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SUM RULES AND A COUPLED CLUSTER FORMULATION

OF LINEAR RESPONSE THEORY

R.F. Bishop
Department. of Mathematics
University of Manchester Institute of Science and Technology
P.0. Box 88, Manchester M60 1QD, England

1. INTRODUCTION

It is my intention here to describe the recent developments of the coupled-cluster
formulation of quantum many-body theory in which we have succeeded in imbedding the
well-known theory of linear response within this formalism, and have shown how a new
hierarchy of very useful sum rules thereby emerges. It will transpire in so doing
that the new formalism also provides a very convenient bridge between the previously
somewhat separate (although, of course, related) coupled-cluster formalisms for the
ground and excited states respectively of the many-body system under consideration.

2. COUPLED-CLUSTER DECOMPOSITION OF THE SCHRODINGER EQUAT ION

A very brief outline is first presented of such of the main elements of the cou-
pled-cluster formalism as are needed here.

2.1 Ground-state formalism

The usual starting-point for the ground-state (g.s.) coupled-cluster formalism
(CCF) is an exact re-expression of the many-body g.s. Schrodinger equation in terms of
a set of non-linear coupled equations for the so-called correlation amplitudes.

Purely for ease of present exposition the discussion is given here wholly in terms
of infinite, homogenous systems of bosons, for which the coupled-cluster ansatz for
the exact g.s. wavefunction |¥> 1is given as,

+*

N
v = e 3 s = T s, (1
n=1

in terms of an N-body model or reference g.s. |&> which is taken to be a single-state
(usually zero-momentum) condensate,

o> = () Ee)Yos (2)
where |[0> s the vacuum state. In terms of a complete set of boson creation opera-
tors b;, which create the complete orthonormal single-particie (s.p.) basis |o> when
acting on the vacuum, the correlation operators Sn, which excite n particle-hole
pairs from this condensate, may be written as
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where the labels PPy indicate non-condensate s.p. states, thereby displaying the
linked-cluster aspect of the original eS ansatz of Eq. (1). The derivation of the
g.s. coupled-cluster equations is now formally performed in two simple steps. The g.s.
Schrodinger equation, with energy eigenvalue E is first pre-multiplied by the operator
e”s,

e_SHeS[cI» = Ele> (4)
which may be considered -as a purely formal step to eliminate some "unlinked” terms from
the outset that otherwise need to be eliminated later. The scalar product is then fi-
nally taken of Eq. (4) either with the model state |e> or with the states

T t o yEn N

b™ «»sb b . 5

o pn(N o) o> (5)
Clearly, when p,*<*p, run over all (non-condensate) s.p. states of the complete s.p.
basis, and when n runs from 1 to N, the vectors [&> and (5) span the entire
N-body Hilbert space. Thus the set of equations

<@|e'SHeSf¢> = E ,
(6)

<¢](N'%b;)"bon--~bp1e‘5HeS|¢> 0 .,
which are the g.s. coupled-cluster equations, are hence fully equivalent to the N-body
Schrodinger equation. They are a coupled set of nonlinear equations for the matrix
elements (or subsystem amplitudes) Sn(pl"°pn) of the correlation operators Sn. In
order to be useful in practice one has to truncate this hierarchy and, for example, the

"natural” truncation of the so-called SUBn scheme, wherein each of the amplitudes Si
is set to zero for i > n and the remaining n coupled equations are solved for the
amplitudes Si with 1 < n, has by now been thoroughly investigated. Thus it is by
now well known that the numerical solution of appropriately truncated subsets of the
equations (6) has lead to excellent quantitative g.s. results for systems as diverse as
closed-shell atomic nuclei, the one-component Coulomb plasma, and even quite complex
systems from the realm of quantum chemistry.

For further details of a formulation of the g.s. formalism that perhaps best
stresses its physical content, the interested reader is referred to the article by
Luhrmann.} A full review has also been given2 in the context of applications to nuclear
physics, and hence where interest is particularly focussed on short-range correlations.
For the particular problems inherent to the cases of long-range interactions and long-
range correlations, the reader is also directed to the essentially self-contained ar-
ticles by Luhrmann and the present author,3s" which deal with the one-component Coulomb

plasma (or 'jellium') in SUB2 approximation. .

2.2 Excited-state formalism

The g.s. formalism already described presumably may be employed not only for the
g.s. but also for those states (with the same imposed symmetry as the g.s.) that have
non-zero overlap with the model state |¢>. (We note that Eq. (1) automatically imp~
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lies a normalisation <e|¥> = 1.) Thus restricting ourselves to excited states |w£>
which are orthogonal to both |¢> and |¥>, Emrich® has recently shown that an appro-
priate choice of CCF wavefunction is,

PRENOCMEENC R N0
n= (7)
s = 7 T !

Each non-zero vector S(l)|®> is assumed to have a non—zero overlap with lw >, If the
excited state is a momentum eigenstate with eigenvalue q and we choose to work in a
p]anifwave s.p. basis, this implies that the s.p. momenta CPRARC in Eq. (7) must add
to q, whereas in the g.s. Eq. (3) they must add to zero.

The formal derivation of the excited-state (e.s.) coupled-cluster equations is now
again easily performed. The e.s. Schrodinger equation, with energy eigenvalue Ex =
E+w (i.e. with excitation energy, w), 1is first combined with its g.s. counterpart,
to give

(s e = ws) s (8)

A similar procedure as in the g.s. case above then leads to the e.s. counterpart of
Eq. (6) as

<q>|(N'éb;)“bpn~--bple“sm,s(“)]es|q>> = uwsp ey (9)
Equations (9) are thus the linked e.s. coupled-cluster equations, and we note that
they take the form of a coupled set of linear eigenvalue equations for the e.s. sub-
system amplitudes, with the same (excitation energy) eigenvalue w« 1in each equation.
In each equation, the g.s. solution is assumed already known so that the g.s. correla-
tion amplitudes are input to Egs. (9).

Just as in the g.s. case, the e.s. Eqs. (9) also have to be truncated to be useful
in practice. As an obvious extension of the g.s. SUBn scheme, for example, we mention
the SUB(m,n) scheme wherée the n lowest equations of Eq. (6) and the m lowest equa-
tions of Eq. {(9) are solved in the approximation that the operators Sgﬁl and Sn+k
are set to zero for all k = 1. However, one obvious point that arises immediately is
the choice of “compatible" (m,n) pairs. For example, one would like to know a priori
whether for a given n, higher values of m in the SUB(m,n) scheme necessarily lead
to a "better” approximation. Such questions are difficult to answer without further
information, and it is in this sense that the theory of linear response to be presented,
provides a bridge between the otherwise essentially disparate g.s. and e.s. formalisms

already described.

3. LINEAR RESPONSE AND GENERAL SUM RULES

Let us now consider the response of the system to the addition of a small pertur-
bation Av to the hamiltonian H, by expanding the g.s. energy and wavefunction in
powers of the coupling parameter i,
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H = H+ v ,
E' = E+aB(1) 4+ 26(2) + oan (10)
' = v +afelt)s 4 x2|w(2)> + oo

One possible means of progressing within the CCF at this point is to define esl|©>

as the perturbed g.s. |¥'>, and to use Eqs. (10) to determine the perturbed correla-
tion operator S', as has recently been discussed by Arponen.® As an alternative how-
ever, and guided by the usual derivation of sum rules, we make contact at this point
with (at least part of) the excitation spectrum |w£> of the unperturbed hamiltonian

H by expanding the first-order correction to the g.s. wavefunction as

[\y(l)> = ggg“}f ; H|\y£> = E |\y> . (1)

where the coefficients g, areas yet unknown. MWe now restrict ourselves to first-
order changes in the g.s. wavefunction only (linear response theory), and also impose

as further restrictions from the outset that the excited states |w2> entering the
expansion (11) are orthogonal to the model condensate state |e> (as in Sect. 2.2).
Further, we restrict the ensuing discussion to perturbations v such that the inner
products of the vector v|y> with both |e> and |y> are zero. The standard analysis
of linear response then readily shows both that the first-order energy change E(l)
vanishes, and the further results,

Zm£g£|W2> = ~v|y> (12)
%
<Yy [V]‘{’>
S ; (13)
9 w, ¥ V5
<yiv]y, >
g(2) L

%gl <yly> ° (14)
For future purposes it is also convenient to consider the "mEﬁ power" of the per-
turbed Schrodinger equation, namely
(Heav)je'> = B'Mly's | (15)
It is then straightforward to use Eqs. (10) and (11) in expanding Eq. (15) to first
order in X, to show that for any integral m,

m = -
Lo gy lvp> = =vimyle (16)
where v(m) is a nested commutator, defined iteratively as

v = vV 3 V(m) = [H, V(m-])] ,m>1, (17)

Equations (12) and (16) now constitute the basis for our general hierarchies of sum
rules. Thus, by taking their inner products with the states given in Eq. (5), after a
prior pre-multiplication by e_S, gives the sum rules

. -3t -S Sl -
%wgmggs( )(Pl-.-pn) = -<3| (N ébo)nbpn.--bp e V(m)e |e> = —an(pl...pn)

n
' (18)
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We note in particular that the sum rules (18) relate the excitation energies and cor-
relation amplitudes on the one hand with the ground-state correlations on the other.

Equation (14) [which together with Eq. (13) is just second-order perturbation theory

for the g.s. energy] may also be regarded as a kind of zeroth order sum rule.

4. RELATION TO SUM RULES FOR THE STRUCTURE FUNCTION

A particularly important application of the above analysis, motivated by the res-
trictions discussed below Eq. (11), now follows from the choice,

N
v o= 3(o,te) = v 5 (q£0) (19)
qQ q
-1
o = NZ2Jbib, L = of, ) (20)
q _k> kK k+q -q

The operator p+ creates a density fluctuation with momentum 4, and the perturbation
v thus destroyg the translational invariance of the original hamiltonian. Working
again in a momentum-eigenstate (i.e., plane-wave) s.p. basis, with |e> the zero-
momentum condensate, it is clear from Eq. (13) that the only excited states of interest,
namely those that carry non-zero weight 9, in Eq. (11), are momentum eigenstates with
eigenvalue § or -a'. Hence to obtain non-trivial results from Eq. (18), the momenta
GO must also add either to a or —a} and in the following we assume they sum
to a. In the simplest case, m = 1, the right-hand side of Eq. (18) can now be evalua-
ted with the perturbation of Eq. (19), to give,

-> >

Fa@ = 301+5(@)3 5 S@) = S,(@ -9 (21)
and the other functions F]n with n > 1 can be similarly evaluated in terms of the
g.s. subsystem amplitudes Sn. (Note that in the plane-wave s.p. basis, S, = 0 by
momentum conservation.) In this way, one can show for example that the lowest order
(n = 1) sum rules derived from Eq. (18) with m =1,2 are respectively given as

zlwgglsf“ @ = -F @) (22)
%migzsf“ @ = -T2l a-r,@n . ' (23)

and the other (m,n) sum rules can be similarly evaluated.

In the 1imit of vanishing momentum transfer, the energy shift due to the perturba-
tion of Eq. (19) can also be calculated macroscopically in the usual well-known fashion,
to give the "compressibility sum rule" for the dynamic structure function T(q,w}),

T
<tlo,|¥ ><v |o ]v>
gy

T(q’w) = X,Q <WIW><\¥5LWSL> 5(“’_“’1) ) (24)

which can be expressed in our CCF Tanguage and in the usual way as
Vim21g. —eglty L e tin [ dew T ! 25
qlg %gﬁ <vjv> T T ot qlg J; wol T(agw) = 5, (25)
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in terms of the first-sound velocity, c. Two other well-known sum rules for T(q,w),
namely the "static sum rule" for the static function T(q) and the “f-sum rule", can
also easily be derived by taking the inner product with the vector v|¥> of Eq. (16)
withn =1 and m = 1,2 respectively:

<¥|p>|v > -
%
2109, —lp - <T@ = | doTt@w) = TC@) (26)
o]
2 <tleZlY,> H2q2 © h242
S U SR Ll
2§w£g£~7\u—‘ﬁw—>— i JdmwT(q,w)_ el (27)
0

In order to compare Eqs. (26), (27) with Egs. (22), (23) it is most useful to re-
write the term <w|pa|w£> in Eqs. (26), (27) as <w|e54e_spa|w2>, and then to insert
the following identity in the N-particle Hilbert space for the unit operator so indica-
ted,

1= |o<s|+ ] ] b +eb (N‘%bo>”|¢><¢](w‘%b;)”bp b L (28)

n"tp e, Tl n n 1
In this way it is easy to see that the first term on the right-hand side of Egq. (28)
when inserted as indicated in the left-hand sides of Eqs. (26) and (27) yields just
exactly the left-hand sides of Egs. (22) and (23) respectively. From the remaining term
on the right-hand side of Eq. (28) we get for larger n a very complex and nonlinear
dependence on the g.s. correlation amplitudes Sn but with each term linear in the e.s.
amp1i tudes S&f). In this way one shows that the sets of sum rules (18) with m = 1,2
respectively (and in each case for all n) correspond to the sum rules of Eqs. (26) and
(27) for T{(q,w). The same is clearly also true for the (perhaps less familiar) higher
(m > 2) sum rules which represent the higher moments of the structure function T(g,w).
In each case, for a given moment (or index m), our system of sum rules constitutes a
cluster decomposition (in index n) of the corresponding sum rule for the dynamic
structure function, into sub-sum-rules.

4.1 One-state approximation

As a preliminary indication of the usefulness of the new sum rules, we now assume
that a single excited state exhausts the sum rules -- the so-called one-state approxi-
mation. In this case, division of Eq. (23) by Eq. (22) yields the relation,

1-S
w+w(q)=%i 175—3% s (29)
where use has also been made of Eq. (21). In order to make use of Eq. (25) to make
further progress we now need to evaluate the left-hand side of Eq. (25) by the same
procedure as already indicated between Eqs. (27) and (28). To make the calculation
tractable we also work in the random-phase approximation (RPA) as the obvious approxi-
mation scheme, and which is characterised by neglecting all contributions which depend

on momenta other than 1:3, and by setting S; = 0 for i = 3. In this approximation,
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the second term on the right-hand side of Eq. (28) gains a non-zero contribution only
from the n = 2 term in the sum. The remaining factors can now be evaluated using simi-
lar techniques of inserting appropriate unit operators. Space considerations'preclude
a detailed analysis, and we quote only the final fesult (true only in the RPA):

<¥|p,|¥ >/ <¥|y> = Sgl)(q)[] -Sz(q)jl‘1 . (30)
qQ

Inserting Eq. (30) into Eq. (25), and combining the resuiting equation with Egs. (21) -

2

(23), yields the further results in the one-state approximation,

lims, (q) = -1+% 5 lim w(q) = heq . (31)

q>0 g0

Equation (31) shows that this simple approximation leads to the universal existence of

a low-momentum phonon branch of the excitation spectrum. Furthermore, the Bose equation

for S,(q) from the coupled-cluster equations (6) is given in the RPA by"

ﬁs (Q) + W(q)T+5,(q)2 = 0 (32)
m 2 2 :

in terms of the two-body potential V. Use of Egq. (31) in Eq. (32) then also yields
the well-known relation for the sound velocity,

¢ = [NV(O)/mit . (33)
The static structure function T(q) can also be evaluated in the RPA from Eq. (26) by
use of Eq. (30). Comparing the resulting equation with Eq. (22), evaluating both in
the one-state approximation, and using also Eq. (21), then yields the result valid in
the RPA,

T(q) = [1+5,(q)1/01-S,(q)3 . (34)
A comparison of Eqs. (29) and (34) finally yields the well-known Bijl-Feynman relation
between the static structure function and the excitation spectrum,

h2q2
T(Qu(q) = S . (35)
It is of some interest to note that the only approximation involved in deriving

Eq. (29) is the one-state approximation, whereas Egs. (34) and (35) have also involved
the RPA. We note however that making the one-state approximation also in Eq. (27),

which we have so far not used, and comparing with Eq. (26), yields Eq. (35) directly
but now without using the RPA. It must be carefully noted that an evaluation of T(q)
in a different approximation to RPA will therefore not be wholly compatible with the
one-state approximation expressed by Eq. (35). We finally note that although the one-
state approximation is compatible with the RPA at the level of Egs. (22), (23), (26)
and (27), it is certainly not exact. When higher sum rules (18) (e.g. m=3, n=1) are
also simultaneously considered, inconsistencies start to arise.

5. FINAL REMARKS

We have seen how to derive a set of exact sum rules in the CCF which connect pro-
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perties of the excitation spectrum characterised by |w2> and ng), with ground-state
properties characterised by |v> and Sn. Our new double manifold (in indices m,n)
of sub-sum-rules (18) represents a cluster decomposition of the usual single manifold
of sum rules for the energy-weighted moments of the dynamic structure function, and
thereby is able to provide much more detailed information about many-body systems than
the latter. The new formalism should also be useful in applications to systems as 1i-
quid “He where the first step would probably be to use it to determine the g.s. cor-
relation function S,{(q) from the experimental spectrum w(q). In this way one could
investigate the use of excited-state properties to determine the correlations present in
the g.s., which have otherwise proven notoriously difficult to unravel. It is also
possible that our new sub-sum-rules will enable the CCF and the alternative many-body
moment methods’ mutually to illuminate one another.

We have seen how even the simplest approximation for these new sum rules of assu-
ming that the excitation spectrum consists of a single state (which therefore exhausts
the sum rules), leads to a phonon spectrum in the Tong-wavelength limit, and also to
the Bij1-Feynman relation when the RPA is further assumed. We note that these results,
which can also be derived from the structure function sum rules in the same one-state
approximation, were derived using the (m,n) sub-sum-rules (18) for the case n =1 only.
This is not surprising since phonons are just (collective) coherent superpositions of
one-particle/one~hole excitations, and which are therefore fully described by Sfl)
and which hence correspond to the case n =1 only. Extensions of the use of the sub-
sum-rules (18) to the case n > 1 {s likely also to be of some interest. How to imp-
rove upon the one-state approximation, perhaps with the aim of making arbitrarily many
of the (m,n) sub-sum-rules (18) compatible with each other (and with the corresponding
sum rules for the structure function), also remains an open question of considerable
importance. In this same spirit, the difficulty of really proving that phonons become
exact eigenstates in the Tow-q Timit has also been emphasised in other contexts by
Feenberg.8

Finally, we hope that the sum rule formalism developed here may open the door to a
wider range of applications of the CCF, which has hitherto largely been used only to
solve (approximately) the g.s. and e.s. Schrodinger equation with given many-body ham-
iltonian. In particular, we believe that the sum rules are likely to prove useful in
investigating the compatibility between otherwise disparate approximations in the essen-
tially distinct g.s. and e.s. CCF methods. More generally, it seems clear that in
principle, all systems to which the CCF has already very successfully been applied, are
worth studying anew with these newly-developed tools.
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