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Sum-Capacity Computation for the Gaussian Vector
Broadcast Channel Via Dual Decomposition

Wei Yu, Member, IEEE

Abstract—A numerical algorithm for the computation of sum capacity
for the Gaussian vector broadcast channel is proposed. The sum capacity
computation relies on a duality between the Gaussian vector broadcast
channel and the sum-power constrained Gaussian multiple-access channel.
The numerical algorithm is based on a Lagrangian dual decomposition
technique and it uses a modified iterative water-filling approach for the
Gaussian multiple-access channel. The algorithm converges to the sum ca-
pacity globally and efficiently.

Index Terms—Broadcast channel, duality, multiple-access channel, mul-
tiple-antenna.

I. INTRODUCTION

Consider a Gaussian vector broadcast channel:

YYY = H
T
XXX +ZZZ (1)

where the vector XXX represents the transmit signal, the matrix HT =
[H1 � � �HK ]T represents the channels for users 1 � � �K , the vector
YYY = [YYY 1 � � �YYY K ]T represents receive signals for users 1 � � �K , and
ZZZ = [ZZZ1 � � �ZZZK ]T is the additive independent and identically dis-
tributed (i.i.d.) Gaussian vector noise with unit variance on each of its
components. Independent information is transmitted to each user. The
Gaussian vector broadcast channel is not degraded; its capacity region
has been established recently [1], [2], [4], [3], [5].

One of the techniques for establishing the broadcast channel capacity
is an uplink–downlink duality relation between the Gaussian vector
broadcast channel and a dual Gaussian vector multiple-access channel
[3]–[5]. The duality result can be stated as follows. The capacity region
of a Gaussian vector broadcast channel (1) is exactly the same as that of
a dual multiple-access channel with ~X~X~X = YYY as the transmitters, H as
the channel matrix, ~Y~Y~Y = XXX as the receiver, and ~Z~Z~Z as the unit-variance
additive white Gaussian vector noise

~Y~Y~Y = H ~X~X~X + ~Z~Z~Z: (2)

In addition, the dual vector multiple-access channel has a sum power
constraint across all transmitters rather than a set of individual power
constraints on each transmitter. Uplink–downlink duality is useful be-
cause the input optimization problem for the Gaussian multiple-access
channel is numerically easier to solve.

More explicitly, the Gaussian multiple-access channel with vector
inputs and a vector output can be represented as follows:

~Y~Y~Y =

K

k=1

Hk
~X~X~Xk + ~Z~Z~Z (3)
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where ~X~X~Xk’s are n� 1 vector inputs,Hk arem� n channel matrices,
~Y~Y~Y is them�1 vector output, and ~Z~Z~Z is am�1 additive Gaussian noise
vector. The inputs ~X~X~Xk must be independent. In a usual multiple-access
channel, a separate input power constraint is applied to each of ~X~X~Xk ,
i.e.,

~XT
k

~XT
k

~XT
k

~Xk
~Xk
~Xk � ; k = 1; . . . ; K: (4)

To utilize uplink–downlink duality, a different power constraint is ap-
plied. While retaining the assumption that ~X~X~Xk are independent, a sum-
power constraint is applied to all ~X~X~Xk’s at the same time

K

k=1

~XT
k

~XT
k

~XT
k

~Xk
~Xk
~Xk � : (5)

This correspondence proposes efficient numerical algorithms that com-
pute the sum capacity of a Gaussian vector broadcast channel by com-
puting the sum capacity of its dual Gaussian vector multiple-access
channel with a sum-power constraint.
The capacity region of a multiple-access channel under a fixed input

distribution p(~x~x~x1) � � � p(~x~x~xK) is a well-known pentagon region. In par-
ticular, the sum capacity of the multiple-access channel is the solution
to the following mutual information maximization problem:

C = max
cofp(~x~x~x )���p(~x~x~x )g

I( ~X1
~X1
~X1 � � � ~XK

~XK
~XK ; ~Y~Y~Y ) (6)

where cof�g denotes the convex hull operation and the maximization
is over the convex hull of all input distributions that satisfy the input
constraint. For the Gaussian vector multiple-access channel, Gaussian
inputs are optimal and the mutual information maximization problem
can be cast as a convex optimization problem. More precisely, let Sk =
[ ~Xk
~Xk
~Xk

~XT
k

~XT
k

~XT
k ] be the input covariance matrix for user k. The mutual in-

formation maximization problem under separate power constraints (4)
becomes

maximize
1

2
log

j K

k=1HkSkH
T
k + Szj

jSzj

subject to tr(Sk) � ; k = 1; . . . ; K;

Sk � 0; k = 1; . . . ; K: (7)

The maximization problem under the sum power constraint (5) be-
comes

maximize
1

2
log

j K

k=1HkSkH
T
k + Szj

jSzj

subject to
K

k=1

tr(Sk) �

Sk � 0; k = 1; . . . ; K (8)

where tr(�) denotes the matrix trace operation and Sz is the covari-
ance matrix of ~Z~Z~Z . Because log j � j is a concave function over the set of
positive semidefinite matrices and constraints are linear, both problems
belong to the class of convex optimization problems for which numer-
ical solutions are in principle easy to obtain.
In particular, with a separate power constraint on each ~X~X~Xk , the sum

capacity problem (7) can be solved efficiently using an algorithm called
“iterative water-filling” [6]. The key observation is that the maximiza-
tion problem can be solved by iteratively updating one Sk at a time
while keeping all other Sk’s fixed. Because the constraints are sepa-
rable, each update can be done independently, and the iterative process
converges to the sum capacity. However, this iterative procedure is not
directly applicable to the sum-power problem (5) in which a coupled

0018-9448/$20.00 © 2006 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 2, FEBRUARY 2006 755

power constraint applies to all ~X~X~Xk’s at the same time. The main idea
of this correspondence is that via a dual decomposition technique, the
sum-power constraint may be decoupled. This allows us to take advan-
tage of the efficiency of iterative water-filling.

The numerical solution for the sum-power constrained multiple-ac-
cess channel has been considered in [7] where two algorithms also
based on iterative water-filling are proposed for the sum-power
problem. The algorithm proposed in this correspondence differs
from that of [7] in that it utilizes the dual decomposition technique
popularized by recent advances in network optimization (e.g., [8]). As
the numerical results contained in this correspondence show, the dual
decomposition approach has a lower complexity, a superior conver-
gence rate and is more scalable with the problem size as compared
with the algorithms proposed in [7].

The capacity computation for the Gaussian vector broadcast channel
has also been considered in [9] in which a gradient ascent algorithm is
proposed. Further, this problem can be solved using generic convex
optimization methods such as the interior-point method as well. The it-
erative water-filling-based algorithms proposed in this correspondence
and in [7] take advantage of the specific structure of the Gaussian mu-
tual information maximization problem and have a faster convergence
in practice. However, the iterative water-filling-based algorithms are
also more specific as they work only for sum capacity and not for the
entire capacity region.

The rest of the correspondence is organized as follows. The numer-
ical solution for the sum-capacity problem based on the dual decom-
position method and its convergence proof are presented in Section II.
Simulation results and comparison with existing algorithms are pre-
sented in Section III. Conclusions are drawn in Section IV.

II. ALGORITHM

A. Dual Decomposition

Consider the optimization problem (8)

maximize
1

2
log

j K

k=1
HkSkH

T
k + Sz j

jSz j

subject to
K

k=1

tr(Sk) �

Sk � 0; k = 1; . . . ; K (9)

where the optimization variables are semidefinite matrices
S1; . . . ; SK . The optimization variable can also be thought of as
S = diagfS1; . . . ; SKg with the constraint tr(S) � . Without the
constraint that S must be block-diagonal, the problem is equivalent
to a conventional Gaussian vector channel for which the well-known
water-filling solution applies. However, water-filling does not neces-
sarily result in a diagonal transmit covariance matrix. On the other
hand, if S is kept as diagonal, but individual power constraints
are applied to each of Sk rather than the sum power constraint, a
numerical algorithm called “iterative water-filling” can be used to
find the sum capacity efficiently [6]. As mentioned earlier, the idea
of iterative water-filling is to optimize each Sk individually while
keeping all other Sk’s fixed. The fixed point of the iterative algorithm
is the global optimum. The primary difficulty in solving (9) is that
while the transmit signals must be independent, the constraint on their
covariance matrices is coupled.

The main idea of this correspondence is a dual decomposition tech-
nique that decouples the coupled constraint via a dual variable. The dual
decomposition method works as follows. First, introduce a new set of

scalar variables fp1 � � � pKg, and rewrite the optimization problem (9)
in the following form which has only a single coupled constraint

maximize
1

2
log

j K

k=1
HkSkH

T
k + Sz j

jSzj

subject to tr(Sk) � pk k = 1; . . . ; K;

Sk � 0; k = 1; . . . ; K;
K

k=1

pk � : (10)

Form the Lagrangian of the optimization problem with respect to the
coupled constraint K

k=1
pk �

L(S1; . . . ; SK ; p1; . . . ; pK ; �) =

1

2
log

j K

k=1
HkSkH

T
k + Sz j

jSzj
� �

K

k=1

pk � : (11)

Let the dual objective be

g(�) = max
S ;...;S ;p ;...;p

L(S1; . . . ; SK ; p1; . . . ; pK ; �) (12)

where the constraints of the maximization are tr(Sk) � pk and
Sk � 0. Because the original optimization problem is convex, the
dual objective reaches a minimum at the optimal value of the primal
problem. Thus, the sum-power multiple-access channel sum capacity
problem is equivalent to:

minimize g(�)

subject to � � 0: (13)

The key observations are that g(�) is easy to compute and the above
dualminimization problem can be solvedmore efficiently than the orig-
inal problem.
Consider first the evaluation of g(�). By definition, g(�) is the so-

lution to the following optimization problem:

maximize
1

2
log

j K

k=1
HkSkH

T
k + Szj

jSzj
� �

K

k=1

pk �

subject to tr(Sk)� pk � 0; k = 1; . . . ; K

Sk � 0; k = 1; . . . ; K: (14)

Notice that the abovemaximization problem has decoupled constraints.
Therefore, an iterative-water-filling-like algorithm can be used to solve
the problem efficiently. The iterative algorithm works as follows. In
each step, the objective function is maximized over a single pair of
(Sk; pk), while keeping all other (Sk; pk)’s fixed. Since the objec-
tive is nondecreasing with each iteration, the algorithm must converge
to a fixed point. At the fixed point, the set of (Sk; pk) satisfies the
Karush–Kuhn–Tucker (KKT) condition of the optimization problem
(14). Thus, the fixed point is the optimal solution.
In fact, each step of the iterative algorithm is just an evaluation of the

water-filling covariance matrix with a fixed water level. Without loss
of generality, consider the optimization over (S1; p1) while keeping
all other (Sk; pk)’s fixed. The KKT condition for the optimization
problem (14) over (S1; p1) (while keeping all other (Sk; pk)’s fixed)
can be obtained by differentiating its Lagrangian with respect to S1 and
p1. The Lagrangian is

~L(S1; p1; �1;�1) =
1

2
log

j K

k=1
HkSkH

T
k + Szj

jSzj

��

K

k=1

pk � � �1(tr(S1)� p1)� tr(�1S1): (15)

where �1 is the dual variable associated with the constraint tr(S1)�
p1 � 0, and �1 is the dual variable associated with the constraint
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S1 � 0. The KKT condition is obtained by setting @ ~L=@S1 = 0 and
@ ~L=@p1 = 0. This gives

1

2
HT
1

K

k=1

HkSkH
T
k + Sz

�1

H1 = �1I + �1 (16)

and

�1 = �: (17)

The above two equations are equivalent to

1

2
HT
1

K

k=1

HkSkH
T
k + Sz

�1

H1 = �I + �1 (18)

which is exactly the water-filling condition for a Gaussian vector
channel, except that in this case, � is fixed. Thus, the usual water-filling
procedure only needs to be modified slightly in order to find the op-
timal (S1; p1). The procedure is to water-fill up to a fixed water level,
rather than to water-fill subject to a fixed total power. More precisely,
let

K

k=2

HkSkH
T
k + Sz = QT�Q (19)

be an eigenvalue decomposition, where � is a diagonal matrix and Q
is an orthogonal matrix. The maximization problem (14) over (S1; p1)
while keeping all other (Sk; pk)’s fixed is equivalent to the maximiza-
tion of

1

2
log �� QH1S1H

T
1 Q

T�� + I � �p1: (20)

Let

�� QH1 = U

s1;1
. . .

s1;n

V T (21)

be a singular-value decomposition, where U and V are orthogonal ma-
trices. The optimal S1 is then

S1 = V

1

2�
� 1

s
+

. . .
1

2�
� 1

s
+

V T : (22)

The optimal p1 is then

p1 =

n

j=1

1

2�
�

1

s21;j +

(23)

where (�)+ = min(0; �).
The next step is to use the same procedure to find the optimal

(S2; p2), while keeping (S1; p1); (S3; p3); . . . ; (SK ; pK) fixed. The
algorithm then successively updates (S3; p3); (S4; p4); . . ., then
(S1; p1); (S2; p2) � � �. The iterative procedure is guaranteed to con-
verge to the optimal solution of (14).

It remains to minimize g(�) subject to the constraint � � 0. Here,
g(�) is a convex function. Further, the constraint set is a one-dimen-
sional interval. Thus, a standard search algorithm on � yields satisfac-
tory results. However, g(�) is not necessarily differentiable, so it is not
always possible to take its gradient. Nevertheless, the structure of g(�)
(i.e., the solution of (14)) reveals a possible search direction. In partic-
ular, it is possible to find a subgradient h such that for all �0 � 0

g(�0) � g(�) + h � (�0 � �): (24)

Let (S�1 ; . . . ; S
�

K ; p
�

1; . . . ; p
�

K) be the optimizing solution of (14) in the
definition of g(�). It is not difficult to see that

g(�0) = max
1

2
log

j K

k=1
HkSkH

T
k + Szj

jSzj
��0

K

k=1

pk�

�
1

2
log

j K

k=1
HkS

�

kH
T
k + Szj

jSzj
� �0

K

k=1

p�k �

= g(�) + �

K

k=1

p�k (�0 � �):

Thus, the following choice of h

h = �

K

k=1

p�k (25)

is a subgradient of g(�). The subgradient search suggests that

increase � if
K

k=1

p�k >

decrease � if
K

k=1

p�k < :

The search direction is intuitively obvious as � is related to the water-
filling level. The water-filling level should be adjusted according to
whether the total power constraint is exceeded. Because � adjustment
occurs in a one-dimensional space, it can be done efficiently using a
bisection search.
An outline of the proposed algorithm is as follows:

Algorithm 1: Computation of the sum-power constrained Gaussian
multiple-access channel sum capacity:

1) Initialize �min and �max.
2) Set � = (�min + �max)=2.
3) Solve for (S�k ; p

�

k)
K
k=1 in the optimization problem (14) with

the above � by iteratively optimizing each of (Sk; pk) using
(19)–(23) while keeping all other (Sk; pk)’s fixed. The iterations
cycle through k = 1; . . . ; K; 1; . . . ; K; . . . until the optimal
solution of (14) is reached.

4) If K

k=1
p�k > , then set �min = �, else set �max = �.

5) If j�min � �maxj � �, stop. Otherwise, goto Step 2).

Note that a desired accuracy of � in � translates directly to a desired
accuracy in (S1; . . . ; SK) and consequently a desired accuracy in sum
capacity. This is because g(�), as a convex function defined on a closed
and bounded interval [�min; �max], has a bounded subgradient.
The proposed algorithm can also be viewed as an iterative method

to solve the KKT condition of the original optimization problem.
The KKT condition of the sum-power multiple-access channel sum
capacity problem (8) consists of the stationarity condition

1

2
HT
i

K

k=1

HkSkH
T
k + Sz

�1

Hi = �I + �i (26)

for i = 1; . . . ; K , � � 0, �i � 0, and the power constraint

K

k=1

tr(Sk) � ; Sk � 0: (27)

The dual decomposition method starts with a fixed �, solves the set of
(26), then adjusts � according to the search direction suggested by the
power constraint.
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B. Practical Implementation

The proposed algorithm consists of two nested loops. In a practical
implementation, it is not necessary to wait for the inner loop to con-
verge fully in each iteration of the outer loop. This section contains an
analysis of the accuracy with which the inner loop must reach and a
modification of the above algorithm for practical implementation.

Instead of working with the dual variable � directly, it is easier to
recast the problem in terms of a new variable l = 1

2�
, which has the

interpretation of being the “water level” in the water-filling process. A
bisection search on l is numerically easier to analyze than a bisection
search on �. The strategy is not to run the inner iterative water-filling
loop to full convergence, but only to a tolerance �0 in total power, which
depends on the length of [lmin; lmax]. In each bisection step, instead of
reducing the length of feasible [lmin; lmax] by a factor of 0.5, a practical
implementation of the algorithm reduces the length by a factor of (0:5�
�), where 0 < � < 0:5. At a new water level of l = (lmin + lmax)=2
in one step of the bisection, the iterative water-filling process only has
to return a sum power that is as accurate as an equivalent accuracy of
��(lmax � lmin) in l. In practice, a value of � = 0:1 works well.

Consider the sum power ptotal = K

k=1
p�k as a function of l in

the inner iterative water-filling loop. Since ptotal is a continuous and
strictly increasing function of l defined on a closed and bounded in-
terval [lmin; lmax], its subgradient is bounded below. Let @p

@l
de-

note the subgradient; let d be a lower bound on the subgradient, i.e.,
@p

@l
� d. Then, to guarantee a level of accuracy of��(lmax�lmin)

in l in the inner loop, an equivalent accuracy in ptotal can be set as
�0 = �(lmax � lmin)d. Thus, if the inner iterative water-filling loop
uses the sum power as the terminating criterion with a tolerance set to
�0, then the outer loop is guaranteed to converge. Such a criterion is
easy to achieve in the iterative water-filling inner loop, because coor-
dinate descent is known to have an exponential convergence rate [10].

It remains to bound d. The value of d is problem specific. However,
in many situations, @p

@l
can be easily evaluated. Consider, for ex-

ample, a broadcast channel with a large number of users and with a
high signal-to-noise ratio (SNR). Intuitively, the optimal transmission
scheme involves a subset of users with good channels and with low
interference among them. In this case, let rk be the rank of the equiv-
alent channel for user k with a channel matrix Hk and a noise covari-
ance matrix Sz +

j 6=k
HjSjH

T
j . By the high SNR assumption, all

rk subchannels are active. Since p�k is the total power resulting from a
water-filling, it is easy to see that

@p

@l
� rk . This is because on each

subchannel, if the channel noise is fixed, then the power allocation is
a linear function of the water-filling level with a slope 1. In a matrix
channel with rk subchannels, the following holds:

@p

@l
� rk . There-

fore, @p

@l
�

k
rk , and d can be set to be a fraction of

k
rk .

When fewer than rk subchannels are allocated positive power, the ex-
pression can be suitably modified.

In practice, it is easy to numerically evaluate ptotal over the range of
[lmin; lmax] to obtain a bound on

@p

@l
. For the simulation in the next

section, it was found that d = 1

4
rank(H) works very well.

The modified algorithm is summarized below:

Algorithm 2: Computation of the sum-power constrained Gaussian
multiple-access channel sum capacity.

1) Initialize lmin and lmax.
2) Set l = (lmin + lmax)=2.
3) Set �0 = (lmax � lmin) � � � rank(H)=4.
4) Solve for (S�k ; p

�
k)

K
k=1 in the optimization problem (14) with

� = 1

2l
by iteratively optimizing each of (Sk; pk) using

(19)–(23) while keeping all other (Sk; pk)’s fixed. The itera-
tions cycle through k = 1; . . . ; K; 1; . . . ; K; . . . until the sum
power is within �0 of the optimal solution.

5) If K

k=1
p�k > , then set

lmax = lmax � (lmax � lmin) � (0:5� �) :

else set

lmin = lmin + (lmax � lmin) � (0:5� �):

6) If j�min � �maxj � �, stop. Otherwise, goto Step 2).

III. NUMERICAL SIMULATION

The iterative-water-filling-based algorithm proposed in this corre-
spondence exploits the structure of the optimization problem and is
much faster than generic gradient-search-based algorithms [9] or inte-
rior-point methods. In this section, the focus is on the comparison of
the proposed dual decomposition algorithm with the other two itera-
tive-water-filling-based algorithms proposed in [7].
The algorithms in [7] are motivated as follows. Instead of updating

the noise covariance matrix as soon as a water-filling step for a single
user is taken, the algorithms in [7] perform a single water-filling over
allK channels with a single power constraint . This water-filling step
ensures that the total power is always , thus eliminating the need for an
outer power update. However, in order to ensure convergence, the up-
date of the covariancematricesmust be taken as an average of the newly
obtained water-filling covariance with the past K � 1 covariance ma-
trices. This update rule is named “Algorithm One” in [7]. “Algorithm
One” has an O(K2) memory requirement because O(K) covariance
matrices need to be stored in the memory for each of the K users. To
obtain an algorithm with O(K) memory requirement, [7] further pro-
poses a different update rule in which the new water-filling covariance
is averaged with the immediate past covariance matrix only. However,
the newly obtained covariance is given a weight of 1

K
, and the imme-

diate past covariance is given a weight of K�1

K
. This second update

rule is named “Algorithm Two.” In the following discussion, the two
algorithms proposed in [7] are copmpared with the algorithm proposed
in Section II-B of this correspondence, which is referred to as the “dual
decomposition” algorithm.
Fig. 1 illustrates the convergence behavior of the proposed dual de-

composition algorithm as compared with “Algorithm One” and “Algo-
rithm Two” of [7]. A broadcast channel in which the transmitter has
10 antennas and each receiver has 2 antennas is considered. Each entry
of the channel matrix is an i.i.d. Gaussian random variable with mean
0 and variance 1. The total power constraint is set to be 10. Two sce-
narios with the number of users K = 10 and K = 50 are simulated.
Each iteration of the three algorithms consists of an equivalent of K
individual water-filling steps. The horizontal segments in the curve for
the dual decomposition algorithm represent the number of iterations
for each fixed �. The staircase shape of the curves is indicative of the
bisection algorithm on �.
First, it was observed that all three algorithms converge to the cor-

rect sum rate. However, while the algorithms proposed in [7] approach
the correct sum rate faster at the beginning, they suffer from a poorer
asymptotic convergence behavior for systems with a large number
of users. With K = 10, the proposed dual decomposition algorithm
converges at about the same rate as “Algorithm One”, but converges
faster than “Algorithm Two”. (The comparison with “Algorithm One”
is problem specific. Both cases in which the dual decomposition algo-
rithm outperforms “Algorithm One” and cases in which “Algorithm
One” outperforms the dual decomposition algorithm are observed.) As
both the dual decomposition algorithm and “Algorithm Two” require
onlyO(K)memory while “Algorithm One” requiresO(K2)memory,
the comparison with “Algorithm Two” is more fair. WithK = 50, the
dual decomposition algorithm outperforms both “Algorithm One” and
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Fig. 1. Comparison of numerical algorithms for sum capacity computation of the Gaussian vector broadcast channel. The transmitter hasm = 10 antennas.
Each receiver has n = 2 antennas. The convergence behavior of various algorithms for a system withK = 10 users is plotted on the left. The convergence
behavior for a system withK = 50 users is plotted on the right.

“Algorithm Two” significantly. The apparent initial faster convergence
of “Algorithm One” and “Algorithm Two” is due to the fact that
both algorithms always satisfy the power constraint exactly in each
iteration, while the dual decomposition algorithm requires several
iterations to zoom in on a correct power level.

The proposed dual decomposition algorithm also has the very desir-
able property that its asymptotic convergence rate appears to be inde-
pendent of K . As the complexity per iteration scales linearly with K ,
the computational complexity of the algorithm is roughlyO(K), which
is important for a system with a large number of users. This conver-
gence behavior is due to the fact that the proposed algorithm solves the
problem in the dual domain in which g(�) is always one dimensional
regardless of the number of users in the system. The asymptotic con-
vergence rates of algorithms proposed in [7] are highly problem-size
dependent. The total computational complexity of the algorithms pro-
posed in [7] does not scale linearly with K .

The advantage of the proposed dual decomposition algorithm over
the algorithms proposed in [7] for systems with a large number of users
is significant, because this is also the regime in which the benefit of
transmit optimization is the largest. In a downlink system, in which the
number of users is much larger than the number of transmit antennas,
the transmit optimization process implicitly selects the best subset of

active users. The improvement in system performance due to the se-
lection of an optimal set of active users is commonly referred to as
the benefit of multiuser diversity. The dual decomposition algorithm
proposed in this correspondence gives an efficient way to evaluate the
benefit of multiuser diversity in term of sum capacity.
Finally, it should be noted that each iteration in the proposed dual-

decomposition algorithm consists of K individual water-filling steps,
which can be performed in O(K) operations. In contrast, each iter-
ation in the two algorithms proposed in [7] requires a simultaneous
water-filling over O(K) subchannels, which requires O(K log(K))
operations. Thus, the asymptotic complexity per iteration for the dual
decomposition algorithm is also lower than that of the algorithms in [7].

IV. CONCLUSION

This correspondence proposes a numerical solution to solve for the
sum capacity of a Gaussian vector broadcast channel. The broadcast
channel is first transformed into a sum-power constrained Gaussian
vector multiple-access channel, for which an iterative-water-filling
based algorithm is proposed to compute its sum capacity. The main
feature of the proposed algorithm is a dual decomposition approach
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that decouples the sum-power constraint. The proposed algorithm ex-
hibits a faster asymptotic convergence rate and a lower computational
complexity than comparable algorithms in the literature.
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An Asymptotic Analysis of Band-Limited DS/SSMA
Communication Systems
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Abstract—A new asymptotic analysis is presented to establish whether
or not commonly used techniques to approximate the performance of
direct-sequence spread-spectrum multiple-access (DS/SSMA) systems
still apply when the systems are strictly band limited. The results apply
to any linear data modulation and spreading scheme. The interference
components, including the interchip interference (ICI) of a linear receiver
output, are shown to be asymptotically jointly Gaussian random variables
conditioned on the phases and delays of the interfering signals. Expressions
for the error probabilities of band-limited systems are also developed from
this result.

Index Terms—Approximation theory, asymptotic analysis, code-division
multiple access, interference.

I. INTRODUCTION

Analysis of asynchronous direct-sequence spread-spectrum mul-
tiple-access (DS/SSMA) communication systems has long been a
topic of interest. The objectives of the analysis have been to identify
key design parameters and to understand how the parameters affect
the system performance. The difficulty in the analysis is that finding
the exact probability distribution of the decision variable is not
feasible in many cases, and that, even if this is possible, the exact
distribution may not identify the key design parameters and may not
reveal how the parameters affect the system performance. Hence,
research on the analysis of asynchronous DS/SSMA systems has been
focused on deriving simple and accurate approximation methods that
satisfactorily accomplish the objectives of the performance analysis.
Gaussian approximations to the overall interference at the output of
linear receivers are commonly used to analyze the performance of
DS/SSMA communication systems. However, since the validity of the
approximation methods has been established mainly for the systems
employing time-limited chip waveforms, they do not necessarily apply
to band-limited systems where the durations of chip waveforms are
much longer than the reciprocal of the chip rate. In this work, a new
asymptotic analysis is presented to establish the validity of Gaussian
approximations for the systems employing more general chip wave-
forms of interest, which include strictly band-limited waveforms.
The simplest among theGaussian approximations developed so far is

the standard Gaussian approximation (SGA) [1], where the overall in-
terference in the decision variable is approximated as a Gaussian noise.
The SGA is justified for asynchronous DS/SSMA [5] and for symbol-
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