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Sum Capacity of the Vector Gaussian Broadcast
Channel and Uplink–Downlink Duality
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Abstract—We characterize the sum capacity of the vector
Gaussian broadcast channel by showing that the existing inner
bound of Marton and the existing upper bound of Sato are tight for
this channel. We exploit an intimate four-way connection between
the vector broadcast channel, the corresponding point-to-point
channel (where the receivers can cooperate), the multiple-access
channel (MAC) (where the role of transmitters and receivers are
reversed), and the corresponding point-to-point channel (where
the transmitters can cooperate).

Index Terms—Broadcast channels, downlink, multiple antennas,
wireless system.

I. INTRODUCTION

WE consider a memoryless vector Gaussian broadcast
channel to model the downlink of a wireless system

with antennas at the base station andusers with a single
antenna at each receiver. Focusing on one particular time
instant, denote the received symbol at receiverby and

. They are related by

(1)

Here is a fixed matrix with entry denoting the
(flat-fading) channel gain from theth antenna to theth user,
assumed to be known at both the transmitter and receivers.
is the vector input to the antenna array with an average total
power constraint of . The additive noise is zero mean, unit
variance, complex circular symmetric Gaussian. Each user
has access only to the received symbol. For , this
is a vector Gaussian broadcast channel, and unlike the scalar
Gaussian broadcast channel , it is in general not de-
graded and the capacity region is unknown. The main result of
the paper is the following characterization of thesum capacity
of this channel.
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Theorem: The sum capacity of the vector Gaussian broad-
cast channel is

where is the set of by nonnegative diagonal matrices
with .

Recent work by Caire and Shamai [2] obtains the sum
capacity for the special case of users. They propose
a transmission scheme which uses Costa’s “Writing on Dirty
Paper” precoding technique [3]. This scheme can also be
interpreted as Marton’s broadcast coding technique [9] applied
to the vector Gaussian channel. For the case of two users, Caire
and Shamai showed that this scheme is optimal in achieving
the sum capacity, by demonstrating that the achievable rate
meets the Sato’s upper bound [12], which is the capacity of a
point-to-point channel where the receivers in the downlink can
cooperate. The proof involves a direct calculation and seems
difficult to be generalized to .

In this paper, we generalize Caire and Shamai’s result to ar-
bitrary number of users through a deeper investigation of the
structure of the relevant optimization problems. We first ana-
lyze the maximum sum rate achievable by the Costa precoding
technique, by exploiting a duality between the downlink (broad-
cast) and the uplink (multiple access). We develop this duality
(as a change of variable) in Section II. In Section III, we show
that this sum rate meets Sato’s upper bound. The key step is to
show that the optimization problems for the Sato bound and for
the sum capacity of the multiple-access channels (MACs) are
convex duals of each other.

To keep the notations simple, we will confine ourselves in
most of the paper to the case when each user has a single an-
tenna element. Our techniques can be naturally generalized to
the case when the users have multiple antennas; this is discussed
in Section IV.

Independent proofs of the same result were reported in [20]
and [22].

Notations: we use lower case letters to denote scalars, upper
case letters to denote matrices, and boldface to denote vectors.

denotes a complex circular symmetric Gaussian dis-
tribution with mean and covariance matrix .

II. UPLINK–DOWNLINK DUALITY AND COSTA PRECODING

In this section, we analyze the performance of the Costa pre-
coding based broadcast strategy. The key step is to observe an
equivalence between the performance of a class of receive and
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Fig. 1. Linear transmit–receive strategy.

transmit strategies when the role of transmitters and receivers
are reversed for vector Gaussian channels. This equivalence has
been observed in seemingly different contexts in the literature.

1) In the context of the capacity of a point-to-point multiple-
transmit, multiple-receive antenna channel, [15] shows
that the capacity is unchanged when the role of the trans-
mitters and receivers is interchanged. The author calls this
a reciprocity result.

2) In the context of a downlink of a multiple antenna
system employing simple linear beamforming strategies
followed by single-user receivers by the users, [19] and
[10] show that the optimal choice of transmit and receive
beamforming vectors is closely related to avirtual uplink
problem.

3) In the context of the degraded Gaussian broadcast
channel, [8] shows that the capacity region is the same
as the capacity region of the corresponding MAC with
the transmit power constraint of the broadcast channel
translated to the sum of powers in the MAC. The authors
name their result aduality connection.

We focus on a certain class of transmission and receive strategies
which have equivalence of performance when the role of trans-
mitters and receivers are reversed with a natural conservation of
total power transmitted. This allowed us to succinctly generalize
the underlying common phenomenon of the observations above
and gives a simple characterization of the maximum achievable
sum rate of the Costa precoding strategy. An independent and
similar derivation of the duality in the context oflinear beam-
forming strategies is presented in [13].

A. Point-to-Point Reciprocity Revisited

Let us start with a point-to-point vector Gaussian channel

(2)

with being a fixed matrix of dimension by . The addi-
tive noise is . We consider a linear transmission and
reception strategy as shown in Fig. 1. The transmitted signal is

where and can be interpreted as the information symbol
and the transmit vector for theth data stream respectively. The

th information stream is demodulated by the receive vector

The vectors ’s and ’s are normalized so that their norm
is unity.

The output of the receive filter contains in part the signal
of interest and in part the interference from the other streams
plus the background noise. A key performance measure is the
signal-to-interference ratio (SIR)

SIR (3)

where is the power allocated to stream.

Denoting where

SIR

SIR

we can rewrite (3) in matrix notation as

(4)

where the matrix has th component equal to
. As in [7, Sec. II-E], a positive solution tothat sat-

isfies (4) exists if and only if the Perron–Frobenius eigenvalue of
is less than . This characterizes theper-

formance regionof the bank of linear transmit and receive fil-
ters, i.e., the set of vectors’s or, equivalently, the set of SIR
requirements that can be met. For a given set of SIR require-
ments, the corresponding component-wise minimum transmit
power required is

(5)

where and is the vector of all
’s [14, Theorem 2.1].
Now we turn to the reciprocal channel of (2).

(6)

with input of dimension and output of dimension (i.e.,
the transmitter and receiver reversed). Let us consider a linear
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Fig. 2. The reciprocal channel.

transmission strategy in which the transmit and receive filters
are the reverse of those used for the original channel

and

(see Fig. 2). The SIR of userwith this transmission–reception
strategy is

SIR (7)

where is the power allocated to stream.
Denoting where

SIR

we can rewrite (3) in matrix notation as

(8)

where the matrix has th component equal to
. A positive solution to that satisfies (8) exists if and

only if the Perron–Frobenius eigenvalue of
is less than . This characterizes theperformance regionof
the transmission strategy, and for given SIR requirements, the
corresponding component-wise minimum transmit power re-
quired is

(9)

where .
We now state the equivalence between the two reciprocal sys-

tems. The performance of the two systems are fully charac-
terized by the pairs and , respectively. Note that

and for the same SIR requirements, . From
this we can make two observations. First, the achievable SIR
performance region in both these cases is thesame, i.e., given
SIR requirements can be met in one system if and only if they
can be met in the other system. This is seen by noting that
the Perron–Frobenius eigenvalues of and

are the same. Second, we observe that for
any given achievable performance , the sum of the min-

imal transmit powers required to achieve this performance is
also identical in the two systems

An immediate consequence of this equivalence is that the ca-
pacities of the original point-to-point channel (2) and its recip-
rocal (6) under the same total power constraint are equal. This
follows from the fact that the capacity-achieving transmit–re-
ceive strategies are linear, with independent Gaussian signaling
on parallel, noninterfering links (the ’s and the ’s are then
the left and right eigenvectors of, respectively.) One can also
see this by observing that and have the same nonzero sin-
gular values and the capacity of a point-to-point vector Gaussian
channel depends only on the nonzero singular values of the
channel matrices [15]. However, the preceding equivalence is
stronger as it applies toeverychoice of linear transmit–receive
filters. It also reveals the underlying structure that can be gen-
eralized to other settings, as we shall now see.

B. Linear Beamforming in Uplink and Downlink

The point-to-point reciprocity developed in the preceding
subsection can be directly applied to establish a connection be-
tween the uplink and downlink linear beamforming problems.
Consider an uplink (multiple-access) channel withusers and

antenna elements at the receiver

(10)

The difference with the point-to-point channel is that the
transmit antennas cannot cooperate, i.e., we are constrained
to using transmit vector (with
in the th position) for the data stream for theth user. The
receive vector can now be interpreted as a linear receive
beamforming vector for demodulating the signal for user.
Direct application of the equivalence in Section II-A yields the
following performance equivalence between this uplink and
the downlink:

(11)

where now acts as thetransmitbeamforming vector for the
th user. The receive vector , signi-

fying that the users cannot cooperate in demodulating the sig-
nals (see Fig. 3). More precisely
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Fig. 3. Uplink with linear receive beamforming and downlink with linear transmit beamforming.

• the sets of achievable SIRs are the same in both cases;

• to meet given SIR requirements, thesumof the powers of
the users in the uplink is equal to the total transmit power
in the downlink. This holds for all choice of the filters

.

In the uplink, it is easy to compute the optimal receive vectors
and power allocation that minimizes the total power consumed.
Given a set of powers of the users, the minimum mean-square
error (MMSE) filter should be used, since it maximizes the
SIR for user . The optimal allocation of powers can be ob-
tained by a simple iterative algorithm that exploits the mono-
tonicity of the problem [17]. A direct solution to the downlink is
not as obvious. However, the equivalence derived above shows
that the downlink can be solved by converting it to an uplink
problem. The optimal transmit filters in the downlink are ex-
actly the MMSE receive filters used in the uplink. This fact was
first discovered in [10] and [19], but by showing the equivalence
between the two optimal solutions rather than the equivalence
between the performance for all choice of transmit/receive vec-
tors, as is done here.

C. Costa Precoding and Successive Cancellation

There is an important difference between the point-to-point
and multiuser scenarios: whereas linear transmit–receive strate-
gies are capacity achieving for the point-to-point scenario, they
are not for the multiuser uplink and downlink scenarios. Nev-
ertheless, it turns out that a very similar equivalence holds even
for nonlinear strategies thatarecapacity achieving for the mul-
tiuser scenarios.

We first focus on the uplink and order the users as .
We retain the bank of linear receive filters but de-
modulate user symbols using successive cancellation (this is a
multiuser receiver in contrast to the earlier single-user receiver

structure), canceling in the order . The SIR of user
with this receiver structure is

SIR

with the signals from users are decoded and per-
fectly canceled. In the matrix notation of (4), we have

(12)

Here we have introduced the notation to indicate the upper
triangular part of , i.e., the th entry of is if

and otherwise. For the specific choice of as the
MMSE receiver of user treating signals from users
to be nonexistent and treating signals from users
as noise, for every , i.e., the unnormalized vector has the
expression

(13)

we know that the sum capacity of the MAC is achieved [18] and

SIR

(14)
In the broadcast channel, we retain the bank of linear filters

but use a transmission strategy that codes for the users based
onknown interference at the transmitter. This strategy was pro-
posed for the vector Gaussian broadcast channel in [2] and is
built on a result of Costa [3]. Consider the scalar point-to-point
channel
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where are independent Gaussian noise withknown to the
transmitter but not to the receiver andknown to no one. Costa
showed that the capacity of this channel is the same as that of
the additive white Gaussian noise (AWGN) channel ,
i.e., having the side information on at the transmitter is as
powerful as knowing both at the transmitterand the receiver.
This idea can be applied to the broadcast channel to improve
the performance of linear transmit beamforming strategies. As
before, we transmit . The received signal at
user is

We use Gaussian independent inputs for with
variances and perform Costa precoding for each
user , encoding the information in treating the interference

from users as side information
known at the transmitter and the interference from the other

users as Gaussian noise. Hence, we obtain the rates

SIR (15)

where

SIR

for each . Note that user now only sees inter-
ference from users , in contrast to the linear beam-
forming strategy where it sees interference from all other users.

In the matrix notation of (8), we can write this as

(16)

Here we defined as a matrix whose th component is
equal to if and otherwise. Observing that

, we see that the performance of the uplink and down-
link channels are equivalent (in terms of the SIRs achievable and
the minimum transmit power required to achieve it) even with
this extended set of transmission–reception strategies. Thus, for
every transmit power vectorin the uplink and the choice of
as in (13), we have that there exists a downlink transmit power
vector with such that the sum of achievable
rates can be written as, (from (15) and (14))

Since the nonnegative power vectoris only constrained by

we have shown that the Costa achievable sum rate of the broad-
cast channel is equal to that of the MAC in (10) with a constraint

on the sum of the transmit powers of the users. This yields a
lower bound to . Summarizing, we have the following.

Lemma 2: The maximum achievable sum rate is equal
to the sum capacity of the uplink MAC under a total power
constraint on the users. More explicitly

(17)

where is the set of by nonnegative diagonal matrices
with .

Here the elements of are the powers allocated to the users
in the uplink MAC. We stated the correspondence between
the uplink and the downlink in terms of the sum rate, but it
is not too difficult to see that theentire Costa achievable rate
region (i.e., all the rate vectors achievable by arbitrary choice
of beamforming vectors, power allocation across users, and
precoding orders) is, in fact, the same as the MAC capacity
region. This is because of the one-to-one correspondence
between the Costa precoding strategies in the downlink and
the successive decoding strategies in the uplink, and the latter
being sufficient to achieve any rate point in the MAC capacity
region. (This result is independently arrived at in [20].)

Although we introduced the broadcast transmission scheme
in terms of Costa precoding, it should be noted that the achiev-
able rates are, in fact, a subset of the achievable region for
general broadcast channel first proposed by Marton [9] (this
strategy provides the largest known achievable region for a
general broadcast channel).

Theorem 3 (Marton):Fix the joint distribution
for some auxiliary random variables

(with no constraints on the cardinality of their
alphabets) and is a random variable on the input alphabets.
The following is an achievable rate region:

(18)

Let and independent across. If we let
and

then it can be seen by a direct calculation that the resulting rate
point in the Marton’s region is exactly the same as that achieved
by Costa’s precoding strategy defined above. The conceptual
connection between Marton’s and Costa’s result is that they are
both based on a random binning encoding technique. In fact,
the connection between the broadcast channel problem and the
problem of channel coding with side information at the trans-
mitter has been known for some time [6].
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III. CONVERSE

A. Sato Upper Bound

To show that the sum rate is the best that can be
achieved byanystrategy, we begin with an upper bound on the
sum capacity of an arbitrary broadcast channel by Sato [12]. A
cooperative upper bound to the sum capacity of the broadcast
channel is the capacity of the point-to-point channel with all
the receivers cooperating. Observe that while the capacity
region of the broadcast channel depends only on the marginal
distribution of the ’s and not on the joint distribution, this
is not the case for the capacity of the point-to-point channel.
Hence the capacity - of the point-to-point channel
generated from the downlink by cooperating receivers

(19)

is an upper bound to the sum capacity of the broadcast
channel (11) for any choice of with the diagonal elements
less than or equal to. Here

-

We can now minimize over all such possible noise covariance
matrices to obtain (and as derived explicitly in [2] for the case
of )

- (20)

where is the set of positive semidefinite matrices with diag-
onal values less than or equal to.

In the next two subsections, we show the existence ofsuch
that equals the upper bound in (20).

B. Point-to-Point Reciprocity

So far, we have considered three channels: 1) the original
downlink broadcast channel; 2) the point-to-point channel in
Sato bound, by having the receivers in the downlink cooperate;
3) the uplink MAC which is dual to the broadcast channel
under Costa strategies. A natural way to connect the Costa
lower bound with the Sato upper bound is to introduce a fourth
channel, the reciprocal of the point-to-point channel in Sato
bound, with the roles of the transmitters and receivers again
reversed. This is a point-to-point channel withtransmitting
antennas and receiving antennas (generated from the uplink
by a cooperation among the transmitters)

(21)

There is a quadratic cost function on the input:
, where is Hermitian nonnegative definite, and a

constraint that the average cost per unit time must be no greater
than . The capacity of this channel is

- (22)

The following result relates the capacities of the downlink
point-to-point channel (in Sato bound) and this uplink point-to-
point channel.

Lemma 4:

- -

for all nonnegative-definite Hermitian matrix.
Proof: This result is a slight generalization of the point-to-

point reciprocity described in Section II-A. If is invertible,
then we can factorize and whiten the noise
in the channel (19) and obtain the equivalent channel

where . From point-to-point reciprocity, the
capacity - of the channel (19) is the same as that of
the channel

with the constraint that . With a change of variable
, we get the equivalent channel

with the constraint that . This is precisely the
reciprocal channel (21). Hence, - - .

Now suppose is not invertible, Consider first the case when
is not perpendicular to . Let which

has a nonzero projection in . Then by signaling along the
direction , where , then one can get infinite rate in
the point-to-point channel (19), since one can just project the
received signal onto where there would be no noise and
nonzero signal power. Hence, - . Next pick a

in which has a nonzero projection in . Since
is perpendicular to , is not in . Hence,

by signaling along the direction , we can use arbitrary high
power and get arbitrarily high rate without incurring any cost
in the reciprocal channel (21). Hence, - as well.

- .
Now let us consider the case when is perpendicular to

. Let

where is the rank of and the ’s are the orthonormal eigen-
vectors corresponding to the nonzero eigenvaluesof . Let

Since

is a sufficient statistic for the channel (19), where
. By reciprocity, this channel has the same

capacity as

where . Now if we define , then

Hence in this case - - as well.
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Fig. 4. The four channels, multiple access, broadcast, and their corresponding point-to-point channels, depicted along with the relationship between their
capacities.

C. Finding the Right Cost Matrix

The relationship between the four channels are shown in
Fig. 4. The uplink–downlink duality allows a correspondence
between Costa strategies (a subset of all possible broadcast
strategies) and the reciprocal uplink MAC. We need to show
that the optimal Costa precoding strategy achieves the Sato
upper bound. Using the uplink–downlink duality and the
point-to-point reciprocity developed above, this is equivalent to
showing that there exists a cost matrixsuch that the capacity
of the reciprocal point-to-point channel equals the sum capacity
of the MAC . There is actually a close connection between the
two channels. We can rewrite the capacity (22) of the uplink
point-to-point channel as

- (23)

where is the set of by positive semidefinite matrices
with . Comparing this to the expression (17)

for the sum capacity of the MAC , we see that in the reciprocal
point-to-point channel, the users are allowed to cooperate (i.e.,

can be nondiagonal) but a price has to be paid (as dictated
by the cost matrix ). If for all , we can see that any
feasible (noncooperating) input for the MAC is also a valid
input for the point-to-point channel. Hence, - .
We now find a with diagonal elements such that

- , i.e., a such that the input that is optimal for
the MAC is also optimal for the uplink point-to-point channel.

To this end, define the Lagrangian for the constrained opti-
mization problem (23)

where is the Lagrange multiplier for the cost constraint
. A sufficientKuhn–Tucker condition for

to be optimal for problem (23) is that

(24)

for some (25)

By directly computing the gradient, the second condition (25)
can be rewritten as

for some (26)

Hence, if we set

(27)

condition (26) is satisfied. To show that there is asuch that
condition (24) is satisfied as well, we observe that since

solves the optimization problem (17) for the
MAC channel, it satisfies the Kuhn–Tucker conditions, which
can be easily derived: for all

if

if

for some . Thus, if we now set in (27), then the
diagonal entries of are equal to or less thanand

i.e., condition (24) is satisfied as well. Hence,

- and

The choice of the cost matrix gives no incentive for the
users to cooperate in the uplink, even if they could.

Returning to Fig. 4, this establishes the existence of a cost
matrix such that the sum capacity of the MAC equals the ca-
pacity of the reciprocal point-to-point channel. Through the up-
link–downlink duality and the point-to-point reciprocity, this, in
turn, implies that the optimal Costa precoding strategy achieves
the Sato bound. The proof of Theorem 1 is now complete.

Essentially, what we constructed is a cost function such that
the optimal input for the point-to-point channel is the desired
one (the optimal noncooperating input for the MAC.) Interest-
ingly, a similar line of thinking is useful in the seemingly unre-
lated problem of optimality of uncoded transmission [5].
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D. Convex Duality Interpretation

Should one be surprised by the existence of such awhich
leads to the desirable state of affairs? To get more insight, let
us prove the result in a slightly different and more abstract way.
Define

The MAC sum capacity optimization problem can be written as

subject to

for all for all (28)

Introducing Lagrange multipliers , the convex dual of this
problem is

If we define a by matrix with and
, then we can rewrite the above problem as

(29)

We can introduce an additional positive-semidefinite matrix
and it is easy to see that the following is an equivalent

form:

(30)

By convex duality theory with positive-semidefinite constraints
([1, Sec. 4.8] is the appropriate modern reference while [11,
Theorem 28.4] is the classical reference on the topic)

Substituting into (30)

-

We conclude that the Sato bound (in the form of the reciprocal
channel) is essentially the convex dual of the MAC sum capacity
maximization problem, the only difference being that in the
Sato’s bound, the minimization is over only positive-semidef-
inite matrices while in the convex dual the minimization is
overall . However, since in the latter problem the saddle point

must satisfy

for some , where , it
follows that must also be positive semidefinite. Thus, con-
straining the minimization to positive-semidefinite matrices in
the convex dual problem does not affect its value.

This identification gives a Lagrangian interpretation to the
matrix : it forms the (scaled) Kuhn–Tucker coefficients as-
sociated with the constraints of the MAC (namely, independent
inputs and an overall power constraint).

IV. GENERALIZATION TO MULTIPLE RECEIVE ANTENNAS

So far we have considered only single receive antenna at each
user. Consider now multiple receive antennas at user. The
received signal at useris now a vector

(31)

with the entries of the matrix representing the
channel from the transmit antennas to the receive an-
tennas. Without loss of generality let . So far
we have discussed the situation of for all users . Fol-
lowing this discussion, a natural extension of our main result,
Theorem 1, is the following.

Theorem 5: The sum capacity of the broadcast channel in
(31) with an overall transmit power constraint ofis

(32)

In complete analogy with the single receive antenna discus-
sion, the expression in (32) is the sum capacity of the reciprocal
uplink MAC with multiple transmitantennas at user

(33)

We first consider the forward part of Theorem 5, i.e., we want to
show that the largest sum rate with Costa strategies is equal to
the sum capacity of (33). We will use the uplink–downlink du-
ality developed in Section II-B. First, each usernow transmits
its data on separate streams. Each data stream is communi-
cated using linear transmit and receive filters (Fig. 1). The filters

corresponding to the data streams of user
all have the property that they have nonzero components only

in the positions to . This is analogous
to the only nonzero entry in theth position in our earlier dis-
cussion (Section II-B). These filters serve as transmit filters in
the reciprocal MAC (and the specification of the nonzero en-
tries indicates which of the antennas can be used jointly to send
the stream) and as receive filters in the broadcast channel (and
here the specification of the nonzero entries indicates which of
the antennas can be used jointly to receive the stream). Since
these linear strategies combined with successive cancellation
achieve the capacity region of the MAC (in (33)) we can con-
clude by the uplink–downlink duality that the maximum sum
rate using Costa coding strategies in the broadcast channel (of
(31)) is equal to the sum capacity of the MAC. This shows the
forward part of Theorem 5.

The converse is similar to the approach in Section III. The
Sato bound lets all the users cooperate thus creating a giant
point-to-point MAC (with number of receive an-
tennas). We want to correlate the noises across the antennas of
the users so that the benefit of this cooperation is minimized. An
explicit construction of such a correlation structure with which
there is no benefit to cooperation, analogous to thein Sec-
tion III-D, is done through a convex duality argument: the op-
timal correlation structure forms the Kuhn–Tucker coefficients
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Fig. 5. The four channels, multiple access, broadcast with Costa inputs, and their corresponding point-to-point channels. Costa strategies are a subset of general
strategies on the broadcast channel. The capacity of the point-to-point channels under the minimizingQ equals the sum capacities of the multiple access and
broadcast channels.

associated with the constraints in the reciprocal MAC (in (33))
(namely, independent vector Gaussian inputs and a total power
constraint).

Both the forward part and the converse for multiple-receive
antennas are carefully carried out in [16], which also derives
other results that shed insight into the entire capacity region of
the vector Gaussian broadcast channel.

V. CONCLUSION

In this paper, we computed the sum capacity of the vector
Gaussian broadcast channel. The central problem is to show
that the maximum achievable rate by Costa’s strategy is equal to
the capacity of the point-to-point channel where receivers coop-
erate, for a suitable choice of the noise covariance. We solve
this problem in three steps.

1) We showed that the achievable region by Costa’s strategy
equals the multiple-access capacity region with transmit-
ters and receivers reversed.

2) We showed that the capacity of the downlink point-to-
point channel with noise covarianceand receivers co-
operating equals the capacity of the uplink point-to-point
channel with transmitters cooperating and a quadratic
cost function .

3) We showed that there exists a cost matrixsuch that the
uplink point-to-point capacity equals the sum capacity of
the MAC. The cost matrix has the interpretation of a
Lagrangian price to force users not to cooperate in the
uplink.

The proof is summarized in Fig. 5.

An independent and different proof is given in [22], where the
authors directly worked with the downlink channel and showed
the existence of a noise covariance such that cooperating
among the receivers did not provide any additional benefit.
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