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Sum-Rate and Power Scaling of Massive

MIMO Systems with Channel Aging
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and Zhaoyang Zhang

Abstract

This paper investigates the achievable sum-rate of massivemultiple-input multiple-output (MIMO)

systems in the presence of channel aging. For the uplink, by assuming that the base station (BS) deploys

maximum ratio combining (MRC) or zero-forcing (ZF) receivers, we present tight closed-form lower

bounds on the achievable sum-rate for both receivers with aged channel state information (CSI). In

addition, the benefit of implementing channel prediction methods on the sum-rate is examined, and closed-

form sum rate lower bounds are derived. Moreover, the impactof channel aging and channel prediction

on the power scaling law is characterized. Extension to the downlink scenario and multi-cell scenario

are also considered. It is found that, for a system with/without channel prediction, the transmit power

of each user can be scaled down at most by1/
√
M (whereM is the number of BS antennas), which

indicates that aged CSI does not degrade the power scaling law, and channel prediction does not enhance

the power scaling law; instead, these phenomena affect the achievable sum-rate by degrading or enhancing

the effective signal to interference and noise ratio, respectively.
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I. INTRODUCTION

In order to meet the exponential growth of mobile and wireless data traffic, the fifth generation

wireless systems are expected to deliver a thousand-fold higher capacity [1]. Among various

potential enabling technologies to tackle such challenges, massive MIMO [2], where the BS

deploys an unprecedented number of antennas to simultaneously serve a much smaller number of

users, stands out as a promising candidate because of its remarkable capability of substantially

improving both the spectral and energy efficiency [3], [4]. As such, massive MIMO technology

has attracted enormous research attention from both academia and industry.

The gains of massive MIMO systems were initially demonstrated by assuming an ideal prop-

agation environment. As such, understanding the performance limits of massive MIMO systems

in realistic propagation environments is of paramount importance. Thus far, the impact of various

practical channel imperfections on the performance of massive MIMO systems has been studied in

literature by including line-of-sight effect [5], [6], spatial correlation [7]–[10], pilot contamination

[11], [12], pilot design for channel estimation [13], [14],channel estimation error [15], [16],

channel quantization [17]–[20], transceiver hardware impairments [21], [22], and phase noise

drift [23].

In addition to the above mentioned channel/system imperfections, there is another important

aspect of practical channel impairments known aschannel aging; this refers to the phenomenon

that channel varies between when it is learned via estimation and when it is used for precoding

or detection because of the random fluctuation of the propagation channel due to the relative

movement between the users and the BS, as well as, the processing delay at the BS. Despite

its significance, very few works have investigated its impact on the performance of massive

MIMO systems. Capitalizing on the deterministic equivalent analysis framework [7], the effect of

inaccurate CSI due to channel aging was first studied in [24] by assuming matched filter at the

BS. Later on, the analysis was extended to the scenario with more sophisticated receivers, such

as regularized ZF precoders (downlink) [25] and minimum-mean-square-error (MMSE) receivers

(uplink) [26].

The analytical expressions developed in [24]–[26] are derived by employing the deterministic

equivalent approach which relies on the key assumption of large system regime, i.e.,M → ∞
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andK → ∞, whereM is the number of BS antennas andK is the number of users, and they

only serve as accurate approximations. Hence, it is also of great interest to find tight sum rate

bounds valid for arbitrary finiteM andK, which provide an alternative perspective of quantifying

the sum rate. In this regard, we propose tractable and tight lower bounds on the achievable sum

rate of the system. Another major limitation of the expressions in [24]–[26] is that they are in

general too complicated to yield any useful insights into the impact of channel aging on the system

performance. Motivated by this, we derive simple and informative power scaling laws which shed

light into how the channel aging affects the achievable rate. In addition to the multi-cell scenario

considered in [24]–[26], the single cell scenario is also studied in detail in the current paper,

mainly motivated by the following reasons: 1) Compared to the multi-cell scenario, the single-cell

scenario provides more engineering insights as reported inmany prior works [27]–[30]; 2) The

analytical approach developed for the asymptotic analysisof the single-cell scenario could also be

applied for the multi-cell scenario; 3) With a relatively large frequency reuse factor, the single cell

performance can be actually attained [15]; 4) In practice, single cell massive MIMO deployment

has also been considered for indoor scenarios, see for instance [31].

Specifically, the main contributions of the paper are outlined as follows:

• We obtain tight lower bounds on the achievable sum-rate of single-cell uplink massive MIMO

systems employing MRC or ZF receivers with channel aging, which are valid for arbitrary

number of BS antennasM and number of usersK, thereby enabling efficient evaluation of

the achievable sum-rate in the presence of aged CSI.

• Taking into consideration channel prediction, we derive tight lower bounds on the sum-rate

of single-cell uplink massive MIMO systems employing MRC and ZF receivers.

• For both scenarios with/without channel prediction, we characterize the power scaling law of

the system. It is shown that channel aging does not reduce thepower scaling law, and using

channel prediction method does not improve the power scaling law.

• Finally, we extend the power scaling law analysis to the single-cell downlink and multi-cell

uplink scenarios. It turns out that the single-cell downlink case achieves the same power

scaling law, while the multi-cell uplink scenario exhibitsa different power scaling law due

to the pilot contamination effect.
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The remainder of this paper is organized as follows: In Section II, we describe the system

model incorporating the combined effects of channel estimation error and channel aging. Section

III presents the achievable uplink rate with aged CSI for MRCand ZF receivers in the single-cell

uplink scenario. In Section IV, the achievable uplink rate with predicted CSI is studied. Then,

Section V extends the analysis to the single-cell downlink scenario. The multi-cell scenario is

considered in Section VI. Numerical results are provided inSection VII. Finally, Section VIII

gives a brief summary.

Notation: We use bold upper case letters to denote matrices, bold lower case letters to denote

vectors and lower case letters to denote scalars. Moreover,(·)†, (·)∗, (·)T , and (·)−1 represent

the conjugate transpose operator, the conjugate operator,the transpose operator, and the matrix

inverse, respectively. Also,|| · || is the Euclidian 2-norm,| · | is the absolute value, and[A]mn gives

the(m,n)-th entry ofA. In addition,CN (0, 1) denotes a scalar complex circular Gaussian random

variable with zero mean and unit variance, whileIk is the identity matrix of sizek. Finally, the

statistical expectation operator is represented byE{·}, while the trace operator and the Kronecker

product are denoted by tr(·) and⊗, respectively.

II. SINGLE-CELL UPLINK MODEL

We start with the uplink of a single-cell MIMO system, which is composed of a central BS

with M antennas andK (K ≤ M) noncooperative users with single antenna each. It is assumed

that the propagation channel exhibits flat fading, and the channel coefficients do not change within

one symbol, but vary slowly from symbol to symbol as in [24]. Therefore, for then-th symbol,

theM × 1 received signal at the BS is given by

y[n] =
√
puG[n]x[n] + z[n], (1)

whereG[n] represents theM ×K channel matrix between the BS and theK users, i.e.,gmk[n] =

[G[n]]mk denotes the channel coefficient of the communication link between them-th antenna of

the BS and thek-th user;pu is the average transmit power of each individual user;x[n] is aK×1

vector consisting of the transmit symbols ofK users with unit power; andz[n] is the zero-mean

additive white Gaussian noise with unit variance.
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The channel coefficientgmk[n] can be written as

gmk[n] = hmk[n]
√

βk, (2)

wherehmk[n] is the small-scale fading coefficient for the link from thek-th user to them-th antenna

of the BS, which is assumed to be independent and identicallydistributed (i.i.d.)CN (0, 1), and

βk models the large-scale effect including shadowing and pathloss, which is assumed to remain

constant for alln. Hence,G[n] can be expressed in a matrix form as

G[n] = H[n]D
1

2 , (3)

whereH[n] is anM ×K matrix with [H[n]]mk = hmk[n], andD is a K × K diagonal matrix

with [D]kk = βk.

A. Channel Estimation

The BS estimates the channels using uplink pilots. Letτ be the length of the training period,

then, the pilot sequences used by theK users can be represented by aK × τ matrix
√
ppΦ

(τ ≥ K) satisfyingΦΦ† = IK , wherepp , τpu. Therefore, theM × τ received pilot matrix at

the BS is given by [24]–[26],

J[n] =
√
ppG[n]Φ + Z̃[n], (4)

whereN[n] is anM × τ noise matrix whose elements are i.i.d.CN (0, 1). To estimateG[n], the

BS first correlatesJ[n] with Φ† to obtain

Ỹ[n] =
1

√
pp
J[n]Φ†, (5)

which gives the following observation of the channel vectorfrom userk to the BS

ỹk[n] = gk[n] +
1

√
pp
bk[n], (6)

wheregk[n] andbk[n] are thek-th columns of the matricesG[n] andB[n] , Z̃[n]Φ†, respectively.

SinceΦΦ† = IK , B[n] has i.i.dCN (0, 1) elements.
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As in [15], the MMSE estimate ofG[n], given Ỹ[n], is

Ĝ[n] = Ỹp[n]D̃ =

(

G[n] +
1√
pp
W[n]

)

D̃, (7)

whereD̃ , ( 1
pp
D−1 + IK)

−1. As such,gk[n] can be decomposed into

gk[n] = ĝk[n] + g̃k[n], (8)

where ĝk[n] is the k-th column of Ĝ[n], and g̃k[n] is the estimation error vector for thek-th

user. After some simple algebraic manipulations based on (7), it can be shown that each element

of ĝk[n] is a Gaussian random variable with zero mean and varianceppβ
2

k

1+ppβk
. Furthermore,̂gk[n]

and g̃k[n] are independent due to the orthogonality property of linearMMSE estimators. At this

point, it is worth mentioning that there are different typesof channel error models, i.e., unbounded

error (usually modeled as Gaussian distributed, such as theone considered here) and bounded

error (such as ball or ellipsoid error, see references [32]–[34]); Also, the ellipsoid error model

considered in [32]–[34] can mathematically correspond to the Gaussion error vector given by the

second term in (8).

B. Channel Aging

In practice, due to the random fluctuations of the propagation caused by the movement of users

and the processing delays at the BS, the channel varies between when it is learned via estimation

and when it is applied for precoding or detection. Such phenomenon is referred to aschannel

aging in the literature. To investigate the impact of channel aging, we adopt the model proposed

in [24]. As such, theM × 1 channel vector for thek-th user at timen + 1 can be expressed

through an autoregressive model of order 1 as

gk[n + 1] = αgk[n] + ek[n+ 1], (9)

where ek[n + 1] is a temporally uncorrelated complex white Gaussian noise process with its

elements having variance of(1− α2) βk, andα is a temporal correlation parameter. Considering

the Jakes fading model, we haveα = J0(2πfDTs), where J0(·) is the zero-order first kind

Bessel function,Ts is the channel sampling duration,fD is the maximum Doppler frequency
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shift determined by the users’ velocityv and carrier frequencyfc, as fD = vfc
c

(c denotes the

speed of light). From the properties of the Bessel function,we can easily get0 ≤ |α| ≤ 1.

Especially, the smaller|α|, the more serious the channel aging effect becomes.

To this end, a model accounting for the combined effects of the channel estimation errors and

channel aging effect can be expressed as [24]

gk[n + 1] = αĝk[n] + αg̃k[n] + ek[n+ 1]
︸ ︷︷ ︸

ẽk[n+1]

, (10)

whereẽk[n+ 1] is independent witĥgk[n] due to the independence betweeng̃k[n], ek[n+1], and

ĝk[n]. As a result, each element ofẽk[n+ 1] is a complex Gaussian random variable with zero

mean and varianceβk − α2 ppβ
2

k

1+ppβk
.

III. A CHIEVABLE UPLINK SUM-RATE WITH CHANNEL AGING

In this section, we present a detailed analysis of the impactof channel aging on the achievable

sum-rate of the system with linear receivers. In particular, two popular linear receivers, namely,

MRC and ZF receivers are considered. For both receivers, we derive closed-form lower bounds

of the achievable sum-rate with aged CSI. Moreover, the impact of aged CSI on the asymptotic

power scaling law is characterized.

As in [24], we assume that the large-scale effectD and the temporal correlation parameterα

are known at the BS.1 Hence, the BS has the following CSI

ḡk[n+ 1] = αĝk[n]. (11)

Let Â[n+1] be anM×K linear detector matrix which depends on the channelḠ[n+1], where

Ḡ[n + 1] , [ḡ1[n + 1], ḡ2[n + 1], · · · , ḡK [n + 1]]. By considering linear receivers, the received

signal is separated into streams by multiplyingÂ†[n + 1] with y[n + 1] from (1) as follows

r[n+ 1] = Â†[n + 1]y[n+ 1]

=
√
puÂ

†[n + 1]G[n+ 1]x[n + 1] + Â†[n+ 1]z[n + 1]. (12)

1In practice, the large-scale effect varies much slower. Hence, it can be easily estimated by the BS. In addition, given that the
velocity of the users can be obtained by the BS, the temporal correlation parameterα can be accurately estimated by the BS.
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We consider two conventional linear receivers, i.e., MRC and ZF, which are expressed as

Â[n+ 1] =







Ḡ[n+ 1], for MRC,

Ḡ[n+ 1]
(
Ḡ†[n+ 1]Ḡ[n + 1]

)−1
, for ZF.

(13)

Moreover, letrk[n + 1] andxk[n + 1] be thek-th elements of theK × 1 vectorsr[n + 1] and

x[n + 1], respectively. Then, from (12), thek-th element ofr[n + 1] is given by

rk[n+ 1] =
√
puâ

†
k[n + 1]ḡk[n + 1]xk[n+ 1] +

√
pu

K∑

i=1,i 6=k

â
†
k[n+ 1]ḡi[n + 1]xi[n + 1]

+
√
pu

K∑

i=1

â
†
k[n + 1](gi[n+ 1]− ḡi[n + 1])xi[n+ 1] + â

†
k[n+ 1]z[n+ 1], (14)

whereâk[n + 1] is thek-th column ofÂ[n + 1]. The BS treats̄gk[n+ 1] as the true channel for

the k-th user, and the part including the last three terms of (14) is considered as interference plus

noise. As in [5], [7], [15], the combined errorgi[n + 1] − ḡi[n + 1] is treated as uncorrelated

Gaussian noise, which is a worst-case scenario, therefore leading to the following simple lower

bound for the achievable rate of thek-th user:

Rk =

E







log2







1 +

pu|â†
k[n+ 1]ḡk[n+ 1]|2

pu
K∑

i=1,i 6=k

|â†
k[n + 1]ḡi[n+ 1]|2 + ||âk[n+ 1]||2

(

pu
K∑

i=1

(

βi − α2 ppβ2

i

1+ppβi

)

+ 1

)














,

(15)

where the expectation is taken over small-scale fading. Note that the advantage of the expression

in (15) is that it is amenable to algebraic manipulations.

In the sequel,Rk is referred to as the achievable rate of thek-th user. Then, the achievable

sum-rate of the massive MIMO system is given by

R =
T − τ

T

K∑

k=1

Rk. (16)

A. MRC Receivers

By starting with the MRC receivers, we obtain the following key result:
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Theorem 1: For MRC receivers, with aged CSI, if each user scales down its transmit power

proportionally to1/Mγ, i.e., pu = Eu/M
γ, for fixed Eu andγ > 0, we have

Ra,mrc
k − log2

(

1 +
α2τE2

uβ
2
k

M2γ−1

)

M→∞−→ 0, (17)

where the superscript a is used to denote aged CSI.

Proof: Substitutingâk[n + 1] = ḡk[n + 1] = αĝk[n] and pu = Eu/M
γ into (15), and after

some simple algebraic manipulations, we obtain

Ra,mrc
k = E







log2







1 +

Eu

Mγ
1

M2α
2||ĝk[n]||4

Eu

Mγ
1

M2α2
K∑

i=1,i 6=k

|ĝ†
k[n]ĝi[n]|2 +

(

Eu

Mγ

K∑

i=1

(

βi − α2 τ Eu
Mγ β2

i

1+τ Eu
Mγ βi

)

+ 1

)

1
M2 ||ĝk[n]||2














.

(18)

To this end, looking into the asymptotic large antenna regime, i.e.,M → ∞, and invoking the

law of large numbers, we get

1

M
|ĝ†

k[n]ĝi[n]|2 −







τ Eu
Mγ β2

k

1+τ Eu
Mγ βk

, i = k

0, i 6= k

M→∞−→ 0. (19)

Please note, in the above derivation, we have used the fact that ĝk[n] and ĝi[n] (i 6= k) are

independent, which can be easily proven according to (7). Wealso have

Eu

Mγ

K∑

i=1

(

βi − α2 τ Eu

Mγ β
2
i

1 + τ Eu

Mγ βi

)

+ 1 → 1. (20)

Then, (18) simplifies to

Ra,mrc
k − log2

(

1 +
α2τE2

uβ
2
k

M2γ−1

)

M→∞−→ 0, (21)

which completes the proof.

Theorem 1 suggests that the asymptotic achievable rateRa,mrc
k depends on the choice ofγ.

Whenγ > 1
2
, Ra,mrc

k converges to zero, which indicates that the transmit power of each user has

been reduced too much. On the other hand, whenγ < 1
2
, Ra,mrc

k grows without bound, which

indicates that the transmit power of each user can be scaled down further to maintain the same
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performance. Whenγ = 1
2
, Ra,mrc

k converges to a non-zero limit. As such, by settingγ = 1
2
, we

have the following corollary.

Corollary 1: For MRC receivers, with aged CSI, each user can scale down its transmit power

at most bypu = Eu/
√
M for a fixedEu, and the achievable uplink rate of thek-th user becomes

Ra,mrc
k → log2

(
1 + α2τE2

uβ
2
k

)
,M → ∞. (22)

Corollary 1 suggests a very encouraging result, that takinginto account the channel aging effect,

the same power scaling law can be achieved as in those scenarios where only channel estimation

error is considered [5], [15]. In other words, channel agingdoes not affect the power scaling law,

it only leads to a reduction of the effective SINR. For the special caseα = 1, i.e., no channel

aging effect, the achievable rate for thek-th user becomeslog2 (1 + τE2
uβ

2
k), which agrees with

the result presented in [15, Proposition 5].

We now turn our attention to the finiteM regime, and present the following tight lower bound

on the achievable rate of thek-th user.

Theorem 2: For MRC receivers, with aged CSI, the achievable uplink rate of thek-th user is

lower bounded byRa,mrc
k ≥ R̃a,mrc

k with

R̃a,mrc
k , log2







1 +

α2τp2u(M − 1)β2
k

pu(1 + τpuβk)
K∑

i=1,i 6=k

βi + (τ + 1)puβk + 1 + bmrc








, (23)

where

bmrc , (1− α2)τp2uβ
2
k . (24)

Proof: See Appendix A.

It is not difficult to show thatR̃a,mrc
k is an increasing function with respect toα. Now, sinceα

is related to the severity level of the channel aging effect,Theorem 2 actually demonstrates the

intuitive result that the more severe channel aging becomes, the lower the achievable rate. If we

substitutepu = Eu/M
γ into (23) asM → ∞, and after some simple mathematical manipulations,
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we get

R̃a,mrc
k − log2

(

1 +
α2τE2

uβ
2
k

M2γ−1

)

M→∞−→ 0, (25)

which exactly coincides with the limit obtained from Theorem 1, suggesting the asymptotic

tightness of the proposed lower bound.

B. ZF Receivers

We now turn out attention to the ZF receivers for whichM ≥ K, and obtain the following key

result:

Theorem 3: For ZF receivers, with aged CSI, if each user scales down its transmit power

proportionally to1/Mγ, i.e., pu = Eu/M
γ, whereγ > 0 andEu is fixed, we have

Ra,zf
k − log2

(

1 +
α2τE2

uβ
2
k

M2γ−1

)

M→∞−→ 0. (26)

Proof: With ZF receivers,Â†[n+ 1]Ḡ[n+ 1] = IK , namely,â†
k[n+ 1]ḡi[n+ 1] = δki where

δki = 1 whenk = i and0 otherwise. Based on this, substitutingpu = Eu/M
γ into (15), we get

Rzf
k = E







log2







1 +

M Eu

Mγ
(

Eu

Mγ

K∑

i=1

(

βi − α2 τ Eu
Mγ β2

i

1+τ Eu
Mγ βi

)

+ 1

)[(
Ḡ†[n+1]Ḡ[n+1]

M

)−1
]

k,k














. (27)

To this end, use of the law of large numbers yields
[(

Ḡ†[n + 1]Ḡ[n+ 1]

M

)−1
]

k,k

− 1

α2

1 + τ Eu

Mγβk

τ Eu

Mγ β
2
k

M→∞−→ 0. (28)

Now, by plugging (28) into (27), the desired result can be obtained after some simple algebraic

manipulations.

Theorem 3 indicates that ZF receivers attain the same power scaling law as MRC receivers,

i.e., 1/
√
M , and achieve the same non-zero limit, which is consistent with prior results reported

in [5], [15]. Hence, it can be concluded that, for ZF receivers with aged CSI, the transmit power

of each user can be cut down at most by1/
√
M with no rate degradation, and the achievable

uplink rate is the same as that for MRC receivers.
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In the finiteM regime, we obtain the following lower bound on the achievable rate.

Theorem 4: For ZF receivers, with aged CSI, the achievable uplink rate of thek-th user is

lower bounded byRa,zf
k ≥ R̃a,zf

k with

R̃a,zf
k , log2






1 +

α2τp2u(M −K)β2
k

(1 + τpuβk)
K∑

i=1

puβi

τpuβi+1
+ τpuβk + 1 + bzf







, (29)

where

bzf , (1− α2)(1 + τpuβk)
K∑

i=1

τp2uβ
2
i

1 + τpuβi

. (30)

Proof: See Appendix B.

By substitutingpu = Eu/M
γ into (29) asM → ∞, and after some simple algebraic manipu-

lations, we have

R̃zf
k − log2

(

1 +
α2τE2

uβ
2
k

M2γ−1

)

M→∞−→ 0, (31)

which indicates the asymptotic tightness of the lower bound(29).

IV. A CHIEVABLE UPLINK RATE WITH CHANNEL PREDICTION

As shown in the previous section, the channel aging effect results in a loss at the achievable rate.

To alleviate this undesired implication, channel prediction methods were proposed in [24]–[26].

In this section, we investigate the impact of channel prediction on the system performance. More

specifically, closed-form lower bounds on the achievable rate are derived for both MRC and ZF

receivers. In addition, the power scaling law is also characterized, based on which, the impact of

the predictor order on the scaling law is evaluated.

We adopt a very popular linear predictor, i.e., the Wiener predictor proposed in [24]. There-

fore, for the k-th user, the channelgk[n + 1] is predicted according tōyk[n], where ȳk[n] =
[
ỹT
k [n], ỹ

T
k [n− 1], . . . , ỹT

k [n− p]
]T

with p being the predictor order. To this end, we need to

obtain the optimalp-th order linear Wiener predictor, which is given in the following lemma:
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Lemma 1: The optimalp-th linear Wiener predictor is given by

qk = αβk [δ (p, α)⊗ IM ]T−1
k (p, α), (32)

whereδ(p, α) = [1 α · · · αp], and

Tk(p, α) = βk [∆ (p, α)⊗ IM ] +
1

pp
IM(p+1) (33)

with

∆(p, α) ,












1 α · · · αp

α 1 · · · αp−1

...
...

. . .
...

αp αp−1 · · · 1












. (34)

Proof: Following similar steps as in the proof of Theorem 1 in [24], we can obtain the desired

result.

Having characterized the optimal predictor, the predictedchannel can then be obtained as

ḡk[n+ 1] = ğk[n+ 1] = qkȳp,k[n]. (35)

Furthermore, the resulting mean square error between the predicted channel̆gk[n+ 1] and the

true channelgk[n + 1] can be calculated as

ǫp = E{||gk[n+ 1]− ğk[n + 1]||2} (36)

(a)
= tr(E{(gk[n + 1]− qkȳp,k[n])g

†
k[n + 1]}) (37)

= tr(βkIM − α2Θk(p, α)), (38)

where in(a) we applied the orthogonality ofgk[n+ 1]− ğk[n+ 1] and ğk[n + 1], and

Θk(p, α) , β2
k [δ (p, α)⊗ IM ]T−1

k (p, α) [δ (p, α)⊗ IM ] . (39)

Hence, the covariance matrix ofğk[n+1] is given byα2Θk(p, α). Finally, the true channel can
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be decomposed as

gk[n + 1] = ğk[n + 1] + ěk[n+ 1], (40)

whereěk[n+1] is the channel prediction error vector with covariance matrix βkIM −α2Θk(p, α),

which is independent of̆gk[n + 1].

Before proceeding, we find it crucial to first characterize the structure of the matrixΘk(p, α)

by the following important observation:

Lemma 2: Θk(p, α) is a scaled identity matrix of sizeM ×M .

Proof: Notice thatTk(p, α) has the following structure

Tk(p, α) = A⊗ IM , (41)

whereA is an invertible matrix, whose entries are denoted byaij with 1 ≤ i, j ≤ n.

Using the matrix inversion property of Kronecker product [36, Eq. (1.10.8)], we get

(A⊗ IM)−1 = A−1 ⊗ IM . (42)

Now, let us defineB = A−1, where thei, jth element ofB is expressed asbij with 1 ≤ i, j ≤ n.

Hence, by combining (42) and (39), we obtain

Θk(p, α) = β2
k

p+1
∑

i=1

p+1
∑

j=1

α2(i−1)bijIM , (43)

which concludes the proof.

Equipped with Lemma 2, it can be straightforwardly shown that the variances of the elements

of ğk[n+ 1] and ěk[n+ 1] are 1
M

tr (α2Θk(p, α)) and 1
M

tr (βkIM − α2Θk(p, α)), respectively.

With predicted CSI, if we substitutēgk[n+1] = ğk[n+1] into (14), we can obtain the following

achievable uplink rate of thek-th user

Rp
k = E {log2 (1 + SINRp

k)} , (44)

where the superscript p is used to denote the predicted CSI, and SINRpk is the signal-to-interference-
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noise (SINR), which is given by

SINRp
k =

pu|â†
k[n + 1]ğk[n + 1]|2

pu
K∑

i=1,i 6=k

|â†
k[n + 1]ği[n+ 1]|2 + ||âk[n+ 1]||2

(

pu
K∑

i=1

1
M

tr (βiIM − α2Θi(p, α)) + 1

) ,

(45)

and the expectation in (44) is taken over small-scale fading.

A. MRC Receivers

Theorem 5: For MRC receivers, with predicted CSI, if each user scales down its transmit power

proportionally to1/Mγ, i.e., pu = Eu/M
γ, whereγ > 0 andEu is fixed, we have

Rp,mrc
k − log2






1 +

α2
p∑

j=0

α2jτE2
uβ

2
k

M2γ−1







M→∞−→ 0. (46)

Proof: By substitutingâk[n + 1] = ğk[n + 1] and pu = Eu/M
γ into (45), and after some

simple manipulations, the SINR SINRp
k can be expressed as

SINRp
k =

Eu

Mγ
1

M2 ||ğk[n+ 1]||4

Eu

Mγ

K∑

i=1,i 6=k

1
M2 |ğ†

k[n+ 1]ği[n + 1]|2 + 1
M2 ||ğk[n + 1]||2

(

Eu

Mγ

K∑

i=1

1
M

tr (βiIM − α2Θi(p, α)) + 1

) .

(47)

Since ğ†
k[n + 1] and ği[n + 1] (i 6= k) are independent from (35), we invoke the law of large

numbers, whenM → ∞, and clearly obtain

1

M
ğ
†
k[n + 1]ği[n+ 1]−







1
M

tr (α2Θk(p, α)) , i = k

0, i 6= k

M→∞−→ 0. (48)

Hence, the remaining task is to compute tr(α2Θk(p, α)). To do this, we recall thatTk(p, α) in
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(33) can be expressed as

Tk(p, α) =












(

βk +
Mγ

τEu

)

IM αβkIM · · · αpβkIM

αβkIM

(

βk +
Mγ

τEu

)

IM · · · αp−1βkIM

...
...

. . .
...

αpβkIM αp−1βkIM · · ·
(

βk +
Mγ

τEu

)

IM












. (49)

A close observation shows that, whenM → ∞, the off-diagonal elements ofTk(p, α) become

negligible due to the fact thatM
γ

τEu
≫ αiβk (i = 1, 2, . . . , p). As such, the inverse ofTk(p, α) can

be accurately approximated by

T−1
k (p, α)−

(
Mγ

τEu

)−1

IM(p+1)
M→∞−→ 0. (50)

Hence, we have

Θk(p, α)− β2
k

τEu

Mγ

p
∑

j=0

α2jIM
M→∞−→ 0. (51)

As a result, (48) can be further simplified to

1

M
ğ
†
k[n + 1]ği[n+ 1]−







α2β2
k
τEu

Mγ

p∑

j=0

α2j, i = k

0, i 6= k

M→∞−→ 0. (52)

and

Eu

Mγ

K∑

i=1

1

M
tr
(
βiIM − α2Θi(p, α)

)
+ 1 =

Eu

Mγ

K∑

i=1

(

βi − α2β2
i

τEu

Mγ

p
∑

j=0

α2j

)

+ 1 → 1. (53)

To this end, substitution of (52) and (53) into (47), and thencombination with (44) concludes

the proof.

Compared to Theorem 1, Theorem 5 indicates that the channel prediction does not alter the

power scaling law. Hence, without degradation of the achievable rate, the transmit power of each

user can be cut down at most by1/
√
M . As such, settingγ = 1

2
, we have the following result.

Corollary 2: For MRC receivers, with predicted CSI, each user can scale down its transmit

power at most bypu = Eu/
√
M for a fixedEu, and the achievable uplink rate of thek-th user
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becomes

Rp,mrc
k → log2

(

1 + α2

p
∑

j=0

α2jτE2
uβ

2
k

)

,M → ∞. (54)

Corollary 2 indicates that, although channel prediction does not affect the power scaling law,

it does increase the achievable rate by contributing to the enhancement of the effective SINR

due to the more accurate CSI being obtained compared to the system without channel prediction.

Moreover, the higher the prediction orderp, the larger the achievable rate gain. However, it is

also worth pointing out that the processing complexity increases substantially when the prediction

orderp becomes large. As such, one should carefully balance this during the system design. For

sufficiently largep, the achievable rateRp,mrc
k converges tolog2

(

1 + α2

1−α2 τE
2
uβ

2
k

)

, which indicates

that the rate gain due to channel prediction is most pronounced for largeα and becomes negligible

for small α. This is rather intuitive, since largeα implies relatively slow change of the channel,

as such, the channel prediction becomes more accurate.

We now concentrate on the finiteM regime, and present the following tight lower bound on

the achievable rate of thek-th user.

Theorem 6: For MRC receivers, with predicted CSI, the achievable uplink rate of thek-th user

is lower bounded byRp,mrc
k ≥ R̃p,mrc

k with

R̃p,mrc
k , log2







1 +

pu(M − 1) 1
M

tr(α2Θk(p, α))

pu
K∑

i=1,i 6=k

1
M

tr (α2Θi(p, α)) + pu
K∑

i=1

1
M

tr (βiIM − α2Θi(p, α)) + 1








. (55)

Proof: The proof follows similar lines as the proof of Theorem 2. Hence, it is omitted.

B. ZF Receivers

Theorem 7: For ZF receivers, with predicted CSI, if each user scales down its transmit power

proportionally to1/Mγ, i.e., pu = Eu/M
γ, whereγ > 0 andEu is fixed, we have

Rp,zf
k − log2






1 +

α2
p∑

j=0

α2jτE2
uβ

2
k

M2γ−1







M→∞−→ 0. (56)
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Proof: With ZF receivers,̂A†[n+1] = (Ğ†[n+1]Ğ[n+1])−1Ğ†[n+1], or Â†[n+1]Ğ[n+1] =

IK , whereĞ[n+1] = [ğ1[n+1], ğ2[n+1], · · · , ğK [n+1]]. Based on this, substitutingpu = Eu/M
γ

into (44), and after some simple manipulations, we get

Rp,zf
k = E







log2







1 +

M Eu

Mγ
(

Eu

Mγ

K∑

i=1

1
M

tr (βiIM − α2Θi(p, α)) + 1

)[(
Ğ†[n+1]Ğ[n+1]

M

)−1
]

k,k














.

(57)

Then, we have




(

Ğ†[n+ 1]Ğ[n + 1]

M

)−1




k,k

− 1

α2β2
k
τEu

Mγ

p∑

j=0

α2j

M→∞−→ 0, (58)

where the above result is obtained by first following from thelaw of large numbers and then being

based on (51). Plugging (58) and (53) into (57), and after some simple algebraic manipulations,

we obtain the desired result.

As expected, Theorem 7 indicates that with predicted CSI, ZFreceivers achieve the same

asymptotic power scaling law as the MRC receivers. Similarly, by settingγ = 1
2
, we have the

following corollary.

Corollary 3: For ZF receivers, with predicted CSI, each user can scale down its transmit power

at most bypu = Eu/
√
M for a fixedEu, and the achievable uplink rate of thek-th user becomes

Rp,zf
k → log2

(

1 + α2

p
∑

j=0

α2jτE2
uβ

2
k

)

,M → ∞. (59)

In the finiteM regime, we obtain the following lower bound on the achievable rate.

Theorem 8: For ZF receivers, with predicted CSI, the achievable uplink rate of thek-th user is

lower bounded byRp,zf
k ≥ R̃p,zf

k with

R̃p,zf
k , log2






1 +

pu(M −K) 1
M

tr(α2Θk(p, α))

pu
K∑

i=1

1
M

tr (βiIM − α2Θi(p, α)) + 1







. (60)

Proof: Since the proof follows similar lines as the proof of Theorem4, it is omitted.
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V. EXTENSION TO SINGLE-CELL DOWNLINK

We now extend the analysis to the single-cell downlink scenario. For exposition purpose, only

the MRT precoding scheme is considered here. For the single-cell downlink communication, the

BS broadcasts data to theK users. Hence, the received signal at userk for the (n+1)-th symbol

can be expressed as

ydl
k [n + 1]

=
√
pbg

T
k [n + 1]W[n+ 1]xdl[n + 1] + zdl

k [n+ 1] (61)

=
√
pbg

T
k [n + 1]wk[n + 1]xdl

k [n + 1] +
√
pb
∑

i 6=k

gT
k [n+ 1]wi[n + 1]xdl

i [n+ 1] + zdl
k [n+ 1],

wherexdl[n+1] is aK × 1 vector consisting of the transmit symbols toK users with unit power

with xdl
k [n+ 1] being thek-th element ofxdl[n + 1]; zdl

k [n + 1] represents the zero-mean additive

white Gaussian noise with unit variance;pb is the transmit power of the BS;W[n+ 1] ∈ CM×K

denotes the precoding matrix, andwk[n+ 1] is thek-the vector of the matrixW[n+ 1].

For the MRT precoding scheme, the beamforming matrixW[n+ 1] is given by

W[n+ 1] = λḠ∗[n + 1], (62)

where the normalization constantλ is chosen to satisfy a long-term total transmit power constraint

at the BS, i.e.,E
{
||W[n+ 1]xdl[n+ 1]||2

}
= 1, and we have

λ =

√

1

Mα2
∑K

k=1 σ
2
k

, (63)

where we setσ2
k =

ppβ
2

k

1+ppβk
for notational simplicity.

Based on the above analysis, we can rewrite (61) as

ydl
k [n+ 1] =

√
pbλg

T
k [n+ 1]ḡ∗

k[n + 1]xdl
k [n+ 1]

+
√
pbλ

K∑

i=1,i 6=k

gT
k [n + 1]ḡ∗

i [n+ 1]xdl
i [n + 1] + zdl

k [n + 1]. (64)

To obtain the downlink achievable rate, we utilize the technique developed in [24], which is

widely used in the analysis of massive MIMO systems. With this technique, the received signal
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is rewritten as a known mean gain times the desired symbol, plus an uncorrelated effective noise.

Thus (64) can be re-expressed as

ydl
k [n+ 1] =

√
pbλE

{
gT
k [n + 1]ḡ∗

k[n + 1]
}
xdl
k [n+ 1] + nk[n + 1], (65)

wherenk[n + 1] is considered as the effective noise, given by

nk[n+ 1] =
√
pbλ

(
gT
k [n + 1]ḡ∗

k[n + 1]− E
{
gT
k [n + 1]ḡ∗

k[n + 1]
})

xdl
k [n + 1] (66)

+
√
pbλ

K∑

i=1,i 6=k

gT
k [n+ 1]ḡ∗

i [n+ 1]xdl
i [n+ 1] + zdl

k [n+ 1]. (67)

Therefore, we can obtain an achievable (sub-optimal) rate as

Rdl
k = log2

(

1 +
|E
{
gT
k [n + 1]ḡ∗

k[n + 1]
}
|2

Var(gT
k [n + 1]ḡ∗

k[n + 1]) +
∑K

i=1,i 6=k E {|gT
k [n+ 1]ḡ∗

i [n + 1]|2}+ 1
pbλ

2

)

. (68)

Theorem 9: For MRC receivers, with aged CSI, the achievable downlink rate of thek-th user

is given by

Rdl
k = log2



1 +
α2Mσ4

k
(

βk +
1
pb

)
∑K

i=1 σ
2
i



 . (69)

Proof: The main task is to evaluate each term in (68), which we do in the following:

1) Computation ofE
{
gT
k [n+ 1]ḡ∗

k[n+ 1]
}

We have

gT
k [n + 1]ḡ∗

k[n + 1] = ḡT
k [n+ 1]ḡ∗

k[n+ 1] + ẽTk [n + 1]ḡ∗
k[n + 1] (70)

= α2||ĝT
k [n]||2 + ẽTk [n+ 1]ḡ∗

k[n+ 1]. (71)

Therefore,

E
{
gT
k [n+ 1]ḡ∗

k[n+ 1]
}
= α2E

{
||ĝk[n]||2

}
= α2Mσ2

k . (72)

2) Computation of Var
(
gT
k [n + 1]ḡ∗

k[n + 1]
)
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From (70) and (72), the variance ofgT
k [n+ 1]ḡ∗

k[n+ 1] is given by

Var
(
gT
k [n+ 1]ḡ∗

k[n+ 1]
)
= E

{
|gT

k [n + 1]ḡ∗
k[n+ 1]|2

}
−
(
α2Mσ2

k

)2
(73)

= E
{
|α2||ĝT

k [n]||2 + ẽTk [n + 1]ḡ∗
k[n + 1]|2

}
−
(
α2Mσ2

k

)2
(74)

= α4E
{
||ĝT

k [n]||4
}
+ E

{
|ẽTk [n + 1]ḡ∗

k[n + 1]|2
}
−
(
α2Mσ2

k

)2
. (75)

By using [35, Lemma 2.9], we obtain

Var
(
gT
k [n+ 1]ḡ∗

k[n+ 1]
)
= α4σ4

kM(M + 1) + α2σ2
k(βk − α2σ2

k)M −
(
α2Mσ2

k

)2
= α2σ2

kβkM.

(76)

3) Computation of
∑K

i=1,i 6=k E
{
|gT

k [n+ 1]ḡ∗
i [n + 1]|2

}

For i 6= k, we have

E
{
|gT

k [n + 1]ḡ∗
i [n+ 1]|2

}
= α2βkσ

2
iM. (77)

Therefore,

K∑

i=1,i 6=k

E
{
|gT

k [n + 1]ḡ∗
i [n+ 1]|2

}
= α2βkM

K∑

i=1,i 6=k

σ2
i . (78)

Substituting (63), (72), (76), and (78) into (68), we arriveat the desired result.

Theorem 10: For MRC receivers, with aged CSI, if the BS scales down its transmit power

proportionally to1/Mβ, i.e., pb = Eb/M
β, whereβ > 0 andEb is fixed, we have

Rdl
k − log2

(

1 +
α2τEuEbβ

4
k

Mβ− 1

2

∑K

i=1 β
2
i

)

M→∞−→ 0. (79)

Proof: As in the uplink scenario, substitutingpp = τpu = τ Eu√
M

into (69), and after some

simple algebraic manipulations, we obtain the desired result.

Whenβ = 1
2
, Rdl

k converges to a non-zero limit, indicating that we can at mostscale down the

transmit power of the BS proportionally to1/
√
M in the downlink scenario, which is the same

as in the uplink scenario.
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VI. EXTENSION TO MULTI -CELL SYSTEMS

In this section, we study the more general multi-cell scenario. In particular, we focus on the

characterization of the power scaling law of the system with/without channel prediction. Since

MRC and ZF receivers attain the same asymptotic performance, without loss of generality, we

only consider the MRC receiver in the subsequent analysis.

We adopt the multi-cell model as in [24], with a cellular network of C cells sharing the same

frequency band. Each cell includes a central BS withM antennas andK (K ≤ M) single antenna

noncooperative users. Therefore, theM × 1 received vector at timen for the b-th BS is given by

yb[n] =
√
pu

C∑

c=1

Gbc[n]xc[n] + zb[n], (80)

whereGbc[n] represents theM ×K matrix between theb-th BS and theK users in thec-th cell,

whosek-th column vector is denoted bygbck[n], pu is the transmit power of the user,xc denotes

theK × 1 vector transmitted by theK users in thec-th cell, andzb is zero-mean additive white

Gaussian noise with unit power at BSb.

Similar to the single-cell scenario, the channel vector from userk in cell c to BS b at timen

is modeled as

gbck[n] = hbck[n]
√

βbck, (81)

wherehbck[n] is the small-scale fading coefficient from thek-th user in cellc to the b-th BS,

which is i.i.d.CN (0, 1), andβbck models the large-scale fading effect.

Capitalizing on the asymptotic expressions(53) and (75) presented in [24], we obtain the

following results on the power scaling law for MRC receivers.

Proposition 1: For the multi-cell scenario, with aged CSI, if each user scales down its transmit

power proportionally to1/Mγ, i.e., pu = Eu/M
γ, whereγ > 0 andEu is fixed, the achievable

rate of userk in cell b is given by

Ra
bk − log2






1 +

α2τE2
uβ

2

bbk

M2γ−1

βbbkEu

Mγ + 1 +
∑

(c,i)6=(b,k)

βbciEu

Mγ + α2
∑

c 6=b

τE2
uβ

2

bck

M2γ−1







M→∞−→ 0, (82)
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where the third term in the denominator is due to both the intra and the inter-cell interference,

while the fourth term comes from the inter-cell interference caused by pilot contamination.

Proof: Substitutingpu = Eu/M
γ into Theorem 2 of [24], the desired result can be obtained

after some lengthy algebraic manipulations.

As expected, Proposition 1 suggests that the asymptotic achievable rateRbk depends on the

choice of γ. It is easy to show that forγ > 1/2, the achievable rateRbk converges to zero.

Similarly, for γ = 1/2, Rbk converges to a non-zero limit given by

Ra
bk → log2




1 +

α2τE2
uβ

2
bbk

1 + α2
∑

c 6=b

τE2
uβ

2
bck




 ,M → ∞. (83)

Once again, we see that the1/
√
M power scaling law still holds under the multi-cell scenario.

In addition, it is observed that the non-zero limit is affected not only by the channel aging effect,

but also by the inter-cell interference due to the pilot contamination caused by pilot reuse.

We now look at the case0 < γ < 1/2. Interestingly, it is found that, unlike the single-cell

scenario where the achievable rate grows unbounded,Rbk also converges to a non-zero limit given

by

Ra
bk → log2




1 +

β2
bbk

∑

c 6=b

β2
bck




 ,M → ∞. (84)

Surprisingly, we see that the effect of channel aging vanishes andRbk is independent of the

transmit power which coincides with the results presented in [2]. The possible reason is that, when

0 < γ < 1/2, the system operates in an interference-limited regime; assuch, if each terminal

scales its average received power by the same factor, then the resultant signal-to-interference ratio

(SIR) remains unchanged.

We now consider the case with channel prediction, and present the following key result:

Proposition 2: For the multi-cell scenario, with predicted CSI, if each user scales down its

transmit power proportionally to1/Mγ, i.e., pu = Eu/M
γ , whereγ > 0 and Eu is fixed, the
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achievable rate of userk in cell b is given by

Rp
bk − log2







1 +

α2

p∑

j=0

α2jτE2
uβ

2

bbk

M2γ−1

βbbkEu

Mγ + 1 +
∑

(c,i)6=(b,k)

βbciEu

Mγ + α2
p∑

j=0

α2j
∑

c 6=b

α2pτE2
uβ

2

bck

M2γ−1








M→∞−→ 0. (85)

Proof: Substitutingpu = Eu/M
γ into the Theorem 3 of [24], and after some tedious algebraic

manipulations, we get the desired result.

We now discuss the impact ofγ on the asymptotic achievable rate based on Proposition 2. It

can be easily shown that, forγ > 1/2, Rbk → 0, and forγ = 1/2,

Rp
bk → log2







1 +

α2
p∑

j=0

α2jτE2
uβ

2
bbk

1 + α2
p∑

j=0

α2j
∑

c 6=b

α2pτE2
uβ

2
bck








,M → ∞. (86)

As expected, the asymptotic achievable rate is determined by both the channel aging effect and

the inter-cell interference. Similarly, forγ < 1/2, we have

Rp
bk → log2




1 +

β2
bbk

α2p
∑

c 6=b

β2
bck




 ,M → ∞. (87)

Now, compared to the achievable rate of systems with aged CSIpresented in (84), we observe

that the achievable rate with channel prediction is strictly higher, due to the fact thatα2p < 1.

VII. N UMERICAL RESULTS

In this section, we provide numerical results to validate the analytical expressions derived in

the previous sections. Hereafter, we assume thatτ = K.

A. Single-cell uplink scenario

We consider a single-cell with a radius ofR = 1000 meters and assume a guard range of

r0 = 100 meters, which specifies the distance between the nearest user and the BS. All the users

are uniformly distributed within the cell. The large scale fading is modeled asβk = zk/(rk/r0)
υ,

where zk is a log-normal random variable with standard deviationσ (σ = 8 dB) denoting the
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shadow fading effect,rk represents the distance between thek-th user and the BS, andυ (υ = 3.8)

is the path loss exponent.

Fig. 1 examines the tightness of the proposed analytical lower bounds given in (23) and (29)

with aged CSI, as well as in (55) and (60) with predicted CSI for different α and p. As can be

readily observed, the proposed lower bounds almost overlapwith the exact simulations curves,

demonstrating their tightness. In addition, we see the intuitive result that channel aging degrades

the achievable sum-rate, while channel prediction helps torecover part of the sum-rate loss due

to channel aging. Moreover, it is observed that the ZF receivers attain a higher sum-rate than

the MRC receivers. Finally, we observe that channel aging causes a substantial reduction in the

sum rate of ZF receivers and a relatively small decrease in the sum rate of MRC receivers at

the high SNR regime, indicating that the channel aging effect has a much greater impact on ZF

receivers. This can be attributed to the poor interference cancellation capabilities of ZF receivers

when channel aging is present, while MRC tries to maximize the effective SINR of each target

user.
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Fig. 1: Uplink sum-rate versus the transmit powerpu for K = 10, M = 128, andfDTs = 0.1.

Fig. 2 investigates the impact of channel prediction on the achievable sum-rate lower bound.

Note that the curves associated with perfect CSI are obtained from [15, (17) and (21)], while

the curves associated with current CSI are based on (23) and (29) by settingα = 1. Intuitively,

as the normalized Doppler shiftfDTs becomes large, i.e., for stronger channel aging effect, the

sum-rate loss becomes increasingly substantial. Also, thehigher the prediction order, the larger the
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sum-rate gain. In addition, the benefit of channel prediction tends to be more significant when the

channel aging effect is less severe, i.e.,fDTs is small. This is rather expected, since the predicted

CSI becomes more accurate in such scenarios. Finally, it is observed that the predicted CSI case

achieves a higher rate than the current CSI case whenfDTs is small, while its performance

degrades substantially whenfDTs is large, and becomes worse than that with current CSI case.

This can be explained as follows: When the channel varies slowly, channel prediction which uses

multiple channel observations can provide more accurate CSI than channel estimation which only

uses one channel observation. On the other hand, when the channel varies fast, channel prediction

becomes inaccurate, and is less reliable than the current CSI. However, it is also worth pointing

out that the achievable rate with channel prediction can notexceed the rate achieved with perfect

CSI.
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Fig. 3 shows the lower bound on the achievable sum-rate versus the number of BS antennas

when the transmit power of each user is scaled down by1/
√
M . As predicted by Corollary 1 and 2,

the achievable sum-rate converges to a non-zero limit when the number of antennasM becomes

large. As the prediction order increases, the sum-rate improves. Nevertheless, we also observe

that, the sum-rate gain due to increasing the prediction order from p = 1 to p = 2 is significantly

smaller than the sum-rate gain from increasingp = 0 to p = 1. Recall from Corollary 2, that the

gain due to channel prediction is manifested through the SNRenhancement factor
p∑

j=1

α2j. When
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α is relatively small, the contribution of a higherp diminishes quickly, which explains the above

behavior.
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B. Single-cell downlink scenario

Fig. 4 verifies the correctness of the analytical expressiongiven in (69). As we can readily

observe, the analytical results are in perfect agreement with the simulation curves.
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Fig. 5 illustrates the power scaling law. WhenM grows large, the analytical results converge

to the asymptote. Also, the speed of convergence depends on the transmit power, the smaller the
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transmit power, the faster the convergence speed. In addition, as can be seen, in the downlink

scenario, the power scaling law is also1/
√
M , and identical to the uplink scenario.
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C. Multi-cell scenario

In this section, we examine the impact of channel aging and channel prediction on the achievable

sum-rate of cellular massive MIMO systems. As in [15], we assumeβbbk = 1, andβbck = 0.32

(c 6= b) for all k (1 ≤ k ≤ K), and consider a setting withC = 7 cells.
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Fig. 6 illustrates the power scaling law of multi-cell massive MIMO systems with aged CSI. As
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expected, we see that whenγ > 1/2, the achievable sum-rate gradually decreases, and eventually

reduces to zero asM approaches infinity. While forγ ≤ 1/2, the achievable sum-rate converges to

a deterministic non-zero value. In addition, whenγ = 1/2, we see that, regardless of the antenna

numberM , there exists a constant gap between the two curves associated to scenarios with aged

CSI and current CSI, respectively, elucidating the detrimental effect of channel aging. On the other

hand, whenγ < 1/2, the two curves overlap for sufficiently largeM , indicating the vanishing

effect of channel aging, as indicated by (84).
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γ with Eu = 15 dB.

Fig. 7 depicts the power scaling law of multi-cell massive MIMO systems with channel pre-

diction, given by (85). As expected, the achievable sum-rate converges to a non-zero limit when

γ ≤ 1/2, and reduces to zero whenγ > 1/2 as the number of antennasM increases. Moreover,

as the predictor orderp increases, the non-zero limit becomes larger.

VIII. C ONCLUSION

This paper studied the achievable sum-rate of uplink massive MIMO systems taking into account

the channel aging effect. Specifically, we derived tractable lower bounds of the sum-rate for both

MRC and ZF receivers with/without channel prediction, which are valid for arbitrary number of

antennas and users. In addition, we characterized the impact of channel aging effect and channel

prediction on the power scaling law. The findings of the papersuggest that aged CSI degrades

the corresponding achievable sum-rate, and the more severethe channel aging effect, the more
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significant reduction of the sum-rate. Moreover, channel prediction enhances the sum-rate, and

the higher the predictor order, the better the sum-rate performance. In addition, it is shown that

the benefits due to channel prediction are more pronounced inthe scenario, where the channel

aging effect is not severe. Finally, it was found that both inthe single-cell and the multi-cell

scenario, the transmit power of each user can be scaled down at most by1/
√
M in the presence

of channel aging, which indicates that aged CSI does not degrade the power scaling law, and

channel prediction does not improve the power scaling law. Similarly, the single-cell downlink

scenario analysis was presented, which concludes that in the single-cell downlink scenario, the

same power scaling law1/
√
M is achieved as in the single-cell uplink scenario. However,unlike

the single-cell scenario, the achievable rate in the multi-cell scenario converges to a non-zero limit

when each user does not cut down the transmit power by the maximum limit, i.e., 1/Mγ with

0 < γ < 1/2, due to the effect of pilot contamination.

APPENDIX A

PROOF OFTHEOREM 2

By substitutingâk[n + 1] = ḡk[n + 1] = αĝk[n] into (15), we obtain

Rmrc
k = E







log2







1 +

puα
2||ĝk[n]||2

puα2
K∑

i=1,i 6=k

|g̃i[n]|2 + pu
K∑

i=1

(

βi − α2 ppβ
2

i

1+ppβi

)

+ 1














, (88)

where g̃i[n] ,
ĝ
†
k
[n]ĝi[n]

||ĝk[n]|| . To this end, noticing that log2
(
1 + 1

x

)
is a convex function with respect

to x, the following tight lower bound can be obtained by applyingJensen’s inequality [15]
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, (89)

By noticing that conditioned on̂gk[n], g̃i[n] is a Gaussian random variable with zero mean and

variance ppβ
2

i

1+ppβi
, which does not depend on̂gk[n], it is concluded that̃gi[n] is Gaussian distributed
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and independent of̂gk[n], i.e., g̃i[n] ∼ CN
(

0,
ppβ

2

i

1+ppβi

)

. As a result, we obtain

E
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. (90)

Given that

E
{
|g̃i[n]|2

}
=

ppβ
2
i

1 + ppβi

, (91)

the remaining task is to evaluateE
{

1
||ĝk[n]||2

}

, which, according to [35, Lemma 2.10], can be

computed as

E

{
1

||ĝk[n]||2
}

=
1

M − 1

1 + ppβk

ppβ2
k

. (92)

To this end, after plugging (91) and (92) into (90), we arriveat the desired result.

APPENDIX B

PROOF OFTHEOREM 4

With ZF detector,Â†[n+ 1] = (Ḡ†[n + 1]Ḡ[n + 1])−1Ḡ†[n+ 1], or Â†[n+ 1]Ḡ[n + 1] = IK .

Thus, (15) becomes

Rzf
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. (93)

From (11), we have

E

{[(
Ḡ†[n + 1]Ḡ[n+ 1]

)−1
]

k,k

}

=
1

α2
E

{[(

Ĝ†[n]Ĝ[n]
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}

(94)

=
1

α2(M −K)

1 + ppβk

ppβ
2
k

, (95)

which completes the proof.
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