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1 Introduction

As emphasized quite recently in [1] following the consideration in [2], a key feature of the

Gaussian measures is that really nice are the averages of characters. In particular, in the

Hermitian matrix model [3–16], the average of a character (Schur function) χR[M ], which

is a function of eigenvalues of the matrix variable M ,〈
χR[M ]

〉
= χR{N} ·

χR{δk,2}
χR{δk,1}

(1.1)

is again a character, actually, a dimensions DR(N) = χR[IN ] = χR{N} of the representa-

tion R of glN . For monomial non-Gaussian measures like etrMs
dM and appropriate choice

of integration contour, the coefficient contains χR{δk,s} [17]. In the present paper, we

concentrate on the case of Gaussian measures with s = 2. We use the square and curled

brackets in order to denote the character as a (symmetric) function of matrix eigenvalues

(the first Weyl formula) and as a function of time variables trMk (the second Weyl formula)

accordingly. The matrix eigenvalues are often called Miwa variables within this context.
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As an example of (1.1),
〈

TrM2
〉

= N2 and
〈

(TrM)2
〉

= N imply that

〈
TrM2 ± (TrM)2

2

〉
=
N(N ± 1)

2
,

which are dimensions of the symmetric and antisymmetric representations [2] and [1,1].

The only non-trivial ingredient of the theory is the coefficient, which is actually a ratio of

characters at two peculiar points in the space of time-variables, pk = δk,2 and pk = δk,1. It is

this R-dependent coefficient, which makes the matrix model somewhat non-trivial. At the

same time, the character-preserving property can be considered as a defining feature of the

Gaussian measures, and can serve as a key for the definition of various deformations of the

Hermitian model defined by change of the Schur functions to other systems of orthogonal

symmetric functions [18, 19].

In more detail, the partition function of the Hermitian matrix model [3–16], i.e. the

Gaussian average over N ×N Hermitian matrices M , can be decomposed into a sum over

all Young diagrams R:

ZN{p} =
µN

2/2

VolUN

∫
dM exp

(
−µ

2
TrM2 +

∑
k

pk
k

TrMk

)
=

〈
exp

(∑
k

pk
k

TrMk

)〉
=
∑
∆

Z∆(N) · p∆ =
∑
R

χR{p} ·
〈
χR{TrMk}

〉
=
∑
R

χR{δk,2} · χR{N} · χR{p}
µ|R|/2χR{δk,1}

(1.2)

From now on, for the sake of simplicity, we put µ = 1, it can be easily restored by di-

mensional analysis. In (1.2), the character χR{p} is a polynomial of the time variables pk,

labeled by the Young diagram R:

χR{p} =
∑

∆`|R|

ψR,∆
z∆

· p∆ =
∑

∆`|R|

dR · ϕR,∆ · p∆ (1.3)

where, for the Young diagram ∆ parameterized in one of the two ways ∆ = [δ1, δ2, . . .] =

[1m1 , 2m2 , . . .],

p∆ =
∏
i

pδi , z∆ =
∏
k

(k!)mkmk! (1.4)

and ψR,∆ is the symmetric group character, and ϕR,∆, its sometimes more convenient

rescaled. The symbol ` is used in Hurwitz theory to denote restricting to diagrams of a

given size, and |R| is the number of boxes in the Young diagram R. The N -dependence

at the r.h.s. of (1.2) comes entirely from the dimensions χR{N} = DR(N), which are the

values of characters at the locus where all pk = N . Standing in the denominator of (1.2)

is an important representation theory quantity often denoted by dR:

dR = χR{δk,1} =
1

|R|!

∏
i<j(ri − i− rj + j)∏

(lR + ri − i)!
=

∏
all boxes of R

1

hook length
(1.5)
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where lR is the number of lines in the Young diagram R. The “classical” tool to deal with

the characters is the Cauchy formula∑
R

χR{p}χR{p̄} = exp

(∑
k

pkp̄k
k

)
(1.6)

and it turns sufficient to solve surprisingly many problems, involving characters. But not

all, as we immediately see in what follows, and as is already clear from (1.2), where the

summand is still of the second-order in characters, but not just bilinear: it contains one

extra character in the numerator and another one, dR, in the denominator.

In the particular case of N = 2, the only relevant are characters of the symmetric

representations R = [r], which, when expressed through the two eigenvalues of M , are just

χ[r][M ] =
∑r

i=0m
i
1m

r−i
2 . Then the l.h.s. of (1.1) is〈

χ[r][M ]
〉N=2

=

∫ ∫ (∑r
i=0m

i
1m

r−i
2

)
(m1 −m2)2e−m

2
1/2−m2

2/2dm1dm2∫ ∫
(m1 −m2)2e−m

2
1/2−m2

2/2dm1dm2

=


(r + 1)!! for r even

0 otherwise

(1.7)

For symmetric representations, the special characters can be easily obtained from the

Cauchy formula at p̄k = xk:∑
r

xrχ[r]{pk} = e
∑
k
pkx

k

k =⇒
∑
r

xrχ[r]{δk,m} =
∑
j

xmj

j! ·mj
(1.8)

i.e. χ[r]{δk,1} = 1
r! , and χ[r]{δk,2} =

δr,even

2r/2(r/2)!
=

δr,even

r!! . Thus, for the r.h.s. of (1.1), we get

χ[r](2) ·
χ[r]{δk,2}
χ[r]{δk,1}

= (r + 1) · r!
r!!

= (r + 1)!! (1.9)

which coincides with (1.7).

The need for a character in the denominator of (1.2) becomes nearly obvious, if we

extend the Hermitian model to the rectangular complex one [20–22], where the variable M

is N1 ×N2 rectangular matrix not obligatory square. Then the average should depend on

two parameters N1 and N2 in symmetric way. Thus one expects, and gets two characters

χR{N1}χR{N2} in the numerator [1]:

1

VolUN

∫
dMe−TrMM†χR[MM †] =

χR{N1}χR{N2}
χR{δk,1}

=
DR(N1)DR(N2)

χR{δk,1}
(1.10)

and therefore there should be one in the denominator as well in order to balance the number

of characters at the l.h.s. and the r.h.s.

In this paper, we review character sum rules arising from the large-N expansion,

and describe a more general approach based on use of cut-and-join operators introduced

in [23, 24] and playing a big role in the theory of Hurwitz tau-functions. We also comment

on extension to various models from the unitary (trigonometric, Chern-Simons, . . . family,

including torus knot and MacMahon models.

– 3 –
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2 Sum rules from comparison to Harer-Zagier formula

Besides (1.2), there are other explicit generating functions like the Harer-Zagier for-

mula [25–27] ∑
n

z2m

(2m− 1)!!
·
〈

TrM2m
〉

=
1

2z2

((
1 + z2

1− z2

)N
− 1

)
(2.1)

(for increasingly sophisticated multi-trace generalizations see [28, 29]).

Note that the same coefficient Z[2m] in front of p[2m] = p2m can be read off from (1.2),

and is provided by the sum

Z[2m] =
1

2m

〈
TrM2m

〉
=
∑
R`2m

χR{N}χR{δk,2m}χR{δk,2}
χR{δk,1}

(2.2)

Now, substituting (2.2) into (2.1), we obtain a non-trivial sum rule for characters:

∑
R

2|R|z|R|+2

(|R| − 1)!!
·
χR{δk,|R|}χR{δk,2}

χR{δk,1}
·DR(N) =

(
1 + z2

1− z2

)N
− 1− 2Nz2 (2.3)

This formula can be definitely also derived from combinatorics, using that

χR{δk,|R|} =


(−1)d

r if R = [r − d, 1d]

0 otherwise

(2.4)

i.e. only the hook Young diagrams R contribute, moreover, since χR{δk,2} is non-zero only

at even |R|, we can parameterize the hook diagrams as R = [r− d, 1d] at even r. For these

Young diagrams,

χR{δk,2} =
ψ[r−d,1d],[2r/2]

z[2r/2]

=
(−1)d+idC id

r/2−1

r!!
(2.5)

DR(N)

χR{δk,1}
=
∏
i,j∈R

(N + j − i) =
(N + r − d− 1)!

(N − d− 1)!
(2.6)

where Cmn are the binomial coefficients, and id denotes the integer part of d/2. However,

calculating the l.h.s. of (2.3) does require additional summations over r and d, and the

derivation of (2.3) becomes not that immediate.

Actually, it is easy to check that

ZN{p} =

∞∑
m=2

{
pm2

2mm!
·
m∏
i=1

(N2 + 2i− 2) +
pm1

2mm!
·Nm + . . .

}

+

∞∑
m=1

22m−1p2m

m
· Γ(m+ 1/2)

Γ(1/2)
·
m/2∑
k=0

Nm+1−2k

(2k + 1)!(m− 2k)!
·
ξ

(1)
k

m+ 1
(2.7)

+
∞∑
m=2

m−1∑
k=0

22(m−1)p2k+1p2m−2k−1

m · k!(m− k − 1)!

Γ(k + 1/2)Γ(m− k − 1/2)

Γ(1/2)2

(
Nm + . . .

)
+ . . .

– 4 –



J
H
E
P
0
8
(
2
0
1
8
)
1
6
3

where we explicitly write down a few typical terms in the expansion at the r.h.s. Expansion
coefficients here are:

ξ
(1)
0 = 1, ξ

(1)
1 =

m+ 1

2
,

ξ
(1)
2 =

(m+ 1)(5m− 2)

12
, ξ

(1)
3 =

(m+ 1)(35m2 − 77m+ 12)

72
,

ξ
(1)
4 =

(m+ 1)(175m3 − 945m2 + 1094m− 72)

240
, . . .

The simplest here is the p2m
1 term: it comes from the contribution χR{δk,1}p

|R|
1 to χR{p},

and the coefficient cancels the denominator (1.2) so that the remaining sum is calculated

with the help of the Cauchy formula,∑
R

χR(N)χR{δk,2}p
|R|
1 = eNp

2
1/2 =

∑
m

p2m
1

2mm!
·Nm (2.8)

One can say that the pm2 term is also easy, since it can be obtained by differentiating

the Gaussian integral:

(−2∂µ)mµ−N
2/2 =

N2(N2 + 2) . . . (N2 + 2m− 2)

µm
µ−N

2/2.

However, from the point of view of the sum (1.2), this is already a non-trivial sum rule for

the dimensions DN = χR(N):∑
R`m

χR{δk,2}2

χR{δk,1}
·DR(N) =

1

2mm!
·
m∏
i=1

(N2 + 2i− 2) (2.9)

For m = 1, it is still trivial:

(1/2)2

1/2
· N(N + 1)

2
+

(1/2)2

1/2
· N(N − 1)

2
=
N2

2
,

but already for m = 2 it is not:

(1/8)2

1/24
· N(N + 1)(N + 2)(N + 3)

24
+

(−1/8)2

1/8
· (N − 1)N(N + 1)(N + 2)

8
+

(1/4)2

1/12
· (N − 1)N2(N + 1)

12

+
(−1/8)2

1/8
· (N + 1)N(N − 1)(N − 2)

8
+

(1/8)2

1/24
· N(N − 1)(N − 2)(N − 3)

24

=
2

64
(N4 + 11N2) +

2

64
(N4 −N2) +

1

16
(N4 −N2)

=
N2(N2 + 2)

22 · 2!
.

The natural question is how one can handle all the variety of the sum rules for characters,

which arise in this way.

The question becomes even more interesting, because the result (1.2) of [1] possesses

wide generalizations: to various deformations (q−, t− of [30–32] and many other) of matrix

models [19] and, in another direction, to Aristotelian and other tensor models [33–39]. At

the same time, already at the Hermitian matrix model level, it has important applications,

the currently fashionable ones being related to localization formulas [40–61] in conformally

invariant supersymmetric field theories, which reduce perturbative contributions to certain

correlators to those in the Gaussian matrix model averages [62–64].

– 5 –
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3 Harer-Zagier formula and planar limit

Let us restore the µ-dependence in (1.2), and consider the planar large-N (’t Hooft) limit

N → ∞, ν := N/µ =fixed. Then, the model is described by the semicircle distribution

of eigenvalues

ρ(z) :=
〈

Tr δ(M − z · I) dz
〉

=
√

4ν − z2 dz +O(N−2) (3.1)

This means, in particular, that, in the large-N approximation (for the sake of simplicity,

we put ν = 1/4),

〈
TrM2m

〉
−→ 2

π

∫ 1

−1
z2m

√
1− z2dz =

∫ π

0
sin2mt cos2 t dt (3.2)

=
π

22m−1

(
(2m)!

(m!)2
− (2m+ 2)!

4 ((m+ 1)!)2

)
=

(2m− 1)!!

2m(m+ 1)!

Consistency with (2.1) is straightforward: its r.h.s. in ’t Hooft limit is equal to

lim
N→∞

1

z2

(1 + z2

2N

1− z2

2N

)N
− 1

 =
ez

2 − 1

2z2
=
∑
n

z2n

(n+ 1)!
(3.3)

and this is exactly what one gets by substituting (3.2) into the l.h.s. of (2.1).

More interesting is consistency with (1.2).

Of course, it is straightforward to get the leading contribution to (1.2), because the

leading large-N asymptotics of χR{N} = dRN
|R| + . . . comes from p

|R|
1 and thus is pro-

portional to dR = χ{δk,1}, which stands in the denominator. Thus the main large-N

asymptotics of (1.2) is controlled by the Cauchy formula:

ZN{p} =
∑
R

N |R|χR{p}χR{δk,2}+ . . .

= exp

(∑
k

Nkpk2δk,2
k

)
= exp

(
N2p2

2

)
=
∑
m

N2m

2mm!
· pm2 (3.4)

However, this is not what we need for comparison with (2.1). Indeed the relevant coefficient

Z[2m] in front of p[2m] = p2m is provided by the sum (2.2), and if we substitute dRN
|R|

instead of χR{N} and use the Cauchy formula, we get just nothing, unless m = 1. In fact,

the leading asymptotics of Z[2m] is defined by sub-leading O(N |R|+1−m) terms in χR{N},
and, hence, the sum is not reduced to the Cauchy formula.

4 Sum rules from genus expansion

The simple calculation in eqs. (2.1)–(2.9) has a lot of generalizations, to arbitrary coef-

ficients Z∆. The leading asymptotics is prescribed by the semicircle distribution and is

– 6 –
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factorized into contributions of the symmetric (single-line) diagrams ∆. In general, one

can use the well-studied genus expansion of the Hermitian model partition function [65–70],

build from the semicircle distribution (3.1) by solving the Virasoro constraints [11–16, 71–

74] (this is also known as the AMM/EO topological recursion [65–70, 75–79]). The first

sum rules implied by the known resolvents from [65] are (here y(z) =
√
z2 − 4N)

〈
TrM2m

〉
= 2m·

∑
R`2m

χR{N}χR{δk,2}
χR{δk,1}

·coeffp2mχR{p}

= 2m·
∑
R`2m

ϕR,[2m]DR{N}χR{δk,2} (4.1)

= coeffz−2m−1

(
z−y(z)

2
+

N

y5(z)
+

21N(z2+N)

y11(z)
+

11N(135z4+558Nz2+158N2)

y17(z)
+. . .

)
〈

TrMkTrM2m−k
〉

= k(2m−k)
∑
R`2m

χR{N}χR{δk,2}
χR{δk,1}

coeffpkp2m−kχR{p}

= k(2m−k)
∑
R`2m

ϕR,[2m−k,k]DR{N}χR{δk,2}

=
〈

TrMk
〉〈

TrM2m−k
〉

+coeff
z−k−1
1 z

−(2m−k)−1
2


1

2(z1−z2)2

(
z1z2−4N

y(z1)y(z2)
−1
)

+

N
(
z1z2(5z4

1 +4z3
1z2+3z2

1z
2
2 +4z1z

3
2 +5z4

2)

+4N
{
z4

1−13z2
1z

2
2(z2

1 +z1z2+z2
2)+z4

2

}
+16N2(−z2

1 +13z1z2−z2
2)+320N3

)
y(z1)7y(z2)7 +. . .

 (4.2)

and so on. Of course, one can convert this into generating functions, which produces the

sum rules involving the whole resolvent O1(z) :=
〈

Tr 1
z−M

〉
:

N

z
+
∑
R

ϕR,[|R|]|R|DR(N)χR{δk,2}
z|R|+1

=

〈
Tr

1

z−M

〉
=
z−y(z)

2
+

N

y5(z)
+

21N(z2+N)

y11(z)
+. . .

(4.3)

As we explained earlier, contributing to the l.h.s. are actually only the 1-hook diagrams R:

only they have non-vanishing ϕR,[|R|].

Thus, knowledge of the resolvents immediately allows one to generate sum rules, or,

to put it differently, one can express resolvents as character sums this way.

5 Gaussian averages of exponentials (Wilson loops)

Formulas like (4.3) can become a little less mysterious, if the r.h.s. is written in a somewhat

different way. In fact, such a possibility is provided by the theory of exponential correlators.

– 7 –
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According to [80–82], the generating function of exponentials in the Hermitian matrix

model is given by the simple integral

E(s1, . . . ,sn) =

〈
n∏

α=1

TresαM

〉

=

n∏
α=1

es
2
α/2

sα

∮
duαe

uαsα

(
1+

sα
uα

)N ∏
α<β

(uα−uβ)(uα−uβ+sα−sβ)

(uα−uβ−sβ)(uα−uβ+sα)

(5.1)

and it provides a short way [28, 29] to generalization of the Harer-Zagier formulas like (2.1).

It is related to resolvents by the Laplace transform,

On(z1, . . . , zn) =

〈
n∏

α=1

Tr
1

zα −M

〉
=

n∏
α=1

∫ ∞
0

e−sαzαE(s1, . . . , sn) (5.2)

For n = 1, this gives (see also [65, eq.(IV.1.11)])

O1(z) =

∫ ∞
0

es
2/2︸︷︷︸∑
k
s2k

2kk!

· e−sz ds · resu=0

{
esu

s

(
1 +

s

u

)N}
︸ ︷︷ ︸∑N

i=1
N !

i!(N−i)!(i−1)!
s2i−2

=

∞∑
i,k

z1−2k−2i

2kk!

(2k + 2i− 2)!N !

(N − i)!i!(i− 1)!

=
z − y(z)

2
+

N

y5(z)
+ . . .

(5.3)

Note that expanded is the quadratic exponential, not the linear one, because E(s) is treated

as a series in s.

Using this formula, we can rewrite the sum rule (4.3) without y(z) as

∑
R

ϕR,[|R|]|R|DR(N)χR{δk,2}
z|R|+1

= −N
z

+
∞∑
k=0

N−1∑
i=0

z−1−2k−2i

2kk!

(2k + 2i)!N !

(N − i− 1)! i! (i+ 1)!
(5.4)

Contributing at the both sides are only odd negative powers of z beginning from z−3.

6 Cut-and-join operator

Using the second relation in (1.3),

χR{p} =
∑

∆`|R|

dR · ϕR,∆ · p∆ (6.1)

we can trade the denominator in (1.2) for the character ϕ:

ZN{p} =
∑
R

∑
∆`|R|

ϕR,∆χR{N}χR{δk,2} · p∆ =
∑
∆

Z∆ · p∆ (6.2)

– 8 –
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and then use the fact that ϕ is the eigenvalue of the generalized cut-and-join opera-

tor [23, 24]

Ŵ∆χR{p̄} = ϕR,∆ · χR{p̄} (6.3)

where

Ŵ∆ =
1

z∆

:
∏
i

D̂δi : (6.4)

and

D̂k = Tr (M∂M )k (6.5)

acts on the time-variables p̄k = Tr M̄k. The normal ordering in (6.4) implies that all

the derivatives ∂M stand to the right of all M . Since W∆ are “gauge”-invariant matrix

operators, and we apply them only to gauge invariants, they can be realized as differential

operators in p̄k [23, 24].

Then the coefficient in front of p∆ in ZN{p} can be represented as

Z∆ =
∑
R`|∆|

ϕR,∆χR{N}χR{δk,2}
(6.3)
= Ŵ∆

∑
R`|∆|

χR{p̄}χR{δk,2}

∣∣∣∣∣∣
p̄k=N

(1.6)
= Ŵ∆e

p̄2/2
|∆|

∣∣∣
p̄k=N

(6.6)

i.e.

Z∆ =
1

2|∆|/2(|∆|/2|)!
Ŵ∆ p̄

|∆|/2
2

∣∣∣
p̄k=N

(6.7)

where exn denotes projection to grading n, which is needed in (6.7) because the sum over

Young diagrams is restricted to a given size (note that p2 has the grading degree 2). For

example, Ŵ[12m] = 1
(2m)! : Ŵ 2m

[1] : where Ŵ[1] = D̂1 =
∑

k kp̄k∂p̄k , i.e. multiplies pm2 by

2m. The normal ordering means that : Ŵ 2m
[1] : multiplies it by (2m)!, and therefore the

coefficient in front of p[12m] = p2m
1 in ZN{p} is

Z[12m] =
1

2mm!
· 1

(2m)!
· (2m)! ·Nm =

Nm

2mm!
(6.8)

Alternatively one can rewrite (6.6) as

Z∆ =
∑
R`|∆|

ϕR,∆χR{N}χR{δk,2}

(6.3)
= Ŵ∆

∑
R`|∆|

χR{N}χR{p̄}

∣∣∣∣∣∣
p̄k=δk,2

(1.6)
= Ŵ∆e

N
∑
k
p̄k
k

|∆|

∣∣∣∣
p̄k=δk,2

(6.9)

where again the index |∆| means that one should pick up a contribution of particular

grading degree.

7 W -representations in terms of characters

Eq. (6.7) is a kind of a dual to the W -representation [83–86] of Hermitian partition function

ZN{p} = e
1
2
Ŵ2 · 1 (7.1)
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which involves a close relative

Ŵ2 = N2p2 +Np2
1 + 2N

∞∑
a=1

apa+2∂a+
∞∑

a,b=1

(
(a+ b− 2)papb∂a+b−2 +ab pa+b+2∂a∂b

)
(7.2)

of the simplest cut-and-join operator Ŵ[2], [87],

Ŵ[2] =
1

2

∑
a,b

(
(a+ b)papb∂a+b + abpa+b∂a∂b

)
(7.3)

but in (7.1) this operator is exponentiated in contrast with (6.7).

The average of character in the W -representation is equivalent to action of the differ-

ential operator χR{∂/∂tk}. Moreover, since W2 in (7.1) has non-trivial grading (+2), only

the single term of the exponential expansion contributes to the average:〈
χR{Pk = TrMk}

〉
=

1

2|R|/2(|R|/2)!
χR

{
k
∂

∂pk

}
Ŵ |R|/22 · 1

∣∣∣∣
all pk=0

(7.4)

Contributions at odd levels |R| are vanishing. At the level |R| = 2 this gives for R = [2]

and [1, 1]:

1

2
χR

{
1

k

∂

∂pk

}
Ŵ2 · 1

∣∣∣∣
p=0

=
1

4
(±2∂2 + ∂2

1) (N2p2 +Np2
1)

∣∣∣∣
p=0

=
N(N ± 1)

2
(7.5)

For arbitrary even |R| the highest power of N comes from the term N |R|p
|R|/2
2 in Ŵ |R|/22 ,

and is equal to

1

2|R|/2(|R|/2)!
χR{δk,2}

(
2
∂

∂p2

)|R|/2
N |R|p

|R|/2
2 = χR{δk,2} ·N |R| (7.6)

which differs by a factor dR = χR{δk,1} from the item dRN
|R| in DR(N).

In general, (1.1) implies that

e
1
2
Ŵ2 · 1 =

∑
R

χR{p} · χR{δk,2} ·
DR(N)

χR{δk,1}
(7.7)

Similarly, for the rectangular complex matrix model

eŴ1 · 1 =
∑
R

χR{p} ·
DR(N1)DR(N2)

χR{δk,1}
(7.8)

with

Ŵ1 = N1N2 p1+(N1+N2)

∞∑
a=1

apa+1
∂

∂pa
+

∞∑
a,b=1

(
(a+b−1)papb

∂

∂pa+b−1
+ab pa+b+1

∂2

∂pa∂pb

)
(7.9)

These formulas for partition functions were discovered and discussed in [1, 2], but, in this

section, we want to derive them from the W -representations.
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The key is the generalization of (6.3), which is equivalent to

Ŵ∆ =
∑
R

ϕR,∆χR{p}χ̂R (7.10)

with the differential operator χ̂R = χR

{
k ∂
∂pk

}
, which is a dual character, [18]

χ̂R χR′{p}|p=0 = δR,R′ (7.11)

In the particular case of (7.3) this means that

Ŵ[2] =
1

2

∞∑
a,b=1

(
(a+ b)papb∂a+b + ab pa+b∂a∂b

)
=

∑
|R|=|R′|

αR,R′χR{p}χ̂R′

= χ[2]χ̂[2] − χ[1,1]χ̂[1,1] + +(2χ[3] − χ[2,1]) · χ̂[3] + (−χ[3] + χ[1,1,1]) · χ̂[2,1]

+ (χ[2,1]χ̂[1,1,1] − 2χ[1,1,1]) · χ̂[1,1,1] + . . .

(7.12)

As follows from (6.3), the operator W[2] has an eigenvalue ϕR,[2], which is equal to

ϕR,[2] = 2
∑

(i,j)∈R

(j − i) := 2κR (7.13)

Note that the operator at the r.h.s. of (7.12) is not equal just to a diagonal sum∑
R κRχR{p}χ̂R with the eigenvalue κR. This is because, before putting p = 0, the or-

thogonality condition (7.11) is not true, e.g. χ̂[2]χ[3]{p} = p1, and

Ŵ[2]χ[3]{p}
(7.12)

=
(
χ[2]χ̂[2] + (2χ[3] − χ[21])χ3

)
χ3

= p1χ[2] + 2χ[3] − χ[2,1] = 3χ[3] = κ[3]χ[3]

(7.14)

In general, lifting of (7.11) to the operator level involves decomposition of the commu-

tator into a sum of skew characters,

χ̂R · χR′{p} =
∑
Q

χ
R′/Q{p} · χ̂R/Q (7.15)

in particular, picking up just the c-number piece at the r.h.s., we get the contribution from

Q = R only, i.e. χ̂R · χR′{p} = χR′/R{p}, what is non-vanishing only for |R′| ≥ |R|.
We remind that the skew characters are defined by the property

χR{p+ p′} =
∑
Q⊂R

χQ{p}χR/Q{p′} (7.16)

and can be expressed via the usual Schur functions,

χR/Q{p} =
∑
R′

CRQR′χR′{p} (7.17)

through the Littlewood-Richardson coefficients CRQR′ , the structure constants of the char-

acter multiplication

χR{p}χR′{p} =
∑

R′′∈R⊗R′
CR

′′
RR′χR′′{p} (7.18)
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Coming back to (7.12), the coefficient in front of χ̂Y is given by a recursion formula∑
Y ′: |Y ′|=|Y |

α
Y ′Y χY ′ = κY χY −

∑
|R|=|R′|<|Y |

α
R,R′χRχY/R′ (7.19)

One can calculate the coefficients α
R,R′ from this formula. Remarkably, these coefficients

are non-vanishing only for the single-hook diagrams R = [r, 1s−1] and R′ = [r′, 1s
′−1], and

the final answer is

1

2
Ŵ[2] =

1

2

∞∑
a,b=1

(
(a+ b)papb∂a+b + ab pa+b∂a∂b

)
=

∞∑
r,s,r′,s′=1

r+s=r′+s′

(−)s+s
′
(r − s′) · χ

[r,1s−1]
· χ̂

[r′,1s′−1]

(7.20)

Note that despite only the single hook χ̂ contribute, all χR, not only single hook are

eigenfunctions of this 1
2Ŵ[2] with non-vanishing eigenvalues κR. Note also that the operator

at the l.h.s. of (7.20) contains at most second derivatives, while particular items at the r.h.s.

contain derivatives up to order |R|, though all these higher derivatives cancel in the sum.

Now we want to do the same for W2 and W1, which have a non-vanishing grading,

thus the sums will not be diagonal even in the size of the Young diagrams. Instead,

W2 = N2p2 +Np2
1 + 2N

∞∑
a=1

apa+2∂a +
∞∑

a,b=1

(
(a+ b− 2)papb∂a+b−2 + ab pa+b+2∂a∂b

)
=

∑
R`|R′|+2

AR,R′χR{p}χ̂R′

where the sum goes over the Young diagrams R and R′ which differ by 2 in size. Note that

the operator at the l.h.s. contains at most second derivatives, while particular items at the

r.h.s. contain derivatives up to order |R′|. Still all the higher derivatives cancel in the sum.

The coefficients AR,R′ are linear functions of N , and contributing are only the single-hook

diagrams R = [r, 1s−1] and R′ = [r′, 1s
′−1] so that the answer is

1

2
Ŵ2 =

1

2

(
(N + 1)χ[2] − (N − 1)χ[1,1]

)
·N

+
∞∑

r,s,r′,s′=1

r+s=r′+s′+2

(−)s+s
′
(N + r − s′ − 1) · χ

[r,1s−1]
· χ̂

[r′,1s′−1]

(7.21)

Similarly, for Ŵ1, contributing are only the single-hook diagrams R = [r, 1s−1] and

R′ = [r′, 1s
′−1], and the answer is

Ŵ1 = χ
[1]
·N1N2 +

∞∑
r,s,r′,s′=1

r+s=r′+s′+1

(−)s+s
′
(N1 +N2 + 2r − 2s′ − 1) · χ

[r,1s−1]
· χ̂

[r′,1s′−1]
(7.22)
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This formula is invariant under simultaneous transposition of R and R′, accompanied by

a sign inversion of N1 and N2. Indeed, such transformation changes

(r, s, r′, s′) −→ (s, r, s′, r′),

thus

(−)s+s
′

= (−)s−s
′ −→ (−)r−r

′
= (−)s

′−s+1 = −(−)s−s
′

and 2r − 2s′ − 1 −→ 2s − 2r′ − 1 = −(2r − 2s′ − 1), where in both cases we used the

constraint r + s = r′ + s′ + 1.

Exponentiation of (7.21) and (7.22) provides an unrestricted sum over R and R′:

eW2/2 =
∑
R,R′

AR,R′χR{p}χ̂R′ (7.23)

with the coefficients AR,R′ non-zero only for |R| − |R′| being even and non-negative.

Eq. (7.7) is the piece of this sum with R′ = ∅. Note that items with R and R′ of odd

sizes in the expansion of W2 contribute to the exponential. Likewise, (7.8) is the piece of

the sum

eW1 =
∑
R,R′

BR,R′χR{p}χ̂R′ (7.24)

with R′ = ∅.
Exponentiation can be performed with the help of (7.15). From (7.15) and (7.22),

we obtain

W2
1 =

∑
R,R′,R′′,R′′′

BR,R′BR′′,R′′′χR · χ̂R′ · χR′ · χ̂R′′′

=
∑

R,R′,R′′,R′′′,Q

BR,R′BR′′,R′′′(χR · χR′′/Q) · (χ̂R′/Q · χ̂R′′′)

=
∑

R,R′,R′′,R′′′,Q,Q′,Q′′

BR,R′BR′′,R′′′C
R′′
QQ′′C

R′
QQ′(χR · χQ′′) · (χ̂Q′ · χ̂R′′)

=
∑

R,R′,R′′,R′′′,Q,Q′,Q′′

BR,R′BR′′,R′′′C
R′′
QQ′′C

R′
QQ′C

Y
RQ′′C

Z
R′′Q′ · χY · χ̂Z

i.e.

B(2)
Y Z =

∑
R,R′,R′′,R′′′,Q,Q′,Q′′

BR,R′BR′′,R′′′C
R′′
QQ′′C

R′
QQ′C

Y
RQ′′C

Z
R′′Q′ (7.25)

where B(2)
Y Z is the contribution from W2

1 to the full matrix BY Z for the exponential eW1 .

Diagrams of the type R are all single-hook, thus the same is true for diagrams Q appearing

in the skew characters. However, at the last stage the single-hook characters are multiplied,

and Y and Z are already 2-hook diagrams. Likewise, the higher powers Wm
1 involve

transition matrices B(m)
Y Z between characters of m-hook diagrams.
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8 Unitary-type (trigonometric) models

When reduced to eigenvalues, the measure of Hermitian matrix model contains a square

of the Vandermonde determinant
∏
i<j(mi − mj)

2, which has natural deformations and

generalizations like ∏
i<j

(mi −mj)
2 −→

∏
i,j

β∏
k=1

(mi − qk−1mj) (8.1)

and leads to substitution of the Schur functions by the Macdonald functions and their

various limits (like the Jack and Hall-Littlewood polynomials) [18, 19].

There is, however, another important direction to generalize: to a unitary1 or trigono-

metric model

∏
i<j

(mi −mj)
2 −→

∏
i<j

sinh2

(
mi −mj

2

)
∼
∏
i<j

(mi −mj)
2
∏
n

(
1 +

(mi −mj)
2

4π2n2

)2

(8.2)

and, further, to the MacMahon model:

−→
∏
i<j

(mi −mj)
2
∏
n

(
1 +

(mi −mj)
2

4π2n2

)2n

(8.3)

The former model was a testing area for initial studies of character expansions in matrix

models [79, 94–96]. It also emerged in the studies of localization of the ABJM theory [92].

The MacMahon model arises in the studies of localization of superconformal gauge theo-

ries [60] (there are also instanton correction, which vanish in the large N [93] and other

interesting limits). They can be considered as “perturbations” of Hermitian model by

bi-trace addition to the action

2·
∑
i<j

∑
n

nν log

(
1+

(mi−mj)
2

4π2n2

)
=
∑
k

(−)k+1ζ(2k−ν)

4kπ2kk

∑
i,j

(mi−mj)
2k (8.4)

=
∞∑
k=1

2k∑
i=0

(−)k+i+1ζ(2k−ν)

4kπ2kk
· (2k)!

i!(2k−i)!
·TrM iTrM2k−i

with ν = 0, 1 for trigonometric and MacMahon models respectively, and ζ(s) is the Riemann

zeta-function. In the former case, values of the ζ-functions are elementary numbers (modulo

powers of π), while, in the latter case, they are transcendental, but in existing applications

this difference does not manifest itself. This is because these theories are often studied

perturbatively, by expanding the exponentiated bi-trace into a series and taking averages

within the Hermitian matrix model.

1The trigonometric Vandermonde determinant has first emerged within the context of the unitary matrix

models [88, 89]. However, the “fair” unitary model requires the choice of integration contour along the

imaginary axis (in fact, on an imaginary segment) and averaged are bilinear combinations of characters.

Hence, we refer to this type of models just as to trigonometric (though maybe more exact is the name

“hyperbolic”). Note that these models emerge most naturally as Chern-Simons type matrix models [90, 91].
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However, it is much more interesting to look for exact formulas like (1.2) in the trigono-

metric model itself, without a reference to the Hermitian one. For the trigonometric model,

the statement is 〈
χR[eM ]

〉trig
= A|R| · q2κR · χR{p∗} (8.5)

where the average is taken with the weight

1

Z

∫ N∏
i<j

sinh2

(
mi −mj

2

) N∏
i=1

exp

(
−m

2
i

2g2

)
dmi (8.6)

When averaging, the argument of character in the integrand is the diagonal matrix with

the entries emi , and, at the r.h.s., the parameters are q = eg
2/2, A = qN = eNg

2/2, the

exponent κR =
∑

(x,y)∈R(y − x) is the same as in (7.13). The time variables p∗k = Ak−A−k
qk−q−k

in the argument of the character at the r.h.s. lie in the “topological locus” obtained by

the q-deformation of pk = N . Thus, the difference from (1.2) are a quantum deformation,

and the drastic change of the combinatorial factor from the ratio of characters to the

exponential of the eigenvalue of the second Casimir operator in the representation R, κR.

The limit q −→ 1 is trivial: it corresponds to g2 −→ 0, when the Gaussian exponential

eTrM2/2g2
turns into the δ-function so that the integral in (8.6) gets localised at M = 0, i.e.

U = IN , and this relations just gives rise to the identity χR[IN ] = χR{N}. In the opposite

limit of g2 −→ ∞, the Gaussian exponential disappears, so the measure reduces to the

Haar measure, but the integral diverges, and so does the r.h.s. of (8.5), where q −→ ∞.

One could instead consider true unitary integrals with pure imaginary mi and unimodular

q, but, in this case, non-vanishing are only balanced averages, with the same number of U

and U †, which now differs from U and rather equal to U−1. This is a more interesting and

complicated case, with the ’t Hooft-de Wit anomalies and other peculiarities, see [79, 94]

and references therein.

We can now compare the implications of (8.4) at ν = 0 with those of (8.5). As the

simplest example consider〈
χ1[eM ]

〉trig (8.5)
=

eg
2N − 1

eg2/2 − e−g2/2
= N+

g2N2

2
+
g4N(4N2 − 1)

24
+
g6N2(2N2 − 1)

48
+. . . (8.7)

On the other hand, the same quantity is just the ratio of the Hermitian model averages〈
χ1[eM ]

〉trig (8.4)
=

〈
exp

(∑
k,i

(−)k+i+1ζ(2k)

(2π)2kk
· (2k)!
i!(2k−i)! ·TrM iTrM2k−i

)
·TreM

〉
〈

exp
(∑

k,i
(−)k+i+1ζ(2k)

(2π)2kk
· (2k)!
i!(2k−i)! ·TrM iTrM2k−i

)〉
=

〈(
1+
∑
k,i

(−)k+i+1ζ(2k)

(2π)2kk
· (2k)!
i!(2k−i)! ·TrM iTrM2k−i+. . .

)(
N+ 1

2
TrM2+ 1

24
TrM4+. . .

)〉〈
1+
∑
k,i

(−)k+i+1ζ(2k)

(2π)2kk
· (2k)!
i!(2k−i)! ·TrM iTrM2k−i+ 1

2

(∑
k,i

(−)k+iζ(2k)

(2π)2kk
· (2k)!
i!(2k−i)! ·TrM iTrM2k−i

)2

+. . .

〉
=N+

1

2
<TrM2>+

1

24
<TrM4>+

〈
1

2
TrM2 · 2ζ(2)

π2

(
NTrM2−(TrM)2

)〉
−
〈

1

2
TrM2

〉
·
〈

2ζ(2)

π2

(
NTrM2−(TrM)2

)〉
+O(g6)

=N+
g2N2

2
+g4

{
N(2N2+1)

24
+
ζ(2)

4π2

(
N3(N2+2)−N(N2+2)−N2(N3−N)

)}
+. . .

=N+
g2N2

2
+
g4N(4N2−1)

24
+O(g6)
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and, substituting ζ(2) = π2

6 , we reproduce (8.7). Already this simple example clearly

demonstrates the advantage, even technical of exact formulas like (8.5) over the perturba-

tion expansions like (8.4).

9 Knot matrix models

There is another interesting way to deform the trigonometric model [97, 98]:∏
i<j

sinh2

(
mi −mj

2

)
−→

∏
i<j

sinh
mi −mj

2a

∏
i<j

sinh
mi −mj

2b
(9.1)

Like the trigonometric model (8.6), it also preserves characters, moreover, (8.5) re-

mains true, 〈
χR[eM/a]

〉[a,b]
=
(
A|R| · q2κR

)b/a
· χR{p∗} (9.2)

what changes is only the value of q = exp g2

2ab . This formula “spontaneously breaks” the

a↔ b symmetry, and has the corresponding counterpart〈
χR[eM/b]

〉[a,b]
=
(
A|R| · q2κR

)a/b
· χR{p∗} (9.3)

with the same q.

This measure appears in description of the HOMFLY polynomials for torus knots with

a and b coprime: 〈
χR[eM ]

〉[a,b]
= HTorusa,b

R (A, q) = DR(N) ·HTorusa,b
R (A, q) (9.4)

The character at the l.h.s. depends on eM and, before (9.2) can be applied, one needs

to express it through characters of eM/a. This decomposition involves a combination of

characters for Young diagrams of the size a|R| with peculiar Adams coefficients c. After

this, substitution (9.2) converts (52) into the Rosso-Jones formula [99, 100]:

HTorusa,b
R (A, q) =

〈
χR[eM ]

〉[a,b]

=

〈 ∑
Q`a|R|

cR,QχQ[eM/a]

〉[a,b]

= A
b|R|
a

∑
Q`a|R|

cR,Q · q
2bκQ
a · χQ{p∗}

(9.5)

In result, H
Torusa,b
R is a Laurent polynomial of q and A (it remains such for arbitrary knots,

not only torus). Within this framework, the equivalence of (9.2) and (9.3) reflects the Rei-

demeister equivalence of a-strand and b-strand realizations of the same torus knot Torus[a,b].

For attempts to extend matrix model description beyond the torus knots see [101].

When a and b have a non-trivial common divisor, we get a torus link instead of a

knot, and its HOMFLY invariant is an average of a product of characters, as many as there

are components in the link (the number equal to the common divisor of a and b). When
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a = b = 2, this is actually the Hopf link, and its HOMFLY invariant is again a character,

see [102] for a review and references. At the same time, the measure in this case is exactly

that of the trigonometric model. In other words, we conclude that

q−2κR−2κSA−|R|−|S| ·
〈
χR[eM/2]χS [eM/2]

〉trig
= HHopf

R×S

= DR(N)χS{p∗R} = DS(N)χR{p∗S}
(9.6)

for

p∗Rk =
qNk − q−Nk

qk − q−k
+

lR∑
i=1

qk(N−2i+1)
(
q2kri − 1

)
(9.7)

The framing factor at the l.h.s. of (9.6) has to be taken in degree 1
2

(
a
b + b

a

)
in the generic

torus knot/link case.

This strangely-looking shift of time variables (9.7) is in fact induced by action of the

cut-and-join operator on the “topological locus” p∗k = qNk−q−Nk
qk−q−k , which is the trigonometric-

model substitute of the locus pk = N in the Hermitian models:

e2Ŵ[2]χR{p̄}χS{p̄}
∣∣∣
p̄k=p∗k

= q2κR+2κSDR(N)χS{p∗Rk } (9.8)

In the case of torus measure (9.2) with arbitrary a and b, the bi-trace correction to

the action (8.4) is substituted by

1

2

∑
i,j

∑
n

{
log

(
1 +

1

a2

(mi −mj)
2

4π2n2

)
+ log

(
1 +

1

b2
(mi −mj)

2

4π2n2

)}

=
∑
k

(−)k+1ηkζ(2k)

4kπ2kk

∑
i,j

(mi −mj)
2k

=

∞∑
k=1

2k∑
i=0

(−)k+i+1ηkζ(2k)

4kπ2kk
· (2k)!

i!(2k − i)!
· TrM i TrM2k−i (9.9)

with ν = 0 and ηk = 1
2

(
1
a2k + 1

b2k

)
. Then

〈
χ1[eM/a]

〉[a,b] (9.9)
=

〈
exp

(∑
k,i

(−)k+i+1ηkζ(2k)

(2π)2kk
· (2k)!
i!(2k−i)! ·TrM iTrM2k−i

)
·TreM/a

〉
〈

exp
(∑

k,i
(−)k+i+1ηkζ(2k)

(2π)2kk
· (2k)!
i!(2k−i)! ·TrM iTrM2k−i

)〉
=

〈(
1+
∑
k,i

(−)k+i+1ηkζ(2k)

(2π)2kk
· (2k)!
i!(2k−i)! ·TrM iTrM2k−i+. . .

)(
N+ 1

2a2
TrM2+ 1

24a4
TrM4+. . .

)〉〈
1+
∑
k,i

(−)k+i+1ηkζ(2k)

(2π)2kk
· (2k)!
i!(2k−i)! ·TrM iTrM2k−i

+ 1
2

(∑
k,i

(−)k+iηkζ(2k)

(2π)2kk
· (2k)!
i!(2k−i)! ·TrM iTrM2k−i

)2

+. . .

〉
=N+

1

2a2 <TrM2>+
1

24a4 <TrM4>+
〈

1

2a2 TrM2 · 2ηζ(2)

π2

(
NTrM2−(TrM)2

)〉
−
〈

1

2a2 TrM2
〉
·
〈

2η1ζ(2)

π2

(
NTrM2−(TrM)2

)〉
+O(g6)

=N+
g2N2

2a2 +g4

{
N(2N2+1)

24a4 +
η1ζ(2)

4π2a2

(
N3(N2+2)−N(N2+2)−N2(N3−N)

)}
+. . .
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=N+
g2N2

2a2 +
g4N

24a4

(
2N2+1+

12a2η1ζ(2)

π2 (N2−1)

)
+O(g6)

= e
g2N

2a2 ·N

1+
g4

24a4

(
12a2η1ζ(2)

π2 −1

)
︸ ︷︷ ︸

a2/b2

(N2−1)+O(g6)

= e
g2N

2a2 · sinh g2N
2ab

sinh g2

2ab

(9.10)

A generalization of the torus matrix model to non-torus knots is an open problem: for

N = 2 it is nicely solved in [101], but the matrix model lifting to arbitrary N remains

a challenge.

10 Restriction to traceless matrices

Let us start with the Hermitian matrix model (1.2). The restriction can be imposed in

different ways. The simplest is just to insert a δ-function in the form

δ(TrM) =
1

2π

∫
eiαTrMdα.

This is equivalent to shifting the integration variable M −→ M + iα and integrating the

answer over α with the Gaussian measure exp
(
− Nα2

2

)
dα:

〈
F (M)

〉traceless
=

√
N

2π

∫ 〈
F (M + iα)

〉
· e−

Nα2

2 dα (10.1)

For example,〈
(TrM)2

〉traceless
=

√
N

2π

∫ 〈
(TrM)2 −N2α2

〉
e
−Nα

2

2g2 dα = N −N = 0 (10.2)

while 〈
TrM2

〉traceless
=

√
N

2π

∫ 〈
TrM2 −Nα2

〉
e
−Nα

2

2g2 dα = N2 − 1 (10.3)

so that 〈
χ[2][M ]

〉traceless
=

(N + 1)(N − 1)

2

and 〈
χ[1,1][M ]

〉traceless
= −(N + 1)(N − 1)

2
.

In the generic case,〈
χR[M ]

〉traceless
=

(
N

2π

)1/2 ∫ 〈
χR[M + iαI]

〉
· e−

Nα2

2 dα

=
∑
S⊂R

χR/S{δk,1}χS{δk,1}
χR{δk,1}

· DR(N)

DS(N)
·
〈
χS [M ]

〉
·
(
N

2π

)1/2 ∫
(iα)|R|−|S|e−

Nα2

2 dα (10.4)
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Only R and S of even sizes contribute to the sum. The integral of α is very immediate,

< α2k >=

√
2π

N

(2k − 1)!!

Nk
(10.5)

so that finally〈
χR[M ]

〉traceless
=
∑
S⊂R

i
|R|−|S|

2 · (|R| − |S| − 1)!!

N
|R|−|S|

2

·
χR/S{δk,1}χS{δk,1}

χR{δk,1}
· DR(N)

DS(N)
·
〈
χS [M ]

〉
(10.6)

The sum ∑
S`s

χR/S{δk,1}χS{δk,1}
χR{δk,1}

=
|R|!

s!(|R| − s)!
,

but the individual coefficients contain skew characters and thus are a little more involved.

For example,〈
χ[2,2]

〉traceless
−→

〈
χ[2,2]

〉
− 3

N

D[3,1]

D[2]

〈
χ[2]

〉
− 3

N

D[2,2]

D[1,1]

〈
χ[1,1]

〉
+

3

N2
α4D[2,2] (10.7)

For the trigonometric models including the MacMahon one, the restriction to the

traceless matrices works much simpler: since χR[eM+iα] = eiα|R|χR[eM ], the α-dependence

factors out, and its only effect is the additional factor(
N

2π

)1/2 ∫
eiα|R| · e−

Nα2

2 dα = e−
−|R|2

2N

in the average: 〈
χR[eM/a]

〉traceless
= e−

|R|2

2a2N ·
〈
χR[eM/a]

〉
(10.8)

In this formula, the average can be taken at any model: Hermitian, trigonometric, toric,

since the generalized Vandermonde factors in the measure do not depend on α.

11 Conclusion

The central formula of this paper,〈
χR{TrMk}

〉
∼ χR{pk = N} (11.1)

looks like a statement that integration over M is reduced to the substitution of the “mean

field” M = Id. This would look mysterious, but in fact this is not quite true: for an

arbitrary function F{pk} 〈
F{TrMk}

〉
/∼ F{pk = N} (11.2)

the property is true only for the characters, and it is another kind of a mystery, more

similar to a Duistermaat-Heckman (localization) trick with group theory origins rather

than to any kind of an ordinary mean field calculation in quantum field theory.
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In the trigonometric case, the situation is different:

〈
χR{Tr ekM}

〉trig
∼ χR

{
pk =

sinh(kNg2/2)

sinh(kg2/2)

}
(11.3)

It does not look like a mean-field formula: the exponentials at the l.h.s. turn into a somewhat

different structure, the ratio of sinh’s at the r.h.s. Instead, it is nicely consistent with the

quasiclassical approximation µ → ∞ in (1.2): then dominating in the integral over M is

the vicinity of M = 0 where Tr ekM = N . Note that, in the Hermitian case, taking the

limit µ → ∞ makes no sense: the µ-dependence is fixed by dimensions of the operators:

there is no any weak coupling regime at all, and formulas like (11.1) are exact.

For straightforward q, t-deformation of (11.1) see [19], the clever thing to do in this

case is just to take (11.1) as a definition of the model, which is much simpler and more

practical than to proceed through multiple Jackson integrals and Pochhammer symbols.

Challenging are generalizations of (11.1) in at least five directions:

• to non-Gaussian phases, where changing is only the coefficient in front of the char-

acters at the r.h.s., see [17] for simplest examples,

• to generic knots, not only torus ones, for a more detailed description of the problem

see [101],

• to the MacMahon matrix model (8.3), where the Vandermonde determinant is sub-

stituted by a product of the Barnes double Γ-functions,

• to the network models [32, 103–105] describing contractions of multiple topological

vertices, usual and refined,

• to the Aristotelian tensor models of [34–39, 108].

The challenge is well illustrated already by the operator counting rules. The ordinary

characters (Schur functions) and their MacDonald deformations are labeled by the ordinary

Young diagrams, and their abundance is described by the generating function

∑
n

#Young · qn =
∏
n=1

1

1− qn
(11.4)

For the plain partitions, which are labeling representations of the DIM algebra and the

affine Yangian [106, 107], it becomes

∑
n

#plain · qn =
∏
n=1

1

(1− qn)n
(11.5)

while the number of gauge invariant operators in the Aristotelian (rang 3 rainbow) tensor
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model grows even faster [38, 108]:∑
n

#Arist ·qn =
∏
n=1

1

(1−q)(1−q2)3(1−q3)7(1−q4)26(1−q5)97(1−q6)624(1−q7)4163 . . .

=
∏
n=1

1

(1−qn)βn
(11.6)

where βn is the number of unlabeled dessins d’enfants with n edges [109–112].

Our main purpose in this paper was to demonstrate a technical possibility to attack

all these problems in a systematic way. Our main emphasize was on the way the character-

preservation property unifies highly non-trivial and even previously unnoticed identities

(sum rules) between characters. Usually such non-linear relations are described in terms of

“integrability”, but physically relevant quantities (non-perturbative partition functions) are

long known to be more than integrable, the word superintegrable seems most adequate to

describe the situation. In the standard language of matrix models, the story is that matrix

model τ -functions are not just tau-functions, but satisfy an additional string equation

(and, in result, the whole set of Virasoro or W - constraints), which altogether makes

the model not just integrable, but explicitly solvable like additional integrals of motion

do for superintegrable mechanical systems. However, the higher symmetry behind the

superintegrable models, more complicated than the Coulomb force with its hidden O(d+1)

symmetry is still under investigated and is not straightforward to reveal, because it is non-

linearly realized. This paper can be considered as a substantial step in this direction,

which is based on the technique of character decompositions [1, 33–39, 108, 113, 114],

see earlier reviews in [95, 96]. One should now study character decompositions of various

harmonics of higher W -operators, including the higher cut-and-join operators WR of [23,

24], which are their zero-harmonics. These will again involve new summation rules for

characters, which can, however, be more comprehensive than those implied by the genus

expansions. One of the issues is to study the emerging hook structure of the sum rules

(hook formulas) and its dependence on the shape of the diagram R. Exponentiation of cut-

and-join operators, which is a kind of trivial since all the eigenfunctions and eigenvalues

are explicitly known from [23, 24] is, however, also a source of highly non-trivial sum rules

for characters. To conclude, the character-preservation property of matrix models reveals

an entire new world of non-linear relations between the characters of linear and symmetric

groups, which requires an understanding from the point of view of the basic group theory.

This is especially important, because the combinatorial solution of matrix models survives

various deformations: from Young diagrams to plain partitions, from matrices to tensors,

from the Gaussian to higher Airy measures, from the Hermitian to trigonometric model

and, probably, further, while the corresponding deformations of Lie algebra theory are yet

unknown or, at best, extremely complicated. As usual, the matrix model approach provides

a unifying view on the full set of problems and provides an efficient method to solve them.
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