec-
tral signatures directly in original space, SULoRA is a general
subspace unmixing framework that jointly estimates subspace pro-
jections and abundance maps in order to find a raw subspace that
is more suitable for carrying out the unmixing procedure. More
importantly, we model such raw subspace with low-rank attribute
embedding. By projecting the original data into a low-rank sub-
space, SULoRA can effectively address various spectral variabil-
ities in spectral unmixing. Furthermore, we adopt an alternating
direction method of multipliers based algorithm to solve the re-
sulting optimization problem. Extensive experiments on synthetic
and real datasets are performed to demonstrate the superiority
and effectiveness of the proposed method in comparison with the
previous state-of-the-art methods.

Index Terms—Alternating direction method of multipliers, hy-
perspectral data analysis, low-rank attribute embedding, remote
sensing, subspace unmixing, spectral variability.

I. INTRODUCTION

H
YPERSPECTRAL imagery (HSI) is characterized by

very rich spectral information, which enables us to detect

targets of interest and identify unknown materials more eas-

ily. Motivated by this, considerable attentions have been paid

to hyperspectral data processing and analysis, such as dimen-

sionality reduction [1], [2], image segmentation [3], land-cover
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and land-use classification [4], and target detection [5] and so

on. However, most of pixels in HSI suffer from the effect of

spectral mixing due to a lower spatial-resolution than that of

traditional RGB or multispectral imagery. These material mix-

tures inevitably degrade the spectrally discriminative ability,

particularly in some high-level applications. To overcome this,

spectral unmixing is defined as that decomposes the reference

spectral signatures into a collection of spectral signatures of

pure materials (or endmembers) and their abundance fractions

(or abundance maps). In remote sensing community, spectral

unmixing techniques have been widely and successfully ap-

plied to a variety of tasks, including mineral exploration and

identification [6], forest monitoring [7].

Assuming the absent of any spectral, spatial, and temporal

variabilities as well as microscopic interaction (e.g. multiple

scatting, intimate mixing, etc.) between the materials are negli-

gible, then the mixed spectrum of each pixel in the HSI scene is

approximately measured by a linear mixing model (LMM) [8].

There is, however, a main factor-spectral variability, propagating

unpredictable errors to LMM. This further yields an inaccurate

unmixing process, since these errors are basically absorbed by

endmembers and abundance maps. Nonlinearity, i.e. nonlinearly

mixing spectral signatures, resulting from, e.g. multiple scatter-

ing and intimate mixing, is one of the main causes of spectral

variability. In addition, varying acquisition conditions (e.g. illu-

mination, topography, atmospheric effects) as well as physically

and chemically intrinsic change of the material possibly speed

up spectral degradation, which can be seen as another kind of

spectral variability.

Recently, enormous efforts modeling errors either from

statistics-based or regression-based point of view have been

made to address the spectral variability [9]. Two mainstream

statistical methods, namely the normal composition model [10]

and the beta compositional model [11], assume the endmember

spectra following a given probability distribution. On the other

hand, inspired by LMM-the regression-based seminal work, and

its variations have been successively proposed to deterministi-

cally model the spectral variability. A perturbed linear mixing

model (PLMM) was proposed in [12] to fit the spectral vari-

ability using a Gaussian prior with each endmember. Similarly,

Fu et al. designed a dictionary-adjusted nonconvex sparsity-

encouraging regression (DANSER) by modeling the mismatch

between the spectral library and the observed spectrum under a

Gaussian distribution [13]. Although these approaches attempt

to model the spectral variability in a general way, only a given

explicit distribution, i.e. Gaussian, is still insufficient. In most
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hyperspectral scenes, the spectral signature is frequently scaled

due to illumination or topological change, hence the scaling

factor, as a principal variability, is quite coherent with the corre-

sponding spectral signature. Such attributed spectral variability

is hardly represented by a Gaussian-guided term. Drumetz et al.

proposed an extended LMM (ELMM) [14] by modeling the

different scaling factors on each endmember, but is a signifi-

cant shortcoming in that other spectral variabilities are not be

involved correspondingly.

While aforementioned unmixing algorithms have been suc-

cessively proposed and successfully applied to some specific

datasets, the ability of robustness and generalization in handling

various spectral variabilities still remains limited. For this rea-

son, we propose a robust subspace-based unmixing method by

jointly performing subspace learning and unmixing in a closed-

loop. With low-rank attribute embedding, the spectral variabil-

ity can be effectively removed in the learnt low-rank subspace,

achieving a robust spectral unmixing. More specifically, our

contributions can be unfolded as follows:
� We propose a general subspace-based unmixing frame-

work by jointly low-rank subspace learning and unmix-

ing, called subspace unmixing with low-rank attribute

embedding (SULoRA), to achieve a robust unmixing in

a proper subspace rather than in the original space. More-

over, mostly linear unmixing models can be considered as

special cases in this general framework.
� With the low-rank attribute embedding, the proposed SU-

LoRA can broadly mitigate the effects of various spectral

variabilities by projecting the original data into a more

representative low-rank subspace.
� An alternating direction method of multipliers (ADMM)

is adopted to solve the resulting optimization problem.

The remainder of this paper is organized as follows. Section II

briefly summarizes the related work in spectral unmixing and

analyzes their advantages and disadvantages. In Section III, we

first clarify the motivation and then propose our methodology

of the SULoRA model as well as corresponding ADMM-based

optimization algorithm. Section IV presents the experimental

results on two different datasets (a synthetic data and a real

urban data) and gives the intuitive analysis and discussion both

qualitatively and quantitatively. Finally, Section V concludes

with a summary.

II. RELATED WORK

In this section, we review state-of-arts unmixing algorithms,

emphatically introducing LMM-based unmixing models and

its variations including fully constrained least squares unmix-

ing (FCLSU) [15], partial constrained least squares unmixing

(PCLSU) [16], sparse unmixing by variable splitting and aug-

mented Lagrangian (SUnSAL) [17], as well as their scaled ver-

sions (scaled partial constrained least squares unmixing (SP-

CLSU) [18] and scaled sparse unmixing by variable splitting and

augmented Lagrangian (SSUnSAL) [19]), ELMM and PLMM.

A. LMM

Let Y = [y1 , . . . ,yi , . . . ,yN ] ∈ R
D×N be an unfolded

HSI with D bands and N pixels, and A = [a1 , . . . ,aP ] ∈

R
D×P be the endmembers with the size of D × P . X =

[x1 , . . . ,xi , . . . ,xN ] ∈ R
P ×N is denoted as abundance maps,

whose each column vector stands for the fractional abundance

at each pixel. R = [r1 , . . . , ri , . . . , rN ] ∈ R
D×N is the residual

(e.g. noise, modeling errors and others) in the form of matrix.

Under an ideal condition without any external disturbance, the

spectral measurement for a given pixel, denoted by yi ∈ R
D×1 ,

is well approximated by a set of linear combination of endmem-

ber spectra weighted by theri corresponding fractional abun-

dances, resulting in the LMM:

yi = Axi + ri , (1)

where ai and xi should be non-negative in order to meet the

physical conditions in reality. Moreover, the fractional abun-

dance xi , as the name indicated, represents the proportions oc-

cupied by the different endmembers. This means xi should be

also subject to a sum-to-one constraint. Therefore, Eq. (1) with

the necessary constraints is expressed as

yi = Axi + ri , s.t. A � 0, xi � 0,

N∑

i=1

xi = 1. (2)

Collecting all pixels, a compact matrix form of Eq. (2) can be

written as

Y = AX + R, s.t. A � 0, X � 0, 1TX = 1. (3)

In the following, we will detail several popular unmixing

algorithms based on LMM:

1) FCLSU: In practice, the endmembers (A) can be pre-

extracted from the given scene using endmember extraction

methods, i.e. pixel purity index (PPI), vertex component analy-

sis (VCA) [20]. This renders us to more effectively and conve-

niently estimate the abundance maps (X) by degrading the Eq.

(3) to least-square regression problem, leading to FCLSU:

min
X

{
1

2
‖Y − AX‖2

F s.t. X � 0, 1TX = 1.

}

. (4)

Considering the presence of spectral variability, FCLSU

yields a poor performance. It mainly derives from the strong

sum-to-constraint, as explained in [8]. A common way to this

issue is to relax the abundance fractions sum to less or larger

than one or to consider a part of full constraints.

2) PCLSU: Following the above solution, the resulting

PCLSU can be formulated by solving

min
X

{
1

2
‖Y − AX‖2

F s.t. X � 0.

}

. (5)

The estimated variableX in Eq. (5) might be any scales, owing to

a badly-conditioned observed matrix Y. To alleviate the effects

of the ill-posed problem, meaningfully physical assumptions

have to be added in the form of regularization.

3) SUnSAL: As observed, the abundances on each endmem-

ber are theoretically supposed to be sparse. Bioucas-Dias et al.

embedded this property into LMM and achieved a powerful

SUnSAL algorithm. The resulting optimization problem can be



HONG AND ZHU: SULORA: SUBSPACE UNMIXING WITH LOW-RANK ATTRIBUTE EMBEDDING 1353

written as follows

min
X

{
1

2
‖Y − AX‖2

F + α‖X‖1,1 s.t. X � 0, 1TX = 1.

}

,

(6)

where ‖X‖1,1 ≡
∑N

k=1 ‖xk‖1 is denoted as an approximation

of sparsity-promoting term.

In view of effectiveness of SUnSAL, SUnSAL’s variations

have been subsequently proposed in recent years, such as SUn-

SAL with total variation spatial regularization (SUnSAL-TV)

[21], collaborative sparse regression (CLSUnSAL) [22], etc. We

have to admit, however, that these advanced methods are still

subject to the framework of LMM that is sensitive to spectral

variabilities.

B. ELMM

ELMM aims to modeling the principle spectral variability

(scaling factors) to allow a pixel-wise variation at each end-

member:

yi = ASixi + ri , (7)

where Si ∈ R
P ×P is a diagonal matrix with the nonnegative

constraint (Si � 0). A matrix form of Eq. (7) can be repented

as

Y = A(S ⊙ X) + R, (8)

here S ∈ R
P ×N is a full matrix collecting the scaling factors

from all pixels whose ith column is Si . The operator ⊙ is

denoted as the Schur-Hadamard (termwise) product.

1) Unmixing Under the ELMM: Intuitively, the optimization

problems in (7) and (8) are hardly to be analytically solved. In

[14], a trick is employed by splitting the coupled variables (S

and X), then we have

min
X ,S�0,A

{
N∑

k=1

(
‖yk − Akxk‖

2
2 + λS‖Ak − A0Sk‖

2
F

)

}

,

(9)

where A0 is the reference endmember spectrum, A = {Ai} is

a collection of pixel-dependent endmember matrices, and λS

plays a balance role between the two separated terms. Eq. (9)

can be alternatively optimized with respect to each variable by

alternating minimization strategy [23].

2) SPCLSU: Prior to ELMM, scaling factors have been in-

vestigated in a simple way, that is SPCLSU [18] in which end-

members are reasonably assumed by sharing a same scale as

the scaling factors are strongly associated with topography. SP-

CLSU actually conducts a PCLSU in the beginning, and then

normalizes the abundance maps to meet sum-to-one. This is

a simple but effective strategy, which is also involved in our

proposed method.

C. PLMM

As the name suggested, PLMM attempts to describe the spec-

tral variability as an additive perturbation information. Both the

pixel-wise and the corresponding matrix form of PLMM can be

expressed, respectively

yi = (A + ∆i)xi + ri , (10)

and

Y = AX + [∆1x1 | . . . |∆ixi | . . . |∆N xN ]
︸ ︷︷ ︸

∆

+ R,
(11)

where ∆ is [∆1x1 | . . . |∆ixi | . . . |∆N xN ] denotes the pertur-

bation information of the endmembers.

1) Unmixing Under the PLMM: The optimization problem

corresponding to PLMM-based unmixing can be given as

min
A ,∆ ,X

⎧

⎨

⎩

1

2
‖Y − AX − ∆‖2

F + αΦ(X) + βΨ(A)

+ γΥ(∆)

⎫

⎬

⎭
, (12)

where Φ, Ψ, and Υ parameterized by α, β, and γ, are penalties

with respect to variables X, A, and ∆, receptively. Notably, Υ

term is modeled by a Frobenius norm.

2) DANSER: Likewise being generalized to PLMM frame-

work, DANSER adopts a sparsity-encouraging regression tech-

nique for a dictionary-based spectral unmixing, where a

perturbation-like information is explored to measure the mis-

match between spectral dictionary and observed endmembers.

This model, the DANSER, is formulated by

min
A

′ ,X

⎧

⎨

⎩

1

2
‖Y − A

′

X‖2
F + α‖A

′

− A‖2
F + β‖X‖p

2,p

s.t. X � 0

⎫

⎬

⎭
, (13)

where A
′
is a corrupted endmember matrix obtained by perturb-

ing A.

Although the aforementioned methods have shown an ad-

vancement in treating the spectral variability, especially facing

main spectral variabilities (e.g. scaling factors), they are still

lack of robustness and generalization to others that we are un-

known. Jump out of this circle, a new insight is provided into

this problem that we propose to conduct the spectral unmixing

in a robust subspace instead of directly unmixing in original

spectral space. Please go to next section for more details.

III. SUBSPACE UNMIXING WITH LOW-RANK

ATTRIBUTE EMBEDDING

A. General Motivation

There is a trade-off between spectral information gain and

the spectral variability. On one hand, spectrum are expected to

be spectrally discriminative. Conversely, this means that more

complex spectral variabilities might get involved in hyperspec-

tral data. A feasible solution to this issue is spectral unmixing in

a ‘raw’ subspace rather than in the original space. In the learnt

subspace, the pixels belonging to the same class are expected to

be strongly correlated by using a low-rank attribute embedding.

Further, this process can be mathematically modeled as

Y = Y
′

+ R
′

, s.t. Y
′

= ΘY,

Y
′

= ΘAX + R
′′

, (14)
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Fig. 1. A comparison of the holistic workflow between the original-space-based method and the proposed SULoRA.

where Θ denotes the low-rank subspace projections, and Y
′

is the spectrally subspace representation after embedding the

low-rank attribute.

Fig. 1 shows a comparison in holistic workflow of spec-

tral unmixing between using the original-space-based and the

subspace-based (SULoRA) approaches.

B. Low-Rank Attribute Embedding

Inspired by [24] in which a novel strategy of low-rank at-

tribute embedding is proposed with the application to person

re-identification, we further improve this term by integrating

our general motivation described above, making it more appli-

cable to hyperspectral unmixing task.

Step by step, we will clarify the motivation of using the low-

rank attribute embedding in great detail. It is well-known that

hyperspectral imagery inevitably suffers from various spectral

variabilities in the process of imaging. These spectral variabili-

ties, which are generated due to illumination conditions, topog-

raphy change, atmospheric effects, and material nonlinear mix-

ing, are complex and even hardly represented using a common

model. Instead of directly modeling such changeable property,

we hypothetically treat the spectral variability as an unknown

complex noise. Therefore, modeling the complex spectral vari-

ability could be converted to a special denoising problem. Noises

in the data can be generally removed through a projection trans-

formation. During this process, one is expected to be the pro-

jected or denoised data as close as possible with the original data,

resulting in a mathematical expression (Y
.
= ΘY). Besides, we

also expect to structurally maintain consistency between noisy

data (Y) and processed data (ΘY), which might be achieved by

correlative or collaborative filtering in order to emphasize the

correlation and structural property between the samples. Low-

rank representation has been widely and successfully applied for

modeling the sample-based correlation [25]–[27], hence the es-

timated projection Θ can be naturally endowed with a low-rank

attribute (e.g., rank (Θ) � C) in our case.

C. Problem Formulation

As introduced in Subsection III-A, our proposed SULoRA

shown in Eq. (14) can be formulated as a following constrained

optimization problem

min
X ,Θ

⎧

⎨

⎩

1

2
‖Θ(Y − AX)‖2

F + Φ(Θ) + Υ(X)

s.t. X � 0

⎫

⎬

⎭
, (15)

which aims at estimating the variables with respect to X and Θ.

Since the problem (15) is undetermined, the variables X and Θ

should be regularized by reasonable prior knowledge. The two

regularization terms Φ(Θ) and Υ(X) are described below.

1) Subspace Regularization Φ(Θ): According to the discus-

sion and analysis in Section III-B, the subspace projections Θ

are characterized by a low-rank attribute in order to transfer the

original hyperspectral data into a robust subspace, which can

be approximately formulated by the form of ‖Θ‖∗. Essentially,

the main difference between those previously proposed low-

rank representation learning and the proposed SULoRA lies in
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the motive. More specifically, the former ones usually aim to

robust clustering in subspace [25], [27] that needs to estimate

the connectivity between samples, while our goal is to find or

learn a low-rank subspace projection so that the learned projec-

tion can play a correlative filtering-like role robustly against

various spectral variabilities, which is computationally effi-

cient. Besides, we also hope to structurally maintain the spec-

tral properties, making the learnt subspace as close as possible

with the original space. This second prior can be formed by

‖Y − ΘY‖F . The final resulting expression of regularization

with respect to Θ is

Φ(Θ) =
α

2
‖Y − ΘY‖2

F + β‖Θ‖∗, (16)

where α and β are the corresponding penalty parameters.

2) Abundance Regularization Υ(X): For a given hyperspec-

tral scene, the spectral signature consists of limited kinds of

materials, hence the abundances should be encouraged to be

sparse. This term parameterized by γ can be expressed by

Υ(X) = γ‖X‖1,1 . (17)

In our model, the non-negativity constraint (X � 0) has to

be considered to satisfy the physical assumption. It should be

noted, however, that the sum-to-one constraint is not directly

considered in our optimization problem (Eq. (15)), since the hard

constraint is too strong to yield a badly-estimated abundance

maps. We adopt the same technique in SPCLSU [18] to force

X to follow the sum-to-one constraint.

Different with matrix factorization-based unmixing ap-

proaches that simultaneously estimate the endmembers and the

abundance maps, the proposed SULoRA first determines the

number of endmembers via HySime [28], and then separately

extracts the endmembers from the HSI scene with VCA and es-

timates the abundance maps. The benefits of the scheme in our

model are two-fold. On one hand, the endmembers extracted

from the data tend to preserve, to the greatest extent, spec-

trally physical significance, and thereby improve the stability

of estimating the abundance maps. On the other hand, it effec-

tively simplifies the model’s complexity by optimizing fewer

variables, finding a good solution easier.

D. Model Optimization Using ADMM-Based Algorithm

The optimization problem shown in Eq. (15) is convex, we

adopt an ADMM-based optimization algorithm [29]–[31] for a

fast and efficient solution. To facilitate the use of ADMM, we

first convert Eq. (15) to an equivalent form introducing multi-

ple auxiliary variables G, H, and J to replace Θ, X, and X,

respectively.

min
X ,Θ ,G ,H ,J

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1

2
‖Θ(Y − AX)‖2

F +
α

2
‖Y − ΘY‖2

F

+ β‖G‖∗ + γ‖H‖1,1 + l+R (J)

s.t. Θ = G, X = H, X = J

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

, (18)

where ()+ denotes an operator that intercepts the positive part of

each component of the matrix, and l+R (J) is defined as J � 0.

This problem can be equivalently solved by minimizing the

Algorithm 1: Subspace Unmixing With Low-Rank

Attribute Embedding (SULoRA).

Input: Y, A, X0 , α, β, γ, maxIter.

Output: X, Θ.
1 Initialization: G = 0, H = 0, J = 0, Λ1 = 0, Λ2 = 0,

Λ3 = 0, µ = 10−3 , µm = 106 , ρ = 1.5, ε = 10−6 , t = 1.

2 while not converged or t > maxIter do

3 Fix other variables to update Θ by

Θ = (αYYT + µG + Λ1)

× (αYYT + (Y − AX)(Y − AX)T + µI)−1 .

4 Fix other variables to update X by

X = ((ΘA)T(ΘA) + 2µI)−1

× ((ΘA)TΘY + µH + Λ2 + µJ + Λ3).

5 Fix other variables to update G by

[U,S,V] = svd(Θ − Λ1/µ), S = diag({sk}
r
k=1)

G = USτ V, Sτ = diag(max{0, sk − β/µ}).

6 Fix other variables to update H by

H=max{0, |X − Λ2/µ| − γ/µ} ⊙ sign(X − Λ2/µ).

7 Fix other variables to update J by

J = max{0,X − Λ3/µ}.

8 Update Lagrange multipliers by

Λ1 ← Λ1 + µ(G − Θ), Λ2 ← Λ2 + µ(H − X)

Λ3 ← Λ3 + µ(J − X).

9 Update penalty parameter by

µ = min(ρµ, µm ).

10 Check the convergence conditions: if ‖G − Θ‖F < ε
and ‖G − X‖F < ε and ‖J − X‖F < ε then

11 Stop iteration;

12 else

13 t ← t + 1;

14 end

15 end

following augmented Lagrangian function:

LU (X,Θ,G,H,J,Λ1 ,Λ2 ,Λ3) =
1

2
‖Θ(Y − AX)‖2

F

+
α

2
‖Y − ΘY‖2

F + β‖G‖∗ + γ‖H‖1,1 + l+R (J)

+ ΛT
1 (G − Θ) + ΛT

2 (H − X) + ΛT
3 (J − X)

+
µ

2
‖G − Θ‖2

F +
µ

2
‖H − X‖2

F +
µ

2
‖J − X‖2

F , (19)

where {Λi}
3
i=1 are Lagrange multipliers and µ is the penalty

parameter. The specific optimization flow for solving the prob-

lem (19) is summarized in Algorithm 1, and the solution to each

subproblem is detailed in the following.
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We successively minimize LU with respect to the variables

Θ, X, G, H, and J as well as Lagrange multipliers {Λi}
3
i=1 as

follows:

Optimization with respect to Θ: The optimization problem

for Θ is

min
Θ

⎧

⎪⎨

⎪⎩

1

2
‖Θ(Y − AX)‖2

F +
α

2
‖Y − ΘY‖2

F

+ ΛT
1 (G − Θ) +

µ

2
‖G − Θ‖2

F

⎫

⎪⎬

⎪⎭

, (20)

which has an analytical solution of

Θ ← (αYYT + µG + Λ1)

× (αYYT + (Y − AX)(Y − AX)T + µI)−1 . (21)

Optimization with respect to X: For X, the optimization prob-

lem can be expressed as

min
X

⎧

⎪⎨

⎪⎩

1

2
‖Θ(Y − AX)‖2

F + ΛT
2 (H − X) + ΛT

3 (J − X)

+
µ

2
‖H − X‖2

F +
µ

2
‖J − X‖2

F

⎫

⎪⎬

⎪⎭

,

(22)

whose a closed-form solution is

X ← ((ΘA)T(ΘA) + 2µI)−1

× ((ΘA)TΘY + µH + Λ2 + µJ + Λ3).
(23)

Optimization with respect to G: The objective function for

G is written as

min
G

{

β‖G‖∗ + ΛT
1 (G − Θ) +

µ

2
‖G − Θ‖2

F

}

, (24)

which is solved via the Singular Value Thresholding (SVT)

operator [32]:
� Step 1: Input a matrix M of rank r and consider the singular

value decomposition (SVD):

M = USV, S = diag({sk}1≤k≤r ). (25)

� Step 2: For each τ ≥ 0, we define the soft-thresholding

operator Dτ as follows

D(M) := UDτ (S)V, Dτ (S) = diag({sk − τ}+ ).
(26)

Using Eq. 26, ‖M‖∗ can be computed by ‖Dτ (S)‖1,1 .

Optimization with respect to H: The optimization problem of

H is

min
H

{

γ‖H‖1,1 + ΛT
2 (H − X) +

µ

2
‖H − X‖2

F

}

, (27)

its solution is nothing but a well-known soft threshold [17]:

H ← max{0, |X − Λ2/µ| − γ/µ} ⊙ sign(X − Λ2/µ).
(28)

Optimization with respect to J: The subproblem of J can be

given by

min
J

{

ΛT
3 (J − X) +

µ

2
‖J − X‖2

F + l+R (J)
}

, (29)

Fig. 2. Convergence analysis of SULoRA are experimentally performed on a
synthetic data and a real urban data.

J can be updated using the following rule

J ← max{0,X − Λ3/µ}. (30)

Lagrange multipliers update {Λi}
3
i=1: In each iteration, La-

grange multipliers need to be updated by

Λ1 ← Λ1 + µ(G − Θ), Λ2 ← Λ2 + µ(H − X)

Λ3 ← Λ3 + µ(J − X). (31)

E. Convergence Analysis and Computational Cost

ADMM used in our optimization problem can be actually

generalized to inexact Augmented Lagrange Multiplier (ALM)

[33], whose convergence has been well studied when the num-

ber of block is less than three [29]. There is still not a generally

and strictly theoretical proof in multi-blocks case. Fortunately

for our case, its convergence is similarly guaranteed and sup-

ported in [32], [34]–[37]. Moreover, we experimentally record

the objective function values in each iteration to draw the con-

vergence curves of SULoRA on two used hyperspectral scenes

(see Fig. 2).

As observed from Section III-D, the computational cost in the

SULoRA algorithm is dominated by matrix products, and then

the computational complexity of each subproblem in Eq. (18)

with respect to the variables X, Θ, G, H, and J are, in each

iteration, O(D2N), O(D2N), O(D3), O(PN), and O(PN),
respectively, where the most costly step is solving Θ, hence

yielding an overall O(D2N) computational cost for Eq. (18).

IV. EXPERIMENTS

In this section, we quantitatively and visually evaluate the

unmixing performance of the proposed SULoRA on a syn-

thetic dataset presented in [14] and two real datasets over the

areas of Urban and MUFFLE Gulfport Campus, in compari-

son with eight classical and state-of-the-art methods, including

FCLSU, PCLSU, SPCLSU, SUnSAL, SSUnSAL (scaled SUn-

SAL), SLRU (sparse and low-rank unmixing) [38], PLMM and

ELMM. We experimentally and empirically choose the regular-

ization parameters to maximize performance of above methods.

To make fair visual comparisons, we fix a display range of the

abundance maps from 0 to 1 in Figs. 4 and 9. Because there are

some algorithms ignoring the effects of scaling factors, resulting

in the abundances that show the maximum of the display range

but actually exceed it.
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Fig. 3. A false color image of the synthetic data and corresponding five
endmembers used for data simulation.

A. Synthetic Data

1) Data Description: Spectral simulation in the synthetic

data is performed using five reference endmembers randomly

selected from the spectral library of United States Geologi-

cal Survey (USGS) with the size of 200 × 200 abundance

maps generated using Gaussian fields, which strictly satisfies

the abundance non-negative constraint (ANC) and the abun-

dance sum-to-one constraint (ASC). The image consists of

200 × 200 pixels with 224 spectral bands in the wavelength

from 400 nm to 2500 nm with spectral resolution. Fig. 3 shows

a false color image of the synthetic data and five endmembers

used for data simulation. The details of data simulation process

can be unfolded as follows: Firstly, given five reference end-

members from USGS library, we multiply randomly-generated

scaling factors ranging in [0.75, 1.25] by the spectral signa-

tures, then a 25 dB white Gaussian noise was added to these

scaled reference endmembers. Secondly, we linearly mix them

with the generated abundance maps. Finally, an additive 25 dB

white Gaussian was again added to the mixed spectrum. Us-

ing this simulation process, the spectral signature of each pixel

in this dataset should be able to have a complex spectral vari-

ability consisting of endmember-dependent scaling factors and

complex noise. Therefore, this simulated data with such spectral

variability will give us a proper scenario to validate the proposed

approach. More details for generating the simulated data can be

found in [14].

2) Experimental Setup: Assuming the presence of pure end-

members in HSI scene, VCA, which is one of the most popu-

lar endmember extraction methods, is adopted in this paper to

construct the endmember dictionary, while Hysime is used to

estimate the number of endmembers. Next, these extracted end-

members can be effectively identified using the spectral angle

compared to five reference endmembers.

To fairly assess the unmixing performance, we set the op-

timal parameters for the different algorithms. Both SUnSAL

and SSUnSAL are parameterized by 2e − 3 on the sparsity-

promoting term, while three regularization parameters [12] for

abundances, endmembers, and perturbation in the PLMM are

set to be 1e − 2, 1e − 2, and 1, respectively. The regularization

parameter λS [14] in the ELMM is set to be 0.5. We also set

the parameters of SLRU’s sparse and low-rank terms to 2e − 3
and 1e − 2. α, β, and γ in Eqs. (16) and (17) can be set to 0.1,

0.01, and 8e − 3, respectively to maximize the performance of

SULoRA.

Considering a fact that our method is an alternating minimiz-

ing optimization problem for multi-variables, a proper initializa-

tion would lead to a fast and reasonable solution. The abundance

maps (X0) is initialized using the output of SPCLSU. Please re-

fer to Algorithm 1 for more parameter settings.

We draw on three criteria of [14] to quantify the unmix-

ing results, that is abundance overall root mean square er-

ror (aRMSE), reconstruction overall root mean square error

(rRMSE), and average spectral angle mapper (aSAM). When the

groundtruth of abundance maps (Xg = [xg
1 , . . . ,x

g
i , . . . ,x

g
N ] ∈

R
P ×N ) is given, and then the estimated abundance maps (Xe =

[xe
1 , . . . ,x

e
i , . . . ,x

e
N ] ∈ R

P ×N ) can be measured by aRMSE

defined as

aRMSE =
1

N

N∑

i=1

√

1

P

∑P

p=1
(xe

pi − x
g
pi)

2 . (32)

If without the reference of abundance maps, the other two

rules (rRMSE and aSAM) are used by computing reconstruc-

tion errors between the observed hyperspectral data Yo =
[yo

1 , . . . ,y
o
i , . . . ,y

o
N ] ∈ R

D×N and its reconstruction Yr =
[yr

1 , . . . ,y
r
i , . . . ,y

r
N ] ∈ R

D×N . The former is defined by

rRMSE =
1

N

N∑

i=1

√

1

D

∑D

l=1
(yr

di − yo
di)

2 , (33)

while the latter is aSAM, expressed as

aSAM =
1

N

N∑

k=1

arccos

(
yrT

i yo
i

‖yr
i ‖‖y

o
i ‖

)

. (34)

For a fair and reasonable comparison, we average the results

of the three criteria out of 10 runs for the different algorithms,

because VCA cannot always guarantee the same estimations in

each round.

3) Results and Discussion: Fig. 4 shows the estimated abun-

dance maps of the different algorithms, while Table I corre-

spondingly lists the quantitative assessment for three different

indices (aRMSE, rRMSE, and aSAM) and computational cost

for each algorithm. Since the visual difference of Fig. 4 is not

salient, we highlight the differences by the abundance difference

maps displayed in Fig. 5.

Visually, FCLSU and PLMM yield a poor performance due

to the presence of the spectral variability in the simulated scene.

More precisely, the abundance maps estimated by FCLSU fully

absorb the spectral variabilities, attributing to the sum-to-one

constraint. Taking the rest of algorithms by and large, those of

modeling scaling factors outperform those without considering

ones. A similar quantitative trend also can be found in Table I. In

details, the performance of PCLSU is better than that of FCLSU,

since the PCLSU’s abundances can be reasonably estimated in

a cone not in a simplex by dropping the ASC. Actually the

spectral variability is not eliminated by PCLSU, but still par-

tially absorbed by the abundances. Fig. 4 provides a convincing

evidence that the abundances for some pixels are higher than

1, and this violates the ASC. By trickily alleviating the effects

of scaling factors, the abundances estimated by SPCLSU are

more accurate than PCLSU’s. Putting the sparse prior on the
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TABLE I
THE QUANTITATIVE COMPARISON OF UNMIXING PERFORMANCE FOR THE DIFFERENT ALGORITHMS ON THE SYNTHETIC DATA. THE BEST ONE IS MARKED IN BOLD

Fig. 4. Abundances estimated by different SU methods (each column cor-
responds to one endmember extracted by VCA ) and the first row shows the
ground truth.

abundance maps, SUnSAL and its scaled version (SSUnSAL)

can further improve the performance compared to those with-

out the sparsity-promoting term. This indirectly demonstrates

that each pixel in HSI is composed of a few materials. In SLRU,

the abundance maps are simultaneously constrained to be sparse

and low-rank, leading to a slight improvement compared to only

sparsity-promoting SUnSAL algorithm.

Fig. 5. Difference abundance maps using different spectral unmixing methods
corresponding to Fig. 4.

The ability in handling the other spectral variability that scal-

ing factors can not be explained limits the ELMM. Furthermore,

ELMM needs to simultaneously estimate a coupled set of vari-

ables (the scaling factors and abundance maps), this leads to a

non-convex optimization problem, which easily drops to a local

minimum. In a local region of HSI, the scaling factors for the

different endmembers are highly correlated, because the end-

member variability is dominated by the topography structure.

This is possibly another factor that hinders the performance of

the ELMM improving. For the PLMM, it attempts to model

the spectral variabilities in a general way, but only a perturbed
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Fig. 6. Sensitivity analysis of three regularization parameters (e.g., α, β , and γ) in SULoRA (Eq. 18).

Fig. 7. Robustness evaluation of these compared algorithms using a RMSE at
the different sparse noise ratio.

information assumed by a Gaussian prior fails to represent the

spectral variability (e.g. scaling factors).

As expected, the performance of the subspace-based spectral

unmixing (the proposed SULoRA) is superior to that of other

algorithms unmixing in the original hyperspectral space, indi-

cating its superiority and effectiveness in dealing with the spec-

tral variability. Fig. 5 highlights a more significant comparison

using abundance difference maps between the groundtruth and

the estimated abundance maps, where there are lower difference

values in SULoRA than in others.

4) Parameters Sensitivity Analysis: The performance of the

proposed SULoRA algorithm in Eq. (18) is, to some extent,

sensitive to the setting of three regularization parameters (α, β,

and γ), it is, as a result, indispensable to search a set of opti-

mal parameter combination. For this reason, the corresponding

experiments are conducted to investigate the parameters effects

on the performance of estimating abundance maps (measured

by aRMSE), as specifically shown in Fig. 6 where the optimal

parameter combination in SULoRA is α = 0.1, β = 0.01, and

γ = 8e − 3, respectively.

5) Robustness Analysis to Sparse Noise: We further inves-

tigate the robustness of the SULoRA against sparse noise. For

this purpose, the simulated data is corrupted by sparse noise

with different corrupted levels, namely ratio = 0, 0.1, 0.2, 0.3,

where ratio = 0 denotes no additional sparse noise is added to

the simulated data while ratio = 0.1, for instance, means that

the 10% of total pixels are corrupted by additional sparse noise.

Please refer to [39]–[41] for more experimental setting. As can

be seen from Fig. 7, with the increase of sparse noise ratio,

the performance of most compared approaches dramatically de-

grades, yet SULoRA still holds a stable and robust performance.

Fig. 8. A false color image of the Urban data and four extracted endmembers
used in spectral unmixing.

B. Real Data Over Urban Area

1) Data Description: This dataset was acquired by the Hy-

perspectral Digital Imagery Collection Experiment (HYDICE)

over an urban area of Copperas Cove, Texas, USA. The entire

image consists of 307 × 307 pixels at a ground sampling dis-

tance (GSD) of 2 m, and 58 noisy bands are removed, so that

a total of 162 bands covering the spectral rank from 400 nm

to 2500 nm with spectral resolution of 10 nm is selected by

removing 58 noisy bands corrupted by water absorption and

atmospheric effects in our experiments. This dataset used in

hyperspectral unmixing has been widely reported in [42]–[44].

Additionally, we use a latest data version issued by Geospatial

Research Laboratory (USA) and Engineer Research and Devel-

opment Center (USA) in 2015.1 Fig. 8(a) shows a false color

image of the study scene and the endmembers are extracted

by VCA.

2) Experimental Setup: There are four main endmembers in

the scene: asphalt (road and parking lot), grass, trees, and roof.

Please see the references [42] and [44] for more details. Simi-

larly to the first data, HySime and VCA are adopted to deter-

mine the number of endmembers and extract the endmembers,

respectively. Fig. 8(b) shows the endmembers used in spectral

unmixing. The endmembers can be simply identified by com-

paring with the reference endmembers.2

According to two indices of aRMSE and aSAM, we select the

optimal parameters for these compared algorithms. The parame-

ters for the sparse and low-rank regularization terms in SLRU are

set to 1e − 2 and 1e − 2. The sparsity-promoting term in SUn-

SAL and SSUnSAL is penalized by 6e − 3, while for PLMM,

three regularization parameters for abundances, endmembers,

1http://www.tec.army.mil/Hypercube
2The reference endmembers can be introduced in [44] and [43].
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Fig. 9. Abundance maps comparison between the proposed method and the
state-of-art methods.

and perturbation are selected to be 1e − 2, 1e − 3, and 1, re-

spectively. The balance parameter λS in the ELMM is still 0.5.

We finely tune α, β, and γ in SULoRA to 0.1, 0.01, and 5e − 3,

respectively.

3) Results and Analysis: As there are no references of the

abundance maps for the urban dataset, we propose to apply clas-

sification maps, i.e. overall accuracy (OA), to approximately as-

sess the abundance maps. By comparing with the reference end-

members, the spectral angle mapper (SAM) is used to roughly

generate classification results, as shown in the first row of Fig. 9

where the positive samples are marked in cosine similarity, while

negative samples are masked out with 0. More specifically, we

classify each pixel into an endmember with a maximum abun-

dance response. As a result, OA can be regarded as a new in-

dex for evaluating the different methods, as listed in Table II.

FCLSU performs a worse estimation in the abundances com-

pared to other algorithms, since a more complex spectral vari-

ability comes into play in the real data. PCLSU sill fails to well

deal with such spectral variability, despite a better performance

than FCLSU. As visually shown in the Fig. 9, SPCLSU can ef-

fectively identify the materials of asphalt, trees, and roof, while

considering scaling factors. As a comparison, neither FCLSU

nor PCLSU detects the material of the asphalt, but SPCLSU suc-

cessfully does. The regular pattern is also applicable to SUnSAL

and SSUnSAL. By additionally considering a low-rank prior in

the process of estimating abundance maps, SLRU performs bet-

ter than SUnSAL, but it still fails to address the complex spectral

variability.

Although ELMM is able to detect some areas, e.g. trees and

roof, the complex spectral variability in the real scenario can

not be fully interpreted only by scaling factors. This results in a

relatively lower rRMSE and aSAM, as listed in Table II. On the

other hand, the hard optimization problem in ELMM is another

drawback, limiting ELMM up to a better performance. The main

factor for the poor performance of PLMM is lack of a powerful

fitting ability in the spectral variability by analyzing the visual

and quantitative results from both Fig. 9 and Table II.

Thanks to the high-resolution of the urban HSI, we can find

many pure pixels, but they are mistaken as mixed pixels with the

existence of spectral variability. This easily makes many pixels

misclassified using the aforementioned methods. Different with

them, SULoRA can estimate the abundance maps in a robust

subspace, so that its visual effect is superior to others’, as shown

in Fig. 9, and a consistent numerical evaluation is also listed

in Table II. For instance, the asphalt and grass can be purely

identified by SULoRA, unlike the others. The abundance maps

of the tree and roof estimated by SULoRA show higher contrast

as well. These phenomena can objectively explain the robustness

and effectiveness of the proposed method.

C. Real Data (MUUFL Gulfport Campus)

1) Data Description: As introduced in [45], [46], the labeled

hyperspectral image can be used for ultimately assessing the

unmixing performance, hence the MUUFL Gulfport dataset is

chosen as the second real data in our case, collected over the

campus area in University of Southern Mississippi-Gulfpark

Campus, Long Beach, Mississippi, USA [47]. It consists of

325 × 220 pixels at a GDS of 1 m. There are 11 classes in

this study scene, but we just consider 8 main classes as they

have enough number of pixels and clear spatial structure for

a easier visualization, that is #1 trees, #2 mostly-grass ground

surface, #3 mixed ground surface, #4 dirt and sand, #5 road,

#6 buildings, #7 shadow of buildings, and #8 sidewalk. The 8

noisy bands were removed, resulting in a total of 64 bands left

in the spectral range from 375 nm to 1050 nm. Fig. 10 shows a

RGB image and the endmembers extracted by VCA of the used

scene.
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TABLE II
THE QUANTITATIVE COMPARISON OF UNMIXING PERFORMANCE FOR THE DIFFERENT ALGORITHMS ON THE REAL URBAN DATA.

THE BEST ONE IS MARKED IN BOLD

Fig. 10. A RGB image of the MUFFLE dataset and eight extracted endmem-
bers used in spectral unmixing.

2) Experimental Setup: Likewise, the number of endmem-

bers can be estimated by HySime and the endmembers can be

extracted by VCA. The extracted endmembers are handily iden-

tified using SAM, as massive labeled samples for each class are

available.

The optimal parameters for all compared methods and the

proposed SULoRA are detailed in the following. The l1-norm

term in SUnSAL and SSUnSAL is parameterized by 3e − 4,

while the parameters for SLRU are 2e − 4 and 0.1, respectively.

Three regularization parameters in PLMM are set to be 1e − 3,

1e − 2, and 1, respectively, while the parameter λS in ELMM

plays a role in balancing the two fidelity terms, which is assigned

to 0.5 in our case. For SULoRA, α, β, and γ are experimentally

assigned to 0.8, 0.1, and 6e − 4, respectively.

3) Results and Analysis: Given these labeled classification

maps of each class as shown in the first row of Fig. 11, classi-

fication (e.g., OA) can be explored as a potential way to evalu-

ate the quality of estimated abundance maps. Correspondingly,

Table III quantitatively lists the performance assessment (three

indices: OA, rRMSE, and aSAM) for all algorithms.

FCLSU shows a poor estimation in abundance maps, since it

fails to model the complex spectral variabilities. For those algo-

rithms that provide different priors in estimating the abundance

maps, e.g., scaling (SPCLSU, SSUnSAL), sparse (SUnSAL,

SSUnSAL), low-rank (SLRU), etc., there is a moderate per-

formance improvement compared to those without considering

prior knowledge. One thing to be noted is that PLMM obtains

desirable results of rRMSE and aSAM in comparison with previ-

ous methods (expect our proposed SULoRA), but interestingly

it yields a poorest OA. The reason for this mainly lies in that only

perturbation information hardly represents the complex spectral

variability, and meanwhile such modeling strategy could also

corrupt some important spectral attributes misdeemed as certain

Fig. 11. Abundance maps comparison between the proposed method and the
state-of-art methods.

spectral variability. As can be seen from Fig. 11, ELMM obtains

a good abundance estimation, since it is good at handling the

scaling factors (principle spectral variability). But unfortunately,

ELMM’s performance is limited by the presence of other spec-

tral variabilities. In a word, these previously proposed methods

basically pay more attentions on somewhat special spectral vari-

ability, lacking of generalization ability. Considering the com-

plexity of the spectral variability in real-world, the proposed SU-

LoRA accounts for spectral variability in a generalized fashion

by embedding the low-rank attribute, resulting in more robust
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TABLE III
THE QUANTITATIVE COMPARISON OF UNMIXING PERFORMANCE FOR THE DIFFERENT ALGORITHMS ON THE MUFFLE GULFPORT CAMPUS DATA.

THE BEST ONE IS MARKED IN BOLD

and effective unmixing results visually and quantitatively (see

Fig. 11).

V. CONCLUSION

This paper is motivated by the fact that the spectral signature

in the original hyperspectral space inevitably suffers from

largely and diversely spectral variabilities. To address this

issue, we propose to unmix the HSI in a subspace instead

of in the original space. This results in a general subspace

unmixing framework that jointly learns a subspace projection

and abundance maps. With the low-rank attribute embedding,

we further develop a low-rank subspace unmixing approach,

called spectral unmixing with low-rank attribute embedding

(SULoRA). Experimental results demonstrate that SULoRA

is able to obtain a higher unmixing performance both visually

and quantitatively, than other state-of-the-art algorithms.

In the future, we would like to cast the subspace-based

framework to advanced unmxing methods designed in the

original spectral space, aiming at a more robust spectral

unmixing.
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