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SUM RULES AND A COUPLED CLUSTER FORMULATION 

OF LINEAR RESPONSE THEORY 

R.F. Bishop 
Departmentof Mathematics 

Univers i ty  of Manchester I ns t i t u te  of Science and Technology 
P.O. Box 88, Manchester M60 IQD, England 

I .  INTRODUCTION 

I t  is my in tent ion here to describe the recent developments of the coupled-cluster 

formulation of quantum many-body theory in which we have succeeded in imbedding the 

well-known theory of l inear  response w i th in  th is  formalism, and have shown how a new 

hierarchy of very useful sum rules thereby emerges. I t  w i l l  t ranspire in so doing 

that  the new formalism also provides a very convenient bridge between the previously 

somewhat separate (although, of course, re lated) coupled-cluster formalisms for  the 

ground and excited states respect ively of the many-body system under consideration. 

2. COUPLED-CLUSTER DECOMPOSITION OF THE SCHRODINGER EQUATION 

A very b r ie f  ou t l ine  is f i r s t  presented of such of the main elements of the cou- 

p led-c luster  formalism as are needed here. 

2.1 Ground-state formalism 

The usual s ta r t ing-po in t  for the ground-state (g.s . )  coupled-cluster formalism 

(CCF) is an exact re-expression of the many-body g.s. Schrodinger equation in terms of 

a set of non- l inear coupled equations for  the so-cal led corre lat ion amplitudes. 

Purely for  ease of present exposi t ion the discussion is given here whol ly in terms 

of i n f i n i t e ,  homogenous systems of bosons, fo r  which the coupled-cluster ansatz for  

the exact g,s. wavefunction I~> is given as, 

N 
lw> = eSl~> ; S = [ S n , ( I )  • 

n=l 

in terms of an N-body model or reference g.s. I~> which is taken to be a s ingle-state 

(usual ly  zero-momentum) condensate, 

I~> = ( N ~ ) - ½ ( b ~ ) N I o >  , ( 2 )  

where jO> is the vacuum state. In terms of a complete set of  boson creation opera- 

t which create the complete orthonormal s ing le-par t ide (s.p.)  basis Is> when tors b ,  

act ing on the vacuum, the corre lat ion operators S , which exci te n par t ic le-ho le  n 
pairs from th is  condensate, may be wr i t ten  as 

= : . - - b t  (N ~b ) Sn(P .-.pn) (3) S n ( n ) - 1  ~ b t _i n 
Pl " ' ' Pn  Pl Un u 1 
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where the labels Pl .... Pn indicate non-condensate s.p. states, thereby displaying the 
- S l i nked-c lus ter  aspect of the or ig ina l  e ansatz of Eq. ( I ) .  The der ivat ion of the 

g.s. coupled-cluster equations is now formal ly performed in two simple steps. The g.s. 

Schr6dinger equation, with energy eigenvalue E is f i r s t  pre-mul t ip l ied by the operator 
-S e ,  

e-SHeSIg> = EI~> , (4) 

~'hich may be considered as a purely formal step to el iminate some "unlinked" terms from 

the outset that otherwise need to be el iminated la ter .  The scalar product is then f i -  

na l l y  taken of Eq. (4) e i ther  with the model state Jg> or wi th the states 

b t .... b f (N-½bo)nI~> . (5) 
Pi Pn 

Clear ly,  when pz.-Opn run over a l l  (non-condensate) s.p. states of the complete s.p. 

basis, and when n runs from 1 to N, the vectors 19> and (5) span the ent i re  

N-body Hi lber t  space. Thus the set of equations 

<gJe-SHeSIg> = E , 
(6) 

_i ple_SHeS j <¢I(N ~bt)nb ---b 9> = 0 , 
o Pn 

which are the g.s. coupled-cluster equations, are hence f u l l y  equivalent to the N-body 

Schrodinger equation. They are a coupled set of nonl inear equations for  the matr ix 

elements (or subsystem amplitudes) Sn(P1-.-pn) of the corre lat ion operators S n. In 

order to be useful in practice one has to truncate th is  hierarchy and, for  example, the 

"natural"  t runcat ion of the so-cal led SUBn scheme, wherein each of the amplitudes S i 

is set to zero for  i > n and the remaining n coupled equations are solved for  the 

amplitudes S i with i ~ n, has by now been thoroughly invest igated. Thus i t  is by 

now well known that the numerical solut ion of appropr iate ly truncated subsets of the 

equations (6) has lead to exce l lent  quant i ta t ive  g.s. resul ts for  systems as diverse as 

closed-shel l  atomic nuc le i ,  the one-component Coulomb plasma, and even quite complex 

systems from the realm of quantum chemistry. 

For fur ther  deta i ls  of a formulation of the g.s. formalism that  perhaps best 

stresses i t s  physical content, the interested reader is referred to the a r t i c l e  by 

Luhrmann. z A f u l l  review has also been given 2 in the context of appl icat ions to nuclear 

physics, and hence where in teres t  is p a r t i c u l a r l y  focussed on short-range cor re la t ions.  

For the par t i cu la r  problems inherent to the cases of long-range in teract ions and long- 

range corre la t ions,  the reader is also directed to the essent ia l l y  sel f -contained ar-  

t i c les  by L~hrmann and the present author, 3,4 which deal with the one-component Coulomb 

plasma (or ' j e l l i u m ' )  in SUB2 approx imat ion .  

2.2 Excited-state formalism 

The g.s. formalism already described presumably may be employed not only for  the 

g.s. but also for  those states (with the same imposed sbnnmetry as the g .s . )  that  have 

non-zero overlap with the model state Jg>. (We note that Eq. ( I )  automat ical ly imp- 
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l ies  a normalisation <~I~> = I . )  Thus res t r i c t ing  ourselves to excited states I~> 

which are orthogonal to both I@> and Iv>, Emrich s has recently shown that an appro- 

pr iate choice of CCF wavefunction i s ,  

I ~  > S(~)eSI@ > S(~) Y N S~ ) 
= , = n~l~ ' (7) 

S~ ) : (n~)-i Z b* . . .b *  (N-½b)ns~Z) (;PI '"Pn) 
p l . . ,pn Pl Pn 0 

Each non-zero vector s~)J~> is assumed to have a non-zero overlap with I f  the 
excited state is a momentum eigenstate with eigenvalue q and we choose to work in a 

n 

plane-wave s.p. basis, th is implies that the s.p. momenta p1-..pn in Eq. (7) must add 

to q, whereas in the g.s. Eq. (3) they must add to zero. 

The formal derivat ion of the exci ted-state (e.s. )  coupled-cluster equations is now 

again eas i ly  performed. The e,s. Schrodinger equation, with energy eigenvalue Ez 

E+m ( i .e .  with exci tat ion energy, w), is f i r s t  combined with i t s  g.s. counterpart, 

to give 

[H,S(Z)]I~> = ~s(~)l~>. (8) 

A s imi lar  procedure as in the g.s. case above then leads to the e.s. counterpart of 

Eq. (6) as 

n 
= mS~)(p l . . .pn)  (9) <¢I(N 2bt) b -.-b e-S[H,S(L)]e SI¢> 

0 Pn Pl 

Equations (9) are thus the linked e.s, coupled-cluster equations, and we note that 

they take the form of a coupled set of l inear  eigenvalue equations for  the e.s. sub- 

system amplitudes, with the same (exci tat ion energy) eigenvalue m in each equation. 

In each equation, the g.s. solution is assumed already known so that the g.s. correla- 

t ion amplitudes are input to Eqs. (9). 

Just as in the g.s. case, the e.s. Eqs. (9) also have to be truncated to be useful 

in practice. As an obvious extension of the g,s. SUBn scheme, for  example, we mention 

the SUB(m,n) scheme where the n lowest equations of Eq. (6) and the m lowest equa- 

tions of Eq. (9) are solved in the approximation that the operators S~2 k and Sn+ k 

are set to zero for  a l l  k m I .  However, one obvious point that arises immediately is 

the choice of "compatible" (m,n) pairs.  For example, one would l i ke  to know a pr io r i  

whether for a given n, higher values of m in the SUB(m,n) scheme necessari ly lead 

to a "better"  approximation. Such questions are d i f f i c u l t  to answer without further 

information, and i t  is in this sense that the theory of l inear  response to be presented, 

provides a bridge between the otherwise essent ia l ly  disparate g.s. and e.s. formalisms 

already described. 

3. LINEAR RESPONSE AND GENERAL SUM RULES 

Let us now consider the response of the system to the addition of a small pertur- 

bation ~v to the hamiltonian H, by expanding the g.s. energy and wavefunction in 

powers of the coupling parameter ~, 
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H' = H + ~v , 

E' = E + xE( l )  + x2E(2) + . . .  , (10) 

I v '>  = Iv> + x l~(~)> + x21w (2)> + - . .  

s' one possible means of progressing wi th in  the CCF at th is  point is to define e I~> 

as the perturbed g.s.  Iv '> ,  and to use Eqs. (lO) to determine the perturbed cor re la-  

t ion operator S' ,  as has recent ly  been discussed by Arponen. 6 As an a l t e rna t i ve  how- 

ever, and guided by the usual der iva t ion  of sum ru les ,  we make contact at th is  point  

with (at  least  part  o f )  the exc i ta t ion  spectrum Iv > of the unperturbed hamiltonian 

H by expanding the f i r s t - o r d e r  correct ion to the g.s. wavefunction as 

Iv (t)> = Zg~l~ > ; HI'z> = E~I~> , ( l l )  

where the coefficients gc are as yet unknown. We now restrict ourselves to f i rs t -  

order changes in the g.s. wavefunction only (linear response theory), and also impose 

as further restrictions from the outset that the excited states I~z> entering the 

expansion ( l l )  are orthogonal to the model condensate state I@> (as in Sect. 2.2). 

Further, we restrict the ensuing discussion to perturbations v such that the inner 

products of the vector vI~> with both [@> and Iv> are zero. The standard analysis 

of linear response then readily shows both that the first-order energy change E (z 

vanishes, and the further results, 

Z~g~ I ~  > = -v]~> ; (12 

l <~{vI~> 
g~ mL <~  ~F~-- ; (13 

<~]vl~> (14 E(2) = Zg~ <--~> 

For future purposes i t  is also convenient to consider the "tm~-h power" of the per- 

turbed Schrodinger equation, namely 

(H+Xv) m IV'> : E 'm IV'> (15) 

I t  is  then st ra ight forward to use Eqs. ( I0)  and ( I I )  in expanding Eq. (15) to f i r s t  

order in x, to show that  fo r  any in tegra l  m, 

zm~mg~ I~>  = -V(m ) Iv> , (16) 

where V(m ) is a nested commutator, defined i t e r a t i v e l y  as 

v( t  ) = v ; V(m ) = [H ,  V(m_l )]  , m > 1 . (17) 

Equations (12) and (16) nowconst£tutethe basis fo r  our general h ierarchies of  sum 

ru les.  Thus, by taking t he i r  inner products with the states given in Eq. (5),  a f t e r  a 
-S p r io r  p re -mu l t i p l i ca t i on  by e , gives the sum rules 

~ m_ r(g)(pl "'On ) = _ <~I (N-½b~) n b --- bpze-Sv(m)eS I~> ~ - Fmn(P 1 ---On ) 
~t g~On " Pn (18) 
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We note in p a r t i c u l a r  tha t  the sum ru les (18) re la te  the exc i t a t i on  energies and cor- 

r e l a t i on  amplitudes on the one hand wi th the ground-state cor re la t ions  on the other.  

Equation (14) [which together wi th  Eq. (13) is j u s t  second-order per turbat ion theory 

for  the g.s.  energy] may also be regarded as a kind of  zeroth order sum ru le .  

4, RELATION TO SUM RULES FOR THE STRUCTURE FUNCTION 

A p a r t i c u l a r l y  important app l i ca t ion  of  the above ana lys is ,  motivated by the res- 

t r i c t i o n s  discussed below Eq. ( I I ) ,  now fo l lows from the choice, 

V = ½(p÷+p l )  - V t ; (q # 0 )  , (19) 
q q 

p÷ -: N -½ ~ blb_. " -,'- -: pf÷ (20) 
q ~ k k+q -q 

The o p e r a t o r  Pt creates a densi ty  f l u c t u a t i o n  w i th  momentum ~, and the per turbat ion 

v thus destroy~ the t r ans la t i ona l  invar iance of  the o r i g i na l  hami l ton ian.  Working 

again in a momentum-eigenstate ( i . e . ,  plane-wave) s.p. basis,  w i th  I¢> the zero- 

momentum condensate, i t  is  c lear  from Eq. ( ]3)  tha t  the on ly  exc i ted states of  i n t e r e s t ,  

namely those tha t  carry non-zero weight g~ in Eq. ( ] l ) ,  are momentum eigenstates w i th  

- 7 .  eigenvalue ~[ or Hence to obtain n o n - t r i v i a l  resu l ts  from Eq. (18), the momenta 

p l - . - pn  must also add e i t he r  to q or - q ,  and in the fo ] low ing  we assume they sum 

to ~. In the simp]est case, m = 1, the r ight -hand side of  Eq. (18) can now be evalua- 

ted w i th  the per tu rbat ion  of  Eq. (19), to g ive,  

Fzz(q ) : ½ [ l + S 2 ( q ) ]  ; S2(q) - $2(~ , -~)  , (21) 

and the other funct ions Fln wi th n > 1 can be s i m i l a r l y  evaluated in terms of  the 

g.s.  subsystem amplitudes S n. (Note tha t  in the plane-wave s.p. basis,  S 1 -= 0 by 

momentum conservat ion. )  In th i s  way, one can show for  example tha t  the lowest order 

(n = I )  sum ru les derived from Eq. (18) w i th  m = 1,2 are respec t i ve ly  given as 

~(~) (q) = -F  (~) (22) ~m£ g~ bl i I ' £ 

= - { I  (7)}  (23) 2m - F11 ' 

and the other (m,n) sum ru les can be s i m i l a r l y  evaluated. 

In the l i m i t  of  vanishing momentum t rans fe r ,  the energy s h i f t  due to the per turba-  

t ion  of  Eq. (19) can also be ca lcu la ted macroscopical ly  in  the usual well-known fashion,  

to give the " compress ib i l i t y  sum ru le "  fo r  the dynamic s t ruc ture  func t ion  T(q,m), 

q (24) T(q,~) = [£ <~I~><T~I~ > 6(m-m£) , 

which can be expressed in our CCF language and in  the usual way as 

q~olim2 g~g~ ~ I ~ >  2mc-2- <==~ q~olim d ~  - I  g(q,~) - 2mc2 , (25) 
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in terms of the f i rs t -sound ve loc i t y ,  c. Two other well-known sum rules for  T(q,m), 

namely the "s ta t i c  sum ru le"  f o r  the s ta t i c  funct ion T(q) and the "f-sum ru le" ,  can 

also eas i ly  be derived by taking the inner product with the vector vI~> of Eq. (16) 

with n = 1 and m = 1,2 respect ively:  

2Zm~g ~ = -T(q)  ~ dmT(q,m) = T(q) 

2 ~ >  ~2~2 I ~ ~2q2 
2Zm g~ <TI~> 2m: <==~ dwm T(q,m) = 2m 

o 

(26) 

(27) 

In order to compare Eqs, (26), (27) with Eqs. (22), (23) i t  is most useful to re- 

wr i te the term <~Ip~IT~> in Eqs. (26), (27) as <Tle~e-Sp~ITz>,~ and then to inser t  

the fo l lowing i den t i t y  in the N-part ic le H i lber t  space for the un i t  operator so ind ica-  

ted, 

~ [~><~I + ZnI-T Z b t ...btn(N-½bo)nl~><~l(N-½bt)nbp ...b (28) 
n " pl..,pn Pl u Pn Pl 

In th is  way i t  is easy to see that  the f i r s t  term on the r ight-hand side of Eq. (28) 

when inserted as indicated in the lef t-hand sides of Eqs. (26) and (27) y ie lds jus t  

exact ly  the lef t -hand sides of Eqs. (22) and (23) respect ively.  From the remaining term 

on the right-hand side of Eq. (28) we get for  larger n a very complex and nonl inear 

dependence on~othe g.s. corre lat ion amplitudes S n but with each term l inear  in the e.s. 

amplitudes S~ ~). In th is  way one shows that  the sets of sum rules (18) with m = 1,2 

respect ive ly  (and in each case for a l l  n) correspond to the sum rules of Eqs. (26) and 

(27) for  T(q,m). The same is c lear ly  also true for  the (perhaps less fami l i a r )  higher 

(m > 2) sum rules which represent the higher moments of the structure funct ion T(q,m). 

In each case, for a given moment (or index m), our system of sum rules const i tutes a 

c lus ter  decomposition ( in index n) of the corresponding sum rule for the dynamic 

structure funct ion,  in to sub-sum-rules. 

4.1 One-state approximation 

As a prel iminary ind icat ion of the usefulness of the new sum ru les,  we now assume 

that a single excited state exhausts the sum rules - -  the so-cal led one-state approxi-  

mation. In th is  case, d iv is ion  of Eq. (23) by Eq. (22) y ie lds  the re la t ion ,  

÷ ~(q) =~2q2 l-S2(q) 
2m l+S2(q) , (29) 

where use has also been made of Eq. (21). In order to make use of Eq. (25) to make 

fu r ther  progress we now need to evaluate the lef t-hand side of Eq. (25) by the same 

procedure as already indicated between Eqs. (27) and (28). To make the ca lcu la t ion 

t ractable we also work in the random-phase approximation (RPA) as the obvious approxi-  

mation scheme, and which is characterised by neglect ing a l l  contr ibut ions which depend 

on momenta other than ±q, and by set t ing S i = 0 for  i ~ 3. In th is  approximation, 



"316 

the second term on the right-hand side of Eq. (28) gains a non-zero contribution only 

from the n = 2 term in the sum. The remaining factors can now be evaluated using simi- 

lar  techniques of insert ing appropriate uni t  operators. Space considerations preclude 

a detai led analysis,  and we quote only the f ina l  resu l t  (true only in the RPA): 

<'~Jp.+J'~>/<wJw> -~ S l~ ' ) (q) [1-S2(q) ]  -1 (30) 
q 

Insert ing Eq. (30) into Eq. (25), and combining the resul t ing equation with Eqs. (21) - 

(23), y ie lds the further results in the one-state approximation, 

l imS2(q) = - I  +~q • lim re(q) ~cq (31 
q~O ~ ' = " q~O 

Equation (31) shows that th is  simple approximation leads to the universal existence of 

a low-momentum phonon branch of the exci tat ion spectrum. Furthermore, the Bose equation 

for S2(q) from the coupled-cluster equations (6) is given in the RPA by 4 

"~2q2 
S2(q) + NV(q)[l + $ 2 ( q ) ] 2  = 0 , (32) 

in terms of the two-body potential  V. Use of Eq. (31) in Eq. (32) then also yields 

the well-known re la t ion for the sound ve loc i ty ,  

c = [NV(O)/m] ½ (33) 

The s ta t i c  structure function T(q) can also be evaluated in the RPA from Eq. (26) by 

use of Eq. (30). Comparing the resul t ing equation with Eq. (22), evaluating both in 

the one-state approximation, and using also Eq. (21), then y ie lds the resul t  va l id  in 

the RPA, 

T(q) = [ I  + S2(q)] / [ I  - S2(q)] (34) 

A comparison of Eqs. (29) and (34) f i n a l l y  y ie lds the well-known Bijl-Feynman re lat ion 

between the s ta t i c  structure function and the exci tat ion spectrum, 

(35) T(q)m(q) -~ 2m " 

I t  is of some interest  to note that the only approximation involved in deriving 

Eq. (29) is the one-state approximation, whereas Eqs. (34) and (35) have also involved 

the RPA. We note however that making the one-state approximation also in Eq. (27), 

which we have so far  not used, and comparing with Eq. (26), y ields Eq. (35) d i rec t l y  

but now without using the RPA. I t  must be carefu l ly  noted that an evaluation of T(q) 

in a d i f fe rent  approximation to RPA w i l l  therefore not be wholly compatible with the 

one-state approximation expressed by Eq. (35). We f i n a l l y  note that although the one- 

state approximation is  compatible with the RPA at the level of Eqs. (22), (23), (26) 

and (27), i t  is cer ta in ly  not exact. When higher sum rules (18) ( ~ .  m=3, n = l )  are 

also simultaneously considered, inconsistencies s ta r t  to ar ise.  

5. FINAL REMARKS 

We have seen how to derive a set of exact sum rules in the CCF which connect pro- 
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pert ies of the exc i ta t ion  spectrum characterised by I~>  and S~ ), with ground-state 

properties characterised by iv> and S n. Our new double manifold ( in indices m,n) 

of sub-sum-rules (18) represents a c lus ter  decomposition of the usual single manifold 

of sum rules for  the energy-weighted moments of the dynamic structure funct ion,  and 

thereby is able to provide much more detai led information about many-body systems than 

the l a t t e r .  The new formalism should also be useful in appl icat ions to systems as l i -  

quid ~He where the f i r s t  step would probably be to use i t  to determine the g.s. cor- 

re la t ion  funct ion S2(q) from the experimental spectrum m(q). In th is  way one could 

invest igate the use of exci ted-state properties to determine the correlat ions present in 

the g.s.,which have otherwise proven notor ious ly  d i f f i c u l t  to unravel. I t  is also 

possible that our new sub-sum-rules w i l l  enable the CCF and the a l te rnat ive  many-body 

moment methods 7 mutually to i l luminate  one another. 

We have seen how even the simplest approximation for  these new sum rules of assu- 

ming that the exc i ta t ion  spectrum consists of a single state (which therefore exhausts 

the sum ru les) ,  leads to a phonon spectrum in the long-wavelength l i m i t ,  and also to 

the Bijl-Feynman re la t ion  when the RPA is fur ther  assumed. We note that  these resu l ts ,  

which can also be derived from the structure funct ion sum rules in the same one-state 

approximation, were derived using the (m,n) sub-sum-rules (18) for the case n = 1 only.  

This is  not surpr is ing since phonons are jus t  (co l lec t i ve )  coherent superpositions of 

one-part ic le/one-hole exc i ta t ions ,  and which are therefore f u l l y  described by S# ~)" 

and which hence correspond to the case n = 1 only.  Extensions of the use of the sub- 

sum-rules (18) to the case n > 1 is l i k e l y  also to be of some in te res t .  How to imp- 

rove upon the one-state approximation, perhaps with the aim of making a r b i t r a r i l y  many 

of the (m,n) sub-sum-rules (18) compatible with each other (and with the corresponding 

sum rules for  the structure funct ion) ,  also remains an open question of considerable 

importance. In th is  same s p i r i t ,  the d i f f i c u l t y  of rea l l y  proving that phonons become 

exact eigenstates in the low-q l im i t  has also been emphasised in other contexts by 

Feenbergo 8 

F ina l l y ,  we hope that the sum rule formalism developed here may open the door to a 

wider range of appl icat ions of the CCF, which has h i ther to  la rge ly  been used only to 

solve (approximately) the g.s. and e.s. Schrodinger equation with given many-body ham- 

i l t on i an .  In pa r t i cu la r ,  we believe that  the sum rules are l i k e l y  to prove useful in 

invest igat ing the compat ib i l i t y  between otherwise disparate approximations in the essen- 

t i a l l y  d i s t i n c t  g.s. and e.s. CCF methods. More general ly ,  i t  seems clear that  in 

p r inc ip le ,  a l l  systems to which the CCF has already very successful ly  been applied, are 

worth studying anew with these newly-developed tools .  
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