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1 Introduction

Precision measurements and direct searches are the two cornerstones of high energy physics
experiments. In terms of probing new physics beyond the Standard Model (SM), both ap-
proaches are important, and their complementarity is a crucial aspect in the planning of
current and future collider experiments. Effective Field Theories (EFT), with the assump-
tion that new physics is heavy, offer a great way of parameterizing the results of precision
measurements. Direct search is, by definition, in the context of some model, which can
be either a specific physics model or just a simplified one. In any given scenario, it is
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straightforward to connect these two approaches. The EFT at low energies can be ob-
tained systematically from the full model via the matching procedure. Yet, for a subset of
observables related to elastic amplitudes, it is possible to relate the two approaches in a
more general framework via dispersion relations. Such relations, often denoted as sum rules,
can be classified in terms of the energy expansion of the amplitudes analogous to the EFT
operator expansion. In previous works, the main focus has been at the level of dimension-8
operators for which the sum rules can be interpreted as positivity bounds on certain opera-
tor coefficients (or combinations of them) [1–18]. This remarkable finding suggests that the
possible parameter space in an EFT is already constrained by the fundamental properties
of quantum field theory, i.e. unitarity, analyticity and locality. Unfortunately, testing these
positivity bounds requires a decent determination on the dimension-8 operator coefficients,
which is difficult for current and near-future collider experiments. This is especially the
case if one takes the validity of EFT into consideration [19]. For the dimension-6 operators
which are phenomenologically more relevant, such positivity bounds could not be obtained
in a model independent way. Still, a number of interesting observations have been made.
For instance, the measured signs of certain dimension-6 operator coefficients could lead to
strong predictions on the properties of heavy new particles [20–22].

Scattering amplitudes provide the indispensable link between the full model and the
EFT. The EFT needs to reproduce the amplitudes in the full model at the matching
scale. In a sum rule, the coefficients of the EFT can be directly related to observables
in the full model. This can be done by starting with an EFT Lagrangian, calculating
the low energy amplitudes in terms of the operator coefficients, and then using dispersion
relations to connect it to the physics at higher energies. Such procedures are straightforward
and have been the standard practice in the literature. Yet, in the spirit of the on-shell
amplitude program (see e.g. refs. [23–25] for recent reviews), it seems much more natural
to directly treat amplitudes as a description of the EFT, which are equivalent to the Wilson
coefficients of the higher dimensional operators in the Lagrangian. Recent efforts have been
made in parameterizing the Standard Model (SM) and its effective field theory (SMEFT)
with on-shell amplitudes [26–34]. While the conventional parameterization, obtained by
adding higher dimensional operators to the SM Lagrangian [35, 36], still offers the most
complete and practical description of the SMEFT, the on-shell approach does have certain
advantages. In particular, by working directly with the physical on-shell amplitudes, one is
freed from the burden of operator redundancies and basis choices which can often obscure
the physics picture. In this work, we take a similar approach by focusing on the massless
elastic on-shell amplitudes in the SMEFT and use them to classify and study the sum
rules. A great advantage of massless amplitudes is that they can be characterized based on
the helicities of the particles, and take particularly simple forms. Practically, the massless
limit can be realized by considering measurements with energy (E) sufficiently larger than
the electroweak scale (v) but still much smaller than the scale of the new physics (Λ),
v � E � Λ. Focusing on the dimension-6 operators, we find the sum rules to provide
useful insight on the connection between low energy observables and the properties of new
physics beyond the SM, and are consistent with the usual matching and running procedure
of EFT for the cases we study. Interestingly, we also find it possible to impose symmetries
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at the amplitude level to suppress the contribution of certain dimension-6 operators, which
can be connected to the familiar custodial symmetries of the SM Higgs and fermion sectors.

The rest of this paper is organized as follows: in section 2 we briefly review the sum
rules before providing a classification of the forward elastic amplitudes in the SMEFT. We
then perform a systematic enumeration of the sum rules for the dimension-6 operators in
section 3 and discuss their implications in section 4. Finally, we apply the sum rules to a
few benchmark models in section 5. Our conclusion is drawn in section 6. A short review
on the essential results of the spinor helicity formalism is provided in appendix A, and a
derivation of the forward limit is given in appendix B.

2 Sum rules and elastic amplitudes

2.1 Sum rules

The starting point for writing down a sum rule is to consider the elastic scattering of two
particles (denoted as a and b) and write down the amplitude in the forward limit, which is
a function of the Mandelstam variable s alone due to the relation s+ t+ u = 4m2,1

Ãab(s) ≡ A(ab → ab)|t=0 . (2.1)

Throughout our paper we will use Ã to denote amplitudes in the forward limit to distinguish
them from the general amplitudes A. Performing an analytical continuation of s to the
complex plane, and expanding Ãab around the point s = µ2, we obtain

Ãab(s) =
∑
n

cn(s− µ2)n , cn = 1
2πi

∮
s=µ2

ds
Ãab(s)

(s− µ2)n+1 , (2.2)

where each coefficient cn is written as a contour integral around the point s = µ2. Ex-
panding the contour to infinity, one picks up all the non-analytic structures in the complex
s-plane. For an interacting theory, discontinuities on the real axis generally exist, which
can be related to the total cross sections of the scattering of a and b (and b̄, the anti-particle
of b) via the optical theorem. This gives a dispersion relation in the following form2

cn =
∫ ∞

4m2

ds

π
s

√
1− 4m2

s

(
σabtot

(s− µ2)n+1 + (−1)n σab̄tot
(s− 4m2 + µ2)n+1

)
+ c∞n , (2.3)

where σabtot (σab̄tot) is the total cross section of the scattering of particles a and b (b̄). The
σab̄tot term corresponds to contributions in the u-channel, which is mapped to the s-plane
and rewritten using the s ↔ u crossing relation which exchanges b and b̄. The contour at
infinity gives the term c∞n ≡ 1

2πi
∮
s→∞ ds

A(s)
(s−µ2)n+1 , which vanishes for n > 1 as a result of

the Froissart bound [37]. The cns are closely related to the Wilson coefficients in the EFT.
As we will show later, the expansion in eq. (2.2) exactly maps to the EFT expansion in the

1We assume a and b have the same mass m for convenience.
2See e.g. refs. [5, 22] for a more detailed derivation, in particular on how the crossing symmetry leads to

the term σab̄tot. Note also that in eq. (2.3) we have omitted possible additional IR poles from SM contributions,
which are discussed later in section 4.1.
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m2 � µ2 � Λ2 limit, with n = 1, 2, . . . . corresponding to operator dimensions 6, 8, . . . .,
respectively. This limit is consistent with our massless SMEFT assumption. The scale
µ can be considered as the energy at which the relevant parameters in the scattering are
defined. For an even n, the two cross section terms in eq. (2.3) are both positive, implying
that cn must be positive for a nontrivial theory. For n = 1 which corresponds to the
dimension-6 operators, the two cross section terms have opposite signs, and the boundary
term c∞1 can also be nonzero in general.

2.2 Elastic helicity amplitudes in the SMEFT

The Standard Model Effective Field Theory (SMEFT) is obtained by augmenting the SM
Lagrangian with higher dimensional operators comprised of only the SM field content,
which form an expansion in terms of the inverse of some energy scale Λ. Assuming baryon
and lepton numbers are conserved, only operators of even dimensions are allowed, and the
SMEFT Lagrangian can be written as3

LSMEFT = LSM +
∑
i

c
(6)
i

Λ2 O
(6)
i +

∑
j

c
(8)
j

Λ4 O
(8)
j + · · · . (2.4)

We consider how these higher dimensional operators could contribute to an elastic scatter-
ing amplitude in the massless limit. The dimension of an amplitude is given by [An] = 4−n,
where n is the number of external legs. Any n-point amplitude can receive contributions
from different couplings in the theory. Ordering the contributions by the dimension of the
couplings, An can be expanded as

An =
∑
i

g[i]A[4−n−i]
n , (2.5)

where i denotes the dimension of the coupling g[i]. A
[4−n−i]
n is the contribution to the am-

plitude proportional to g[i], and must have dimension 4−n−i as denoted in the superscript,
so that the total dimension equals 4− n. A dimension-d operator in the Lagrangian has a
coupling with dimension i = 4 − d. Hence, it can contribute to the amplitude An a term
in the form of g[4−d]A

[d−n]
n .4 We also note that in the massless limit, all couplings in the

SM are dimensionless. A 4-point amplitude can thus be written as

A4 = g[0]A
[0]
4 + g[−2]A

[2]
4 + g[−4]A

[4]
4 + . . . . (2.6)

where A[0]
4 is the SM contribution, A[2]

4 is obtained with one insertion of dimension-6
operators (with g[−2] ∝ 1/Λ2), and A[4]

4 comes from either one insertion of dimension-8
operators or two insertions of dimension-6 operators. Similarly, a 3-point amplitude can
be written as

A3 = g[0]A
[1]
3 + g[−2]A

[3]
3 + . . . (2.7)

3The only dimension-5 operator in the SM is the Weinberg operator of the form LLHH. In the massless
limit it contributes to neither 3-point amplitudes nor 4-point elastic amplitudes.

4This mapping can be spoiled if the fields develop vacuum expectation values (vevs), as in the SM.
Working in the massless limit, we do not consider the Higgs vev here.
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Figure 1. Possible factorization channels of A[2]
4 that contain a A(V +V +V +) part. The superscript

of a particle indicates the sign of its helicity, with the all-in/all-out convention. The diagrams with
A(V −V −V −) can be obtained by flipping all the helicities. The red dot denotes an insertion of
a dimension-6 operator. None of the processes are elastic in the helicity basis. Note in particular
that A(V −V −V +V +) can not be generated by only one insertion of dimension-6 operators.

Let us look at the A[2]
4 term of the 4-point amplitude. The claim is that the only kind

of contribution to the elastic scattering is in the form of a 4-point contact interaction.5

In this case, locality of the EFT dictates that there is no momentum dependence on the
denominator. This is obviously the case when the amplitude is built from one dimension-6
operator with 4 external particles.

A 4-point amplitude can also be built by combining two 3-point amplitudes. It can
only factorize into the form ∼ A[1]

3
1
p2 A

[3]
3 in the SMEFT, where A[1]

3 is from SM and A[3]
3 is

generated by one insertion of dimension-6 operators, as shown in eq. (2.7). Factorizations
of the form ∼ A[2]

3
1
p2 A

[2]
3 , corresponding to two insertions of d5 operators, are not possible

within the SMEFT. Assuming all particles have spin less than or equal to one (|h| ≤ 1),
the only A[3]

3 we can write down is from three vectors with the same helicity, A(V +V +V +)
or A(V −V −V −).6 They are generated by the operators

O3W = 1
3!gεabcW

a ν
µ W b

νρW
c ρµ , and O3W̃ = 1

3!gεabcW̃
a ν
µ W b

νρW
c ρµ , (2.8)

for the electroweak gauge bosons, or O3G and O3G̃ for the gluons. One could then attach
a pair of scalars (φ), fermions (ψ) or vectors (V ) on one of the vector to make a 4-point
amplitude, as shown in figure 1. However, note that none of these amplitudes is elastic.
This is because we need the incoming and outgoing particle to have the same helicity, e.g.
V + → V +. In the all-in/all-out convention, the same particle thus must have opposite
helicities. This is not the case for any of the processes in figure 1. We thus conclude that
an elastic A[2]

4 can only be of the contact form.
Our conclusion is seemingly in contradiction with the fact that other operators can

also generate 3-point interactions. In particular, operators

OHW = ig(DµH)†σa(DνH)W a
µν , OHB = ig′(DµH)†(DνH)Bµν ,

OW = ig

2 (H†σa←→DµH)DνW a
µν , OB = ig′

2 (H†←→DµH)∂νBµν , (2.9)

5Strictly speaking, this only applies in the case of tree level EFT contributions to the amplitude. Loop
contributions can give rise to amplitudes with different momentum structures.

6See appendix A for a short derivation of this statement. Here the superscript of a particle indicates the
signs of its helicity. We also use the convention that all particles are going in the vertex (or all are going
out).
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elastic 4-point amplitudes spinor form of A[2]
4 spinor form of A[4]

4

A(1 2 → 3=1 4=2) (d6 operators) (d8 or d62)

φ1φ2φ
∗
1φ
∗
2 sij sij × skl

ψ−φψ+φ∗ 〈12〉[23] 〈12〉[23]× sij

ψ−1 ψ
−
2 ψ

+
1 ψ

+
2 〈12〉[34] 〈12〉[34]× sij

V −φV +φ∗ 7 〈12〉2[23]2

V −ψ−V +ψ+ 7 〈12〉2[23][34]

V −1 V −2 V +
1 V +

2 7 〈12〉2[34]2 , 〈12〉2[34]2 t−us

Table 1. A full list of all possible 4-point elastic scattering amplitudes in the helicity basis, with
the corresponding tree-level form with mass dimensions 2 (one insertion of dimension-6 operators)
and 4 (dimension-8 or dimension-6-squared) in the massless case. We use φ, ψ and V to denote
scalars, fermions and vectors, respectively. The +/− signs denote helicities in the usual all-in/all-
out convention. The ordering of the particles is such that the incoming particle 1 is outgoing particle
3, and 2 is 4. The labels 1 and 2 are explicitly shown in the subscripts for scattering of the same
particle type. The forward limit corresponds to t = s13 → 0. Amplitudes that can be obtained
by crossing (such as A(ψ−1 ψ

+
2 ψ

+
1 ψ
−
2 )) are not explicitly shown. The 7 mark denotes that one can

not write down a term that fulfills all the consistency requirements. sij denotes a general linear
function of the Mandelstam variables in the form css+ ctt+ cuu, where cs,t,u are constants.

would generate φφV -type couplings. Equivalently, they contribute to the anomalous triple
gauge couplings once the Higgs boson develop a vev. However, note that in the massless
limit they do not generate on-shell 3-point amplitudes, since these φφV couplings have a
p2 dependence which vanishes on shell. While they still contribute to 4-point amplitudes
via an off-shell 3-point amplitude, the p2 in the propagator of A[1]

3
1
p2 A

[3]
3 is cancelled by

the p2 from A[3]
3 , so the 4-point amplitude generated in this way is still a contact one (i.e. it

does not have physical factorization channels). It is not a coincidence that these operators
can be exchanged with operators with more vertices by applying integration by parts and
the equations of motion of the Gauge bosons, as done in the Warsaw basis [36].

Since the 4-point amplitudes must be contact, their kinematic forms are strongly con-
strained by a number of requirements. Namely, all the angle and square brackets have to
be in the numerator, the total dimension of A[2]

4 should be 2, and the little group scaling
needs to be consistent with the helicities of the particles. We list in table 1 all the possible
4-point elastic amplitudes, with their spinor form for A[2]

4 up to some couplings constants.
Amplitudes that can be obtained by the crossing s ↔ u (exchanging particles 1 ↔ 3 or
2 ↔ 4) are not explicitly shown. We note again that, in the all-in/all-out convention, the
elasticity of a massless amplitude enforces it to have zero net helicity. In other words, all
the amplitudes in table 1 must have equal numbers of square and angle brackets.

The spinor forms of A[2]
4 in table 1 have some remarkable features. First, with the

exception of the 4-scalar amplitude, they are completely fixed by little group scaling.7 In
7Note that certain combinations of spinor products can be related to each other and are not independent.
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particular, for A(V −φV +φ∗), A(V −ψ−V +ψ+) and A(V −1 V −2 V +
1 V +

2 ) (and the ones related
by crossing), we simply could not write down an A[2]

4 term that fulfills all the consistency
requirements. This means that dimension-6 operators could not contribute to these am-
plitudes at tree level.8 For the 4-scalar amplitude, we note that A[2]

4 can only be linear in
terms of the Mandelstam variables s, t and u, since it has a mass-dimension two and is also
invariant under little group scaling. The massless relation s+ t+ u = 0 is not sufficient to
fix A[2]

4 .
It is straightforward to repeat the analysis for the A[4]

4 terms, which we also list in
table 1. They correspond to one insertion of dimension-8 operators or two insertions
of dimension-6 operators. An important observation is that a 3-point massless on-shell
amplitude could not be generated by operators of dimension higher than 6, assuming all
particles have spins less than or equal to one. We thus arrive at the similar conclusion
that A[4]

4 terms have to come from contact 4-point interactions generated by dimension-
8 operators, with the exception that A(V −1 V −2 V +

1 V +
2 ) can now be generated with two

insertions of dimension-6 operators, by combining A3(V −V −V −) and A3(V +V +V +). This
generates a pole in the s-channel, while requiring the amplitude to be antisymmetric under
1↔ 2 or 3↔ 4 (as the 3-point amplitudes are anti-symmetric) gives the spinor form shown
in table 1. Similarly, we could also conclude that the higher order terms in the amplitude
expansion (A[6]

4 , A[8]
4 , . . . ) must come from contact 4-point interactions.

A potential caveat of the helicity-amplitude approach is that it does not exhaust all
possible elastic amplitudes. While physics is obviously independent of the basis for particle
states, the notion of elasticity is not. For instance, a 4-vector amplitude with different initial
and final state helicities (e.g. V +V + → V −V −) is inelastic in the helicity basis. By changing
to the linear basis, it would contribute to elastic amplitudes. It is shown explicitly in ref. [15]
that for the 4-vector amplitudes, certain positivity bound involving CP-odd dimension-8
operators can be written down in the linear basis but is absent in the helicity basis. The
transversity basis in ref. [7] is also useful for amplitudes of spinning particles. Equivalently,
this requires one to also consider inelastic amplitudes with vectors in the helicity basis,
in which case the interpretation of the dispersion relations is much less straightforward.
However, we note that these inelastic amplitudes do not contribute to nontrivial sum
rules at the A[2]

4 level. For both contact V φV φ and V ψV ψ amplitudes, one could show
that with two V +s (or two V −s), the amplitude must vanish in the forward limit due to
angular momentum conservation. Similarly, 4-vector amplitudes with an odd number of
V + or V − (e.g. A(V −V +V +V +)) must also vanish in the forward limit. It seems possible
to write down a nonzero forward amplitude for A(V +V +V +V +) and A(V −V −V −V −).
As we will show later, a massless A[2]

4 amplitude is an odd function of s in the forward
limit and vanishes if it is symmetric under the crossing s ↔ u. This is the case with
linear polarizations, if V is its own anti-particle (e.g. W 0 or gluon). As such, one is left
with the scattering of W+W− → W+W− (or similar combinations of gluons) with linear
polarizations, which could generate a sum rule for the operators O3W and O3W̃ . However,

For instance, momentum conservation imposes 〈12〉[23] = −〈14〉[43], as shown in eq. (A.8).
8Even at the one-loop level, the dimension-6 operators could only have rational contributions to these

amplitudes as a result of the helicity selection rules [38].
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a crucial observation is that the one-loop contributions to c3W and c3G have opposite signs
for boson loops and fermion loops with the same group representation [39]. Without further
investigations (which we leave to future studies), we could already confirm the non-existence
of a consistent sum rule for these operators from elastic amplitudes, since the cross section
terms on the righthand side of the sum rule eq. (2.3) cannot generate such an opposite sign
between fermion and boson final states. For the sum rules to provide useful information
on the properties of the heavy particles in the full theory, such as their charges, we restrict
ourselves to the scattering of states with definitive Poincaré representations and quantum
numbers (i.e. the usual notion of particles). With this restriction, the SM fermions in
the unbroken electroweak phase (qL, uR, dR, `L, eR) do not mix with each other since they
all have different quantum numbers (assuming one generation), and the helicity basis is
sufficient to describe them. As such, we conclude that the helicity basis is sufficient for
the enumeration of all sum rules of dimension-6 operators.

We will focus on the forward limit of the elastic scattering amplitudes in deriving the
sum rules. It can be shown that, for massless particles with any spins, the forward elastic
amplitudes in the helicity basis are always invariant under the little group scaling and can
be treated as if they are scalar amplitudes [5]. A short derivation for this result is presented
in appendix B. For the terms in table 1, we then have

Ã[2]
4 ≡ A

[2]
4 |t→0 ∝ s , Ã[4]

4 ≡ A
[4]
4 |t→0 ∝ s2 . (2.10)

Comparing eq. (2.10) with eq. (2.2) and eq. (2.3), we note that Ã[2]
4 and Ã[4]

4 match the
n = 1 and n = 2 cases of the sum rule in eq. (2.3) in the limit µ→ 0. Since we work in the
massless limit, the mass term m in eq. (2.3) should also be set to zero, which may lead to
issues such as analyticity at the point s = 0 and potential IR divergences of loop corrections.
However, it should be understood that we are working in the limit m2 � µ2 � Λ2 (with
µ2 having a small non-zero imaginary part to avoid the branch cut on the real axis), rather
than the exact massless case m = µ = 0. The leading order contribution of finite m comes
from the SM, and is suppressed by powers of m2/µ2, while the contributions from higher
dimensional operators are further suppressed by powers of µ2/Λ2. These contributions are
omitted in our study.

3 Sum rules of dimension-6 operators

Having established the connection between the helicity amplitudes and sum rules, we are
now ready to write down the sum rules in the SMEFT. We will be focusing on the ones rele-
vant for the dimension-6 operators. As mentioned in the previous section, they correspond
to the n = 1 term in eq. (2.3) in the limit m2 � µ2 � Λ2,

dÃab(s)
ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σabtot − σab̄tot

)
+ c∞ . (3.1)

We can now replace particles a and b with the SM particles. As suggested by table 1, one
only needs to consider the scattering between two Higgs, two fermions, or one Higgs and

– 8 –
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one fermion. In each case, it is important to establish the connection between the number
of independent parameters in the theory and the number of independent sum rules they
are subject to. As such, we will perform the counting directly based on amplitudes, and
only make connections to the operator coefficients afterwards. A general principle of this
approach is that the number of independent parameters for a particular amplitude is given
by the number of independent kinematic form it can have, which is dedicated by the little
group scaling as well as symmetries of the amplitude [27, 28]. As an illustration, let us look
at a few examples for the 4-point scalar amplitude. As shown in table 1, its A[2]

4 term is
a linear combination of the Mandelstam variables, and can be written in the general form
cs s + ct t + cu u. Consider first the case of a single real scalar, the amplitude should be
symmetric under any exchange between s, t or u, i.e. cs = ct = cu. Combined with the
massless relation s+ t+u = 0, we could conclude that A[2]

4 must vanish. This is consistent
with the fact that the dimension-6 operator for the single real scalar that contributes to the
A[2]

4 term is redundant and can be eliminated by a field redefinition [27]. Similarly, for a
single complex scalar, symmetry requires that A(φφφ∗φ∗) is invariant under the exchange
of the two φs (or φ∗s). Therefore, A(φφφ∗φ∗) is symmetric under the exchange t ↔ u

and can only be proportional to s. Not surprisingly, there is also only one independent
dimension-6 operator for the single complex scalar.

Starting with theA[2]
4 amplitudes in table 1, we then go through the following procedure

to count the sum rules:

• Count the number of independent amplitudes. SM particles fill various gauge mul-
tiplets, and fermions can also come in with different flavors. One needs to properly
count the degrees of freedoms in order to derive all the sum rules.

• For each independent amplitude, count the number of independent parameters in it.
If the amplitude contains one parameter, and does not vanish in the forward limit, it
then produces one sum rule for this parameter.

• If an amplitude contains more than one independent parameter, it is possible to
also obtain multiple sum rules by considering different physical states. In particular,
one could symmetrize the amplitude with respect to the Mandelstam variables, and
obtain different forward limits. The Higgs-Higgs amplitude below provides an explicit
example of this.

For simplicity, we only include one generation of fermions, while the generalization to 3
generations is straightforward but somewhat tedious. A recent study on the flavor con-
straints from dimension-8 four-fermion operators can be found in ref. [16]. Given that we
are working in the massless limit with no EWSB, we will parameterize the Higgs doublet
as H =

( φ+

φ0
)
and work directly with the complex components φ+ and φ0, together with

H† =
(
φ− φ0∗

)
where φ− = (φ+)∗. Following the procedure above, we list the sum rules

below for each of the three types of amplitudes.
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3.1 Higgs-Higgs amplitudes

The only scalar in the SM is the Higgs doublet. Writing down the 4-Higgs amplitude (with
the all-in/all-out convention) with explicit SU(2) indices, A(HiHjH

†
kH
†
l ), gauge invariance

then requires that we contract the SU(2) indices, with either i = k, j = l or i = l, j = k.
We immediately realize that the two amplitudes produced by these two contractions are
not independent, but are related by an exchange of the two Hs (or the two H†s). We thus
have only one independent amplitude. Letting i = k 6= j = l, we can write its A[2]

4 term
with two independent paraemeters,

A(HiHjH
†
iH
†
j ) = cs s+ cu u , (3.2)

where the t term is eliminated via the relation s+t+u = 0. eq. (3.2) is an elastic amplitude,
and gives a sum rule on cs − cu in the forward limit t = 0, u = −s. However, a different
forward limit can be obtained by taking i = k = j = l which symmetrizes eq. (3.2) under
t↔ u, giving the elastic amplitude

A(HiHiH
†
iH
†
i ) = 2cs s+ cu t+ cu u = (2cs − cu)s , (3.3)

which instead gives a sum rule on the combination 2cs − cu. Another possibility is to let
i = k = j = l and only take the real component, making the amplitude totally symmetric
under s, t and u. However, the A[2]

4 term vanishes in this case, as discussed in the single
real scalar case above. In fact, no additional independent sum rule can be written down in
this case. eq. (3.2) and eq. (3.3) thus contain two independent parameters and gives two
sum rules on the combinations,

cs − cu , 2cs − cu . (3.4)

To connect eq. (3.4) with the dimension-6 operators, one simply needs to compute
the amplitudes eq. (3.2) and eq. (3.3) in a given operator basis. Only two independent
dimension-6 operators contribute to the A[2]

4 term of the 4-Higgs amplitude, which can be
chosen as OH and OT in table 2. With an explicit calculation, we obtain

A[2](φ+φ− → φ+φ−) = cH + 3cT
Λ2 s , (3.5)

A[2](φ+φ0 → φ+φ0) = − cH + cT
Λ2 s− cH − cT

Λ2 u , (3.6)

where, with an abuse of notation, we have absorbed the couplings (with mass dimension
−2) in the amplitudes. It is then straightforward to make the connection

cs → −
cH + cT

Λ2 , cu → −
cH − cT

Λ2 . (3.7)

The two sum rules are given by

cH + 3cT
Λ2 =

dÃφ+φ−

ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σφ

+φ−

tot − σφ
+φ+

tot

)
+ c∞ , (3.8)

−2cT
Λ2 =

dÃφ+φ0

ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σφ

+φ0

tot − σφ
+φ0∗

tot

)
+ c∞ , (3.9)

where in the second equation the cH terms are cancelled in the forward limit.
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OH = 1
2 (∂µ|H|2)2 OT = 1

2 (H†←→DµH)2

OH` = iH†
←→
DµH ¯̀

Lγ
µ`L

O′H` = iH†σa
←→
DµH ¯̀

Lσ
aγµ`L OHe = iH†

←→
DµHēRγ

µeR

OHq = iH†
←→
DµHq̄Lγ

µqL OHu = iH†
←→
DµHūRγ

µuR

O′Hq = iH†σa
←→
DµHq̄Lσ

aγµqL OHd = iH†
←→
DµHd̄Rγ

µdR

Table 2. The dimension-6 operators related to Higgs-Higgs and Higgs-fermion sum rules.

3.2 Higgs-fermion amplitudes

Again, we proceed by writing down the amplitudes with all possible ways to contract the
group indices. If the fermion f is an SU(2) singlet (f = uR, dR, eR), the SU(2) indices
can only be contracted between the two Higgs, with only one independent amplitude,
A(HifH

†
i f̄). If f is an SU(2) doublet (f = qL, lL), one could contract the SU(2) indices in

two ways, giving A(HifjH
†
i f̄j) and A(HifjH

†
j f̄i). The latter is not elastic if i 6= j, while the

elastic amplitude A(HifiH
†
i f̄i) receives contribution from both contractions. Therefore, we

have two independent elastic amplitudes which are A(HifjH
†
i f̄j) (i 6= j) and A(HifiH

†
i f̄i).

Having SU(3) indices does not change the counting, since they can only contract between
the two quarks. We note from table 1 that the kinematic structure of A[2]

4 is fixed for the
scalar fermion amplitudes, so each independent amplitude has one parameter in the A[2]

4
term, which is subject to one sum rule. This gives a total number of 2 × 2 + 3 = 7 sum
rules for each family of SM fermions. Not surprisingly, they can be connected to the 7 OHf
type operators in table 2. The 4 sum rules for the quarks can be written as

2(cHq − c′Hq)
Λ2 =

dÃuL φ0

ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σuL φ

0

tot − σuL φ
0∗

tot

)
+ c∞ ,

2cHu
Λ2 =

dÃuR φ0

ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σuR φ

0

tot − σuR φ
0∗

tot

)
+ c∞ ,

2(cHq + c′Hq)
Λ2 =

dÃdL φ0

ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σdL φ

0

tot − σdL φ
0∗

tot

)
+ c∞ ,

2cHd
Λ2 =

dÃdR φ0

ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σdR φ

0

tot − σdR φ
0∗

tot

)
+ c∞ , (3.10)

where we have picked up the neutral component of Higgs doublet. Equivalently, one could
written down 4 equations with the charged component of the Higgs, related to eq. (3.10)
by an SU(2)L rotation (uL ↔ dL, φ+ ↔ φ0, φ− ↔ φ0∗). For the leptons, the 3 sum rules
can be written as

2(cHl − c′Hl)
Λ2 =

dÃνL φ0

ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σνL φ

0

tot − σνL φ
0∗

tot

)
+ c∞ ,

2(cHl + c′Hl)
Λ2 =

dÃeL φ0

ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σeL φ

0

tot − σeL φ
0∗

tot

)
+ c∞ ,
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2cHe
Λ2 =

dÃeR φ0

ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σeR φ

0

tot − σeR φ
0∗

tot

)
+ c∞ , (3.11)

with the absent one corresponding to the lack of νR in the SM. We note again that the
operators in eq. (2.9) also contribute to the Higgs-fermion amplitudes but can be exchanged
to the OHf type operators and do not have additional independent contributions.

3.3 Fermion-fermion amplitudes

The elastic 4-fermion amplitudes in the SM can be obtained by scattering any two of the
five fermion fields f = qL, lL, uR, dR, eR. There are 15 combinations in total, 5 from
scattering two identical fermions and 10 from two different fermions. Among them, we find
that the following five combinations each contains two independent ways of contracting
group indices (with i, j denoting SU(2) indices and a, b denoting SU(3) indices):

• A(qqq̄q̄): two independent amplitudes can be obtained from two ways of contracting
SU(2) and SU(3) indices, which are A(qai qbj q̄ai q̄bj) and A(qai qbj q̄bi q̄aj );

• A(lql̄q̄): one could contract the SU(2) indices between the two leptons (quarks) or
between one lepton and one quark, giving A(liqaj l̄iq̄aj ) and A(liqai l̄j q̄aj );

• A(quq̄ū), A(qdq̄d̄) and A(udūd̄): in each case one could contract the SU(3) indices
between the same fermion or between different ones;

while the other combinations each contains one independent amplitude. As such, a total
number of 20 independent amplitudes can be written down. Each amplitude contain one
parameter, as the kinematic structure is fixed as shown in table 1. By considering the
scattering of different states (e.g. setting i = j and/or a = b), a total number of 20 sum
rules can be written down for the 20 parameters.

Our counting matches the number of 4-fermion operators in the SMEFT, excluding
those composed of 4 different fermions (which could not contribute to elastic amplitudes).
These 20 operators can be found in e.g. ref. [36] under the (L̄L)(L̄L), (R̄R)(R̄R) and
(L̄L)(R̄R) categories. Not surprisingly, all of these 20 operators have only the ψ+ψ+ψ−ψ−

helicity configuration, and contribute to the elastic amplitudes in the case of one fermion
generation.

Due to the large number of sum rules, we will only show one example, eR eR → eR eR,
generated by the 4-fermion interaction term cee

Λ2 (eRγµeR)(eRγµeR). Its sum rule can be
written as

− 2cee
Λ2 = dÃeR eR

ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σeR eRtot − σeR eRtot

)
+ c∞ . (3.12)

3.4 Comparison with previous results

Sum rules of dimension-6 operators have also been examined in previous literatures [20–
22]. Our study is distinguished from them by focusing on the amplitudes in the unbroken
electroweak phase, which makes the connection between the amplitudes and the dimension-
6 operators more transparent. Some of our results are nevertheless closely connected to the
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previous ones. In particular, eq. (3.5) was already pointed out in refs. [20, 21] in the context
of the Goldstone fields, which has the same implications on the operator coefficient cH as
we discuss later in section 5. Sum rules for new physics with additional global symmetries
(such as composite Higgs models) has been throughly discussed in ref. [22]. Many previous
studies also focuses on the applications in chiral perturbation theory and nuclear theory,
including pion-nucleon scatterings [40–43] and fermion scatterings [44]. We focus on the
SMEFT and do not consider those cases.

4 Implications of the sum rules

4.1 Robustness of the sum rules

Each of the sum rules in eqs. (3.8)–(3.12) can be interpreted as a relation between the
EFT on the lefthand side and the quantities in the full theory on the righthand side. The
SM contributions are assumed to be absent in these sum rules, as they only contribute
to the A[0]

4 term in eq. (2.6) in the massless limit. Here we discuss the possible caveats
of this assumption and show that even in these cases, the presence of SM contributions
does not obscure the interpretation of the sum rules. As mentioned earlier, considering an
energy scale sufficiently higher than the electroweak scale, µ2 � m2, it is reasonable to
treat the SM particles as being approximately massless. In this limit, the SM could not
generate poles in the forward amplitudes. A divergent forward amplitude can be generated
by t-channel diagrams (e.g. of a photon) which contribute to the boundary term. This
contribution can thus be subtracted from both side of the sum rule without any impact on
the physics implication. If the SM particle masses are restored, an s or u-channel exchange
of a SM particle would then have corresponding poles in the s-plane, thereby giving a
contribution to the righthand side of the sum rules, either to the cross section terms in
eq. (2.3), or as additional IR poles if the mass is smaller than 2m. They also modify
the cn on the lefthand side. These contributions have to match, and can be computed
on both side and subtracted from the sum rule. Similarly, the SM loop contribution to
the forward amplitudes matches the 2 → 2 SM cross sections. Different from tree level
contributions which are low energy poles, the loop contributions are branch cuts in the
s-plane and extend to high energies. Nevertheless, their contribution usually dominates
at low energies, for which the SMEFT is valid and the SM contributions are calculable
and can be subtracted [13]. Loop corrections from massless particles may also contain IR
divergence, in which case an IR cutoff in the dispersion relation (i.e. restoring the mass m
in eq. (2.3)) is required to regulate this contribution. We assume this is always done before
subtracting the loop contributions of massless SM particles.

Next, we comment on the robustness of the sum rules under one-loop effects of new
physics. From a pure EFT point of view, to include such contributions in the low energy
measurement, we should first perform a one-loop matching. The resulting operators will
then be evolved to the scale appropriate for the measurement using renormalization group
equations (RGE) [45–50]. Recently, a deeper connection has been established between the
helicity amplitude structures of SMEFT and the RGEs of the operator coefficients [38, 51–
58]. In short, an operator is only renormalized by another if the latter contributes at one
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loop a divergent contribution to the helicity amplitude which corresponds to a contact
interaction of the former. From this point of view, the sum rules of the helicity amplitudes
should be able to capture the operator mixing effects, if the one-loop contributions of the
new physics model are included and if the corresponding operators are generated by the
model. As such, we expect the sum rules to reproduce the results of one-loop matching
and RG running of the SMEFT. This is verified specifically for an example model later in
section 5.3.

4.2 Custodial symmetries

The sum rule in eq. (3.1) suggests that the amplitude Ã[2]
ab (s) = dÃab(s)

ds

∣∣∣
s=0

could be
highly suppressed if σabtot ≈ σab̄tot. It is possible that the full theory exhibits certain (at
least approximate) symmetries which fulfill this condition without fine tuning. We find
that such symmetries can indeed be imposed in a general sense regardless of the boundary
term, and leads to the familiar custodial symmetries for the Higgs-Higgs and Higgs-fermion
amplitudes. To start, we recall that in the massless limit, Ã[2]

ab (s) ∝ s and is an odd function
of it. Under the s↔ u crossing one has

Ã[2]
ab (s) =

s↔u
Ã[2]
ab̄

(u) = Ã[2]
ab̄

(−s) = −Ã[2]
ab̄

(s) . (4.1)

To make Ã[2]
ab (s) vanish, one simply needs to make it also an even function of s. This can

be done by imposing a symmetry (denoted as S) on the theory so that it is invariant under
the mapping:

S : a→ a , b→ b̄ . (4.2)

To summarize, we have

Ã[2]
ab (s) = − Ã[2]

ab̄
(s) under crossing: s↔ u , (4.3)

Ã[2]
ab (s) = Ã[2]

ab̄
(s) under S : a↔ a , b↔ b̄ , (4.4)

and combining the two equations we arrive at the result that Ã[2]
ab = 0. Denoting some

common quantum number (with label i) of particles a and b as σia and σib, we require that
the theory must be invariant under

σia → σia , σib → −σib , (4.5)

for all is. The condition in eq. (4.5) is generally nontrivial and can be satisfied in two ways:

1. For each nonzero σia, one has σib = 0, and vice versa. In this case S is either trivial
or an overall transformation that makes σi → −σi.

2. Under certain setups, S can be a parity that exchanges some of the quantum numbers.
For example, suppose i = 1, 2, σ1

a = σ2
a and σ1

b = −σ2
b , then a parity that exchanges

the two quantum numbers P (1↔ 2) satisfies eq. (4.5).
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Note that the two conditions above are also symmetric under a and b. One could equiva-
lently consider the crossing of particle a and require the symmetry S ′ that

S ′ : a→ ā , b→ b . (4.6)

S and S ′ can be exchanged by a CP transformation along with a spatial rotation to
compensate ~p → −~p from parity. The massless forward elastic amplitudes are indeed
invariant under CP , since one gets the original amplitude by crossing it twice (Ãab →
Ãab̄ → Ãāb̄).9 It is also clear that S or S ′ could not eliminate the Ã[4]

ab amplitudes (generated
by dimension-8 operators), which instead exhibit positivity relations. The SM Higgs sector
has a SU(2)L×SU(2)R global symmetry. Naturally, a parity that relates the left-handed and
right-handed symmetries, PLR, could fulfill the requirement of S. Indeed, the embedding
of the Higgs doublet under SU(2)L × SU(2)R gives the following quantum numbers

(t3L\t3R 1/2 −1/2

1/2 φ+ φ0∗

−1/2 φ0 −φ−

)
, where H =

(
φ+

φ0

)
. (4.7)

Under a PLR symmetry that exchanges SU(2)L and SU(2)R, we have

PLR : φ+ → φ+, φ0 → φ0∗ , (4.8)

which makes the following amplitude vanish,

Ã[2]
φ+φ0 ≡ A[2](φ+φ0 → φ+φ0)|t=0 = −2cT

Λ2 s = 0 . (4.9)

Indeed, this is nothing but the consequence of the custodial symmetry. The operator OT
breaks the custodial symmetry together with PLR, so cT must vanish if the symmetry is
preserved. A more intuitive understanding can be obtained by using SO(4) ∼ SU(2)L ×
SU(2)R and writing the Higgs doublet in terms of the field Φ with four real components,

H = 1√
2

(
φ2 + iφ1
φ4 + iφ3

)
, Φ =


φ1
φ2
φ3
φ4

 . (4.10)

We could then enlarge the symmetry group to O(4) by imposing a parity that flips the
sign of any of the φis. In fact, with only the SM Higgs field, it is not possible to write
down a term that preserves SO(4) while breaking the parity. This parity exchanges either
φ0 ↔ φ0∗ or φ+ ↔ φ−, and is exactly the symmetry needed for eq. (4.9) to hold. On the
other hand, with PLR it is not possible to explicitly break SU(2)R without also breaking
SU(2)L and violate gauge invariance. We thus conclude that eq. (4.9) holds if and only if
the SU(2)L × SU(2)R symmetry of the SM Higgs sector is preserved.

9Note that this is only true in the helicity basis in which the particle polarizations are invariant under
spatial rotations. In the linear basis, for instance, the 4-vector elastic amplitude receives contribution from
the CP-odd dimension-8 operators [15].

– 15 –



J
H
E
P
0
3
(
2
0
2
1
)
1
4
9

For the Higgs-fermions amplitudes, the same symmetry can be imposed with certain
embedding of the fermion f under SU(2)L × SU(2)R. The symmetry

PLR : f → f, φ0 → φ0∗ , (4.11)

can be imposed by requiring the isospins of f to satisfy either

T 3
L = T 3

R = 0 , or TL = TR , T 3
L = T 3

R , (4.12)

which are exactly the same conditions in ref. [59] for protecting the SM Zff̄ coupling.
In particular, the second condition in eq. (4.12) is very common in the construction in
composite Higgs models for protecting the ZbLb̄L coupling, which we discuss further in
section 5.4.

In principle one could also apply the symmetry to the fermion-fermion amplitudes.
However, note the symmetry S in eq. (4.2) also flips the helicity of particle b. For the
fermion-fermion amplitude, it can be shown that the two amplitudes A[2]

ab and A[2]
ab̄

have
different total angular momenta [54]. At tree level, this means that the symmetry neces-
sarily relates heavy particles with different spins. More specifically, consider the 2 → 1
cross section of two fermions to a heavy scalar, and the two fermions must have the same
helicity. By changing one of the fermion to its antiparticle, they will have opposite helicity
and the final state must be a vector. The symmetry thus connects a scalar with a vector.
We do not consider such possibilities in this paper.

4.3 Boundary term

The boundary term, c∞ = 1
2πi
∮
s→∞ ds

Ã(s)
s2 , is generally nonzero and needs to be included

in the sum rule. The typical contribution from a weakly coupled UV theory at tree level is
from the t-channel exchange of a heavy vector. Assuming the low energy forward amplitude
Ã(s) = g

M2 s+. . . is generated by such a t-channel diagram, one must have in the full theory

Ã(s)→ −g s
t−M2

∣∣∣∣
t=0

= g s

M2 ⇒ c∞ = g

M2 , (4.13)

such that dÃ
ds

∣∣∣
s=0

= c∞. The presence of the boundary term could obscure the connection
between the EFT parameters and the cross section terms. In many scenarios of interest,
this t-channel contribution is absent and c∞ can be set to zero. In strongly coupled UV
scenarios, the boundary terms have also been shown to vanish under generic conditions [21,
22]. However, it should be emphasized that the properties of c∞ are model dependent and
needs to be treated with caution.

We note in eq. (4.13) that the boundary term has the same s ↔ u cross relation as
Ã[2]

4 , so the symmetry in eq. (4.4) also makes the boundary term vanish. This has to be
the case since the symmetry would make everything else in the sum rule vanish, and the
boundary term must therefore vanish as well. As an example, we consider a single heavy
vector Z ′ that couples to the SM Higgs and ignore the SM gauge bosons for simplicity,

L = − 1
4Z
′
µνZ

′µν − |DµH|2 + . . .

= . . .+ igZ′Z
′µ[(∂µH†)H −H†∂µH] + . . . (4.14)
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where the vector-scalar-scalar vertex has a coupling in the form igZ′(p2 − p1)µ. Looking
at its contribution to A[2](φ+φ0 → φ+φ0) in eq. (3.6), it will generate a term in the form
s−u
t−M2 , and is indeed odd under the s ↔ u crossing. More over, upon integrating out the
Z ′, we will generate an operator in the form (H†

←→
∂µH)2, which after adding the SM gauge

bosons is just OT which breaks the custodial symmetry, in agreement with eq. (3.9).

4.4 Precision measurements and direct searches

The sum rules in eqs. (3.8)–(3.12) establish the general connections between the SMEFT
and properties of the full model. The SMEFT can be probed by precision measurements
at low energy where the leading order contributions from new physics are parameterized
by the dimension-6 Wilson coefficients. While the sum rules are obtained in the massless
SMEFT without the Higgs vev, our results on the Wilson coefficients can nevertheless be
connected to observables around the electroweak scale, to which the contributions from
dimension-6 operators are known. In particular, cT is related to the T -parameter [60] that
can be constrained by the Z-pole and W mass measurements, while cH can be probed
by the measurements of Higgs couplings. The cHf parameters modify the couplings of
the fermions to the weak gauge bosons. Each sum rule in eq. (3.10) and eq. (3.11) can
be connected to the modification of the couplings of fermions to the Z boson after the
electroweak symmetry breaking. More specifically, with the parameterization

L = g

cW
Zµ

( ∑
f=u,d,ν,e

f̄Lγ
µ(T3 − s2

WQ+ δgLf )fL

+
∑

f=u,d,e
f̄Rγ

µ(−s2
WQ+ δgRf )fR

)
+ . . . , (4.15)

where s2
W and c2

W are shorthands for sin2 θW and cos2 θW and θW is the weak mixing angle,
the 7 equations in eq. (3.10) and eq. (3.11) equal to 4

v2×{gLu, gRu, gLd, gRd, gLν , gLe, gRe},
respectively. The scattering processes at high energies (with v � E � Λ), such as the
Higgsstrahlung process at hadron or lepton colliders (pp → V h and e+e− → Zh), offer
a more direct probe of the corresponding amplitudes. The properties of the full model,
on the other hand, can be probed by direct searches at high energies. Different from
the EFT parameters that are subject to the sum rules, the direct search bound can be
applied to individual particles, and are thus complementary to the bounds from precision
measurements. This complementarity is illustrated schematically in figure 2. For simplicity,
we assume in figure 2 that the full theory contains only two heavy particles, X1 and X2,
with masses M1 and M2 and some universal couplings to SM. They contribute to the
cross sections σ(ab → X1) and σ(ab̄ → X2) in the sum rule for the forward amplitude
Ã(ab → ab). As such, the contributions to Ã(ab → ab) from dimension-6 operators are
proportional to 1

M2
1
− 1
M2

2
, corresponding to diagonal lines in the ( 1

M2
1
, 1
M2

2
) plane. They can

be constrained by low energy precision measurements. The direct searches for X1 and X2
are mostly independent of each other, resulting in a rectangular allowed region.

It is interesting to note that the symmetry in eq. (4.2) also provides a plausible scenario
where dimension-8 operators could dominate certain scattering processes. The contribu-
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Figure 2. A schematic plot on the interplay between precision measurements and direct searches.
For simplicity, we assume only two new particles X1 and X2 with masses M1 and M2 and some
universal couplings to SM. They each contribute to one of the cross sections in the sum rule, with
σ(ab → X1) and σ(ab̄ → X2). The symmetry in eq. (4.2) corresponds to the diagonal line, where
the contribution to A(ab → ab) from dimension-6 operators vanishes, while the plus (minus) sign
denotes the region in which this contribution is positive (negative). Contributions to A(ab → ab)
from dimension-8 operators are proportional to 1

M4
1

+ 1
M4

2
, as illustrated by the orange contours.

tions to Ã(ab→ ab) from dimension-8 operators are proportional to 1
M4

1
+ 1

M4
2
, represented

by the orange circular contours in figure 2. Near the region M1 ≈ M2, the dimension-8
operators could give the dominant contribution to Ã(ab→ ab). An approximate symmetry
that suppresses 1

M2
1
− 1
M2

2
naturally constrains the parameter space to be in this region. The

symmetry can also be explicitly tested by precision measurements at low energy (e.g. at
Z-pole) for which the contributions from dimension-8 operators are highly suppressed. On
the other hand, the measurements of scattering process at high energy (such as pp → V h

or e+e− → Zh) could be used to probe the dimension-8 operators, and test the positivity
bound associated with them. We also note that the same symmetry also suppresses the
contribution from dimension-10 operators, making the validity of the EFT expansion more
robust for those high energy measurements. A more detailed analysis of this interesting
scenario is left for future studies.

5 Benchmark models

In this section, we demonstrate the applications of the sum rules, using several new physics
models as examples.

5.1 Doubly charged scalars

Since the two cross section terms in the sum rules have opposite signs, they contain useful
information on the possible signs of the Wilson coefficients. As a first example, let us take
the Higgs sum rule in eq. (3.8), and assume that cT = 0 due to the strong constraints from
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electroweak measurements. We could then write

cH
Λ2 =

∫ ∞
0

ds

πs

(
σφ

+φ−

tot − σφ
+φ+

tot

)
+ c∞ . (5.1)

The boundary term c∞ is generated only by t-channel vector boson exchanges at tree level.
One could show that c∞ > 0 since it is proportional to the square of the Higgs-Higgs-vector
coupling. A negative cH can thus only be generated by a charge-2 scalar (which contributes
to σφ

+φ+

tot ) at tree level [20]. A similar argument can also be applied to eq. (3.12), which
implies that a charge-2 scalar is also needed to generate a positive cee at tree level.

5.2 Triplet scalars

Models with heavy triplet scalars provide an interesting case for the Higgs sum rules in
eq. (3.8) and eq. (3.9) since they can contribute to both cH and cT . At tree level, the
contributions to the Higgs 4-point amplitudes must come from an intermediate heavy
scalar. For the sum rules it is thus sufficient to consider only the 3-scalar interactions of
two Higgs and one heavy scalar. In this case, the hypercharge of the triplet scalar needs
to be either 0 or ±1. The relevant interaction terms in the Lagrangian can be written as

Lint = κξH
†σaHξa + κχ√

2
(H̃†σaHχa + h.c.) , (5.2)

where ξ and χ are triplet scalars with hypercharge 0 and −1, respectively. The couplings
κξ and κχ have mass dimension one. Writing down the components explicitly, one has

Lint =κξ
[√

2φ0φ−ξ+ +
√

2φ0∗φ+ξ− + (φ0φ0∗ − φ−φ+)ξ0
]

+ κχ
[
φ0φ0χ0∗ + φ+φ+χ−− +

√
2φ0φ+χ− + h.c.

]
, (5.3)

where

ξ+ = ξ1 − iξ2√
2

, ξ0 = −ξ3 , ξ− = ξ1 + iξ2√
2

,

χ0∗ = χ1 − iχ2√
2

, χ− = χ3 , χ−− = −χ1 + iχ2√
2

, (5.4)

with all fields canonically normalized. The triplet interactions in eq. (5.2) do not contribute
to the boundary term c∞ in the sum rules. This is because the t-channel amplitudes have
the form ∼ κ2

t−m2 and have no s dependence. Therefore, we could set c∞ to zero and write
eq. (3.8) and eq. (3.9) as10

cH + 3cT
Λ2 =

∫ ∞
0

ds

πs

(
σφ

+φ−→ξ0 − σφ+φ+→χ++) =
κ2
ξ

m4
ξ

−
4κ2

χ

m4
χ

, (5.5)

−2cT
Λ2 =

∫ ∞
0

ds

πs

(
σφ

+φ0→χ+ − σφ+φ0∗→ξ+) =
2κ2

χ

m4
χ

−
2κ2

ξ

m4
ξ

, (5.6)

10Note that the φ+φ+χ−− vertex has a symmetry factor of 2, which gives the extra factor of 4 in
σ(φ+φ+ → χ++).
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where mξ (mχ) is the mass of ξ (χ). Note that κξ and κχ both have mass dimension one,
and κ2/m4 ∼ 1/Λ2 as expected.

As shown in eq. (5.6), the two triplet scalars in eq. (5.2) both contribute to cT , but with
opposite signs. It is thus possible to arrange cancellations of the two terms by imposing the
custodial symmetry, as in the Georgi-Machacek Model [61]. Indeed, by setting κ = κξ = κχ
and m = mξ = mχ we reproduce the trilinear interactions in the Georgi-Machacek Model
in refs. [62–64].11 On the other hand, we see from eq. (5.5) that cH receives a negative
overall contribution in this limit, cH

Λ2 = −3 κ2

m4 . Our result for cH agrees with the one in
ref. [64] (expressed in terms of κV = 1− cH

2
v2

Λ2 ), but is obtained with much less effort with
the help of the sum rules.12

It is also interesting to note that by combining eq. (5.5) and eq. (5.6), we obtain

cH
Λ2 = −

2κ2
ξ

m4
ξ

−
κ2
χ

m4
χ

, (5.7)

suggesting that cH < 0 for any triplet scalar extension, even for the ξ triplet scalar alone
which does not contain a doubly charged scalar. Needless to say, ξ alone gives a nonzero
cT and is strongly disfavored by electroweak measurements.

5.3 The Beautiful Mirror model

The Beautiful Mirror (BM) model, proposed in ref. [65], provides an interesting benchmark
for both the Higgs-fermion and the Higgs-Higgs sum rules. The BMmodel introduces exotic
vector-like quarks which modifies the Zbb̄ couplings in order to provide better agreements
with the A0,b

FB measurement at LEP [66], which favors a positive value for both δgLb and
δgRb (as defined in eq. (4.15)).13 To achieve this, one introduces a vector-like quark doublet,
ΨL,R and a vector-like quark singlet, B̂L,R,

ΨL,R =
(
B

X

)
∼ (3, 2,−5/6) ,

B̂L,R ∼ (3, 1,−1/3) , (5.8)

where the three numbers in the bracket denote representations under SU(3)c, SU(2)L, and
the U(1)Y hypercharge, respectively. Their mass terms and the interactions with SM are
given by

− L ⊃M1Ψ̄LΨR +M2
¯̂
BLB̂R + yLQ̄LHB̂R + yRΨ̄LH̃bR + h.c. . (5.9)

11Our conventions for the fields are also chosen to match the ones in these references. In particular, by
setting κξ = κχ → −M1/2 andm2

ξ = m2
χ → µ2

3 we reproduce the trilinear term −M1Tr(Φ†τaΦτ b)(UXU†)ab
in eq. (5) of ref. [64].

12To be precise, both OH and Or = |H|2|DµH|2 are generated in the Georgi-Machacek model. Their
contributions to the 4-scalar amplitude could not be distinguished, but Or also contributes to the hhhhV V
contact interaction. OH modifies the Higgs couplings universally, while Or only modifies the couplings to
gauge bosons. Or is usually eliminated via field redefinition, and can be replaced by a combination of OH ,
O6, and Oy operators which directly modify the Yukawa couplings [50]. This explains why κV and κf are
different in ref. [64].

13See e.g. ref. [67] for a more updated summary and also future prespectives. A global fit with the
LEP/SLD data shows that the SM predictions of the Zbb̄ couplings are just outside the 95% CL region.
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The vev of the Higgs boson generates mixings between the new quarks and the SM ones,
which modifies the Zbb̄ couplings as

δgLb = y2
Lv

2

4M2
2
, δgRb = y2

Rv
2

4M2
1
, (5.10)

both are positive as desired. While eq. (5.10) can be directly derived from the mass mixing,
the sum rules in eq. (3.10) provides a transparent connection between the signs of δgLb and
δgRb and the properties of the exotic quarks. Taking the 3rd and 4th equations in eq. (3.10),
with an SU(2) rotation one could write

4 δgLb
v2 = −

2(cHq + c′Hq)
Λ2 =

dÃtL φ−
ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σtL φ

−→F−
1
3 − σtL φ+→F

5
3
)

+ c∞ ,

(5.11)
4 δgRb
v2 = −2cHd

Λ2 =
dÃbR φ−
ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σbR φ

−→F−
4
3 − σbR φ+→F

2
3
)

+ c∞ ,

(5.12)

where F denotes collectively the BSM fermions with the superscript indicating the electric
charge. Indeed, F−

1
3 and F−

4
3 correspond to B̂R and X̂L in eq. (5.8), while F

5
3 and F

2
3

are absent. The boundary terms c∞ are also absent in the BM model. It is clear from
eq. (5.12) that a charge −4/3 quark is required to generate a positive δgRb. A straight
forward calculation of the 2 → 1 cross sections on the right-hand side of eq. (5.11) and
eq. (5.12) reproduces the results in eq. (5.10).

A non-zero T parameter is also generated in the BM model. A direct computation of
the fermion loop contributions to the gauge boson propagators gives (assuming mb = 0) [67]

T ≈ 3
16π2αv2

[
16
3 δg

2
RbM

2
1 + 4δg2

LbM
2
2 − 4δgLb

M2
2 m

2
top

M2
2 −m2

top
log

(
M2

2
m2

top

)]
, (5.13)

in which the first two terms are generated by the fermion loop of the two physical heavy
bottom partners while the third term comes from the mixed loop of the mostly B̂ partner
and top. Correspondingly, the fermion loops also contribute to A[2](φ+φ0 → φ+φ0) in
eq. (3.6). We note that these contributions must be finite, as otherwise a dimension-6
counter term is needed for the full theory, in contradiction with the full theory being
renormalizable. While a φ+φ0φ−φ0∗ counter term can be generated at dimension four, it
contributes to A[0](φ+φ0 → φ+φ0) rather than A[2](φ+φ0 → φ+φ0), and does not have
an impact on the sum rule. In addition, the boundary term c∞ also vanishes for these
contributions as they could only grow as fast as log(s) for large s. Let us focus on the
first two terms in eq. (5.13), which are proportional to y4

R and y4
L. The corresponding loop

diagrams of the 4-scalar amplitude are shown in figure 3. Their contribution can either be
computed directly or by using the sum rule in eq. (3.9). In the latter case, one simply needs
to calculate the tree-level 2→ 2 cross sections of φ+φ0∗ → X̄LBL and φ+φ0∗ → t̄LbL. We
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φ−
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B̂R B̂R

Figure 3. The one-loop contributions to A[2](φ+φ0 → φ+φ0) from the BM model in eq. (5.9)
proportional to y4

R (left) and y4
L (right). All external particles are going in.

tL

tR

tL bL

tR

bL bL

tR

tL

φ+

φ0

φ−

φ0∗

φ0

φ+

φ0∗

φ−
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φ−

φ0∗
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Figure 4. The one-loop contributions to A[2](φ+φ0 → φ+φ0) from the BM model in eq. (5.9) that
are proportional to y2

t y
2
L. The coupling of each vertex (up to some common overall phase) is also

labelled. All external particles are going in.

φ+

φ0

tL

B̂R

tR

yL

yt

φ+

φ0

bL

tR

B̂R

−yt

yL

φ+

φ0∗

B̂R

tL

bL

yL

yL

φ+

φ0∗

tR

bL

tL

−yt

yt

×

Figure 5. The diagrams for the 2→ 2 cross sections corresponding to the amplitudes in figure 4
(via the optical theorem). The two diagrams on the left contribute to σ(φ+φ0 → B̂RtR). The two
diagrams on the right contribute to σ(φ+φ0∗ → tLbL), but only the interference term is proportional
to y2

t y
2
L.

thus obtain
dÃφ+φ0

ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
0− σφ+φ0∗→XLBL − σφ+φ0∗→tLbL

)
= − y4

R

8π2M2
1
− 3 y4

L

32π2M2
2
. (5.14)

There are additional 1-loop diagrams contributing to the amplitude Ãφ+φ0 that are
proportional to y2

t y
2
L, as shown in figure 4. The corresponding 2→ 2 processes are shown

in figure 5. Note in particular that one needs to also include the contribution from the
interference term of σ(φ+φ0∗ → tLbL). We also restore a finite mt while still keeping the
scalars massless, which gives

dÃφ+φ0

ds

∣∣∣∣∣
s=0

=
∫ ∞

0

ds

πs

(
σφ

+φ0→B̂RtR − σφ+φ0∗→tLbL
)

= 3y2
t y

2
L

16π2M2
2

[(
2 log

(
M2

2
m2
t

)
− 13

6 + . . .

)
−
(

log
(
M2

2
m2
t

)
− 2 + . . .

)]

= 3y2
t y

2
L

16π2M2
2

[
log

(
M2

2
m2
t

)
− 1

6

]
+O

(
m2
t

M4
2

)
. (5.15)
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Combining eq. (5.14) and the leading log term in eq. (5.15), and imposing the relation
dÃφ+φ0

ds

∣∣∣∣
s=0

= −2cT
Λ2 = −2αT

v2 , we indeed reproduce the result in eq. (5.13).
From the point of the EFT, we will generate OHf operators by integrating out heavy

fermions at the tree level at some matching scale close to the heavy fermion masses. On the
other hand, the contribution to the low energy T parameter, encapsulated in the SMEFT
operator OT , comes from one-loop matching. There is also the contribution from the
operator mixing between OT and OHf induced by the RGE running from the matching
scale to the scale of low energy measurement. To calculate this contribution, we take the
RG equation of cT (for instance, from ref. [47]) and keep only the parts proportional to y2

t .
This gives the running of cT as

cT (µ) = cT (µ0)− 3y2
t

8π2 (−c′Hq + cHu + cT ) log
(
µ2

0
µ2

)
, (5.16)

where cT (µ0) is the value of cT evaluated at a reference scale µ0. In the BM model, we
have

c′Hq
Λ2 = − y2

L

4M2
2
, cHu = 0 . (5.17)

As cT itself is generated at one-loop, the cT coefficient of the log term in eq. (5.16) is
formally a two-loop contribution and can be omitted. We then have

cT (µ)
Λ2 = cT (µ0)

Λ2 − 3y2
t y

2
L

32π2M2
2

log
(
µ2

0
µ2

)
. (5.18)

The running from µ0 to µ then generates a contribution to the amplitude

dÃφ+φ0

ds

∣∣∣∣∣
s=0

= −2 (cT (µ)− cT (µ0))
Λ2 = 3y2

t y
2
L

16π2M2
2

log
(
µ2

0
µ2

)
, (5.19)

which, when setting µ0 = M2 and µ = mt, agrees with the log term in eq. (5.15). This
is exactly what one would expect, as the RG running of the coupling captures the log
enhanced loop contribution to it. We thus conclude that our direct computation of cT
from the sum rules is consistent with the matching and running procedures of the EFT for
the BM model.

5.4 Models with the Zbb̄ custodial symmetry

It is also plausible that the discrepancy in the LEP A0,b
FB measurement is caused by statistical

fluctuations or systematic effects rather than new physics. In this case, since tL and bL
are in the same SU(2)L doublet, the measurement of the ZbLb̄L coupling provides very
stringent constraints on many new physics models that has extended top sectors. However,
as mentioned in section 4.2, it is possible to impose a symmetry that makes the amplitude
in eq. (5.11) vanish, and protects the ZbLb̄L coupling to be SM-like even with the presence
of new physics. To illustrate this, we present in figure 6 the interplay between precision
measurements and direct searches for the sum rule in eq. (5.11), which is a refined version
of figure 2 with realistic bounds. For simplicity, we assume the cross section σtL φ

−→F−
1
3

– 23 –



J
H
E
P
0
3
(
2
0
2
1
)
1
4
9

1.31.522.55
M1/3[TeV]

1.3

1.5

2

2.5

5

M5/3[TeV]
Sum rule on δgLb

current LHC bound (35.9fb-1)

HL-LHC

+

-
Fu
tu
re
Z-
fa
cto
ry

Fu
tu
re
Z-
fa
cto
ry

LE
P/
SL
D

LE
P/
SL
D

Figure 6. A more specific example of the schematic plot of figure 2 for the δgLb sum rule in
eq. (5.11) with realistic bounds from current and future experiments (all at 95% CL). Note that
the axes are scaled linearly with 1/M2. The diagonal line corresponds to δgLb = 0, while the plus
(minus) sign denotes the region in which δgLb is positive (negative). The relevant Yukawa couplings
(as in eq. (5.9)) are assumed to be one for simplicity.

(σtL φ+→F
5
3 ) is generated by a single heavy quark with mass M1/3 (M5/3), and the relevant

Yukawa couplings are set to one. The constraints are shown in the (M1/3,M5/3) plane.
The bounds on δgLb from current and future Z-pole measurements are taken from the
global fitting results in ref. [68]. The bounds from searches of heavy quarks are taken
from ref. [69].14 The bounds from precision measurements are generally more constraining
than the ones from direct searches, except for the region near the diagonal line as a result
of the sum rule. This can be realized without tuning model parameters by imposing the
symmetry on the amplitude as in section 4.2. A common setup in composite Higgs models
is to impose a PLR parity in addition to the SU(2)L × SU(2)R symmetries of the Higgs
sector, and require that T 3

L = T 3
R = −1/2 for bL [59].15 An important phenomenological

consequence of such constructions is the prediction of a heavy exotic quark with electric
charge 5/3, which we have already learned from the sum rule in eq. (5.11).

6 Conclusion

In this paper, we apply the dispersion relations on the forward elastic amplitudes generated
by the dimension-6 operators of the Standard Model Effective Field Theory, and derive a
set of sum rules on the operator coefficients. Focusing on the massless limit, we are able
to classify and write down the sum rules using the tool of helicity amplitudes. These sum

14We take the bounds from QCD productions which are more robust. We also assume the bound on the
charge 1/3 quark is similar to the one of the charge 5/3 quark.

15See also ref. [70] for a recent review on composite Higgs models.
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rules offer distinct insights on the connection between the operator coefficients in the EFT
and the properties of the full beyond-SM theory. Their usefulnesses are illustrated in a few
benchmark scenarios with scalar and fermionic extensions of the SM. As an application,
the sum rules also help us identify the possible symmetries that suppress the contributions
of dimension-6 operators in certain amplitudes, which can be connected to the custodial
symmetries that protects the T parameter or the fermion gauge couplings.

It is somewhat unsatisfying that our sum rules only cover a subset of the dimension-6
operator coefficients. While the forward elastic amplitudes give the most straight for-
ward sum rules, recent studies have also found interesting implications for the SMEFT
dimension-6 operators from non-forward amplitudes [71]. It is desirable, if possible, to
obtain meaningful sum rules also for inelastic amplitudes. A novel approach, based on
convex geometries, is studied in ref. [22] and recently revisited in ref. [18] for systemati-
cally obtaining the positivity bounds on dimension-8 operator coefficients. This approach
however may not be directly applicable to the sum rules of dimension-6 operators. A
more general question, sometimes named as the Inverse Problem [72, 73], can be phrased
as follows: given the measured values of the operator coefficients around the electroweak
scale, to what extent can we possibly determine the nature of the new physics beyond the
SM? New developments on the amplitude tools might be able to help us further tackle this
problem in the future.
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A Essential results of the spinor helicity formalism

Here we try to provide a minimal set of results of the spinor helicity formalism that are
needed for our analysis in section 2, with many details omitted. We refer the readers
to some of the recent reviews (e.g. refs. [23–25]) for a more complete introduction of the
subject. We work with the mostly negative-metric convention, ηµν = diag(+1,−1,−1,−1),
and assume all particles are massless.

We start by writing a 4-momentum in the bi-spinor forms

pαα̇ ≡ pµ(σµ)αα̇ , pα̇α ≡ pµ(σ̄µ)α̇α , (A.1)

where σµ = (1, σi) and σ̄µ = (1,−σi), and σ1,2,3 are the Pauli matrices. pαα̇ and pα̇α are
2× 2 matrices, and their determinants are given by

det(p) = pµpµ = m2 = 0 . (A.2)
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Thus, in the massless limit, pαα̇ and pαα̇ have rank 1, and can be written as products of a
pair of 2-component spinors,

pαα̇ = λαλ̃α̇ ≡ |p〉[p| , pα̇α = λ̃α̇λα ≡ |p]〈p| , (A.3)

where we have introduced the half-brackets as shorthands for the spinors (λα → |p〉, λ̃α̇ →
|p]). Note that the choices of spinors are not unique — a simultaneous scaling of the form
(denoted as the little group scaling)

|p〉 → t|p〉 , |p]→ t−1|p] , (A.4)

leaves pαα̇ invariant. For real momenta, pαα̇ is Hermitian, implying that [p| = (|p〉)∗, and
the t in eq. (A.4) can only be a phase. For complex momenta, |p] and |p〉 can be treated
as independent quantities.
|p] and |p〉 transform differently under the Lorentz group. In fact, they can be associ-

ated with the helicity of the particle, with |p] (|p〉) corresponding to helicity +1/2 (−1/2).
This imposes strong constraints on the form of amplitudes that can be written down. In
particular, a n-point amplitude of particles with helicities h1, ... ,n is little group covariant
with weight

A(1h1 , . . . , nhn)→
∏
i

t−2hi
i A(1h1 , . . . , nhn) , (A.5)

which is essential in fixing the forms of the amplitudes in table 1.
Lorentz invariant quantities can be constructed by contracting the indices of two λs

(or two λ̃s) using the antisymmetric Levi-Civitas symbol. This can be conveniently written
in terms of angle or square brackets as

〈i j〉 ≡ εαβλiαλjβ = λ α
i λjα , [i j] ≡ εα̇β̇λ̃iα̇λ̃jβ̇ = λ̃iα̇λ̃

α̇
j , (A.6)

where we have further introduced the shorthand |pi〉 → |i〉 and so on. Note also that
〈i i〉 = [i i] = 0 due to their antisymmetric nature. For 4-point amplitudes, one could
explicitly work out the Mandelstam variables, which turn out to be (in the massless limit)

s ≡ s12 = (p1 + p2)2 = 2p1p2 = 〈12〉[12] = 〈34〉[34] ,
t ≡ s13 = (p1 + p3)2 = 2p1p3 = 〈13〉[13] = 〈24〉[24] ,
u ≡ s14 = (p1 + p4)2 = 2p1p4 = 〈14〉[14] = 〈23〉[23] . (A.7)

It is also useful to relate different spinor products using momentum conservation. In
particular, we could write

〈12〉[23] = −〈11〉[13]− 〈13〉[33]− 〈14〉[43] = −〈14〉[43] , (A.8)

where we have used p2 = −p1 − p3 − p4 and 〈11〉 = [33] = 0. Thus, we see in table 1 that
the spinor form of A[2]

4 for A(ψ−φψ+φ∗) only has one independent term, which we choose
to be 〈12〉[23].
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One important feature of an on-shell 3-point amplitude is that it is composed of either
only angle brackets or only square brackets.16 Its form is thus fixed by the little group
scaling, given by

A(1h12h23h3) =

g 〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h3−h1 , h1 + h2 + h3 ≤ 0

g [12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2 , h1 + h2 + h3 ≥ 0
, (A.9)

where g is the coupling associated with the 3-point vertex. Assuming h1 + h2 + h3 > 0,
the total dimension of the amplitude is given by

[A] = [g] + h1 + h2 + h3 = 1 , (A.10)

where in the last step we used the fact that the dimension of a n-point amplitude is 4− n.
Considering the case that [g] = −2, i.e. the 3-point amplitude is generated by a dimension-6
operator, and assuming |h| ≤ 1 (considering particles with spin less or equal to one), we
see that the only solution to eq. (A.10) is

h1 = h2 = h3 = 1 , (A.11)

which corresponds to 3 vectors with the same helicity, A(V +V +V +). Similarly, for h1 +
h2 + h3 < 0 we find that the only possible amplitude with [g] = −2 is A(V −V −V −). We
also see that the dimension of g could not be smaller than −2, suggesting that the 3-point
massless on-shell amplitude could not be generated by operators of dimension-8 or higher
(assuming |h| ≤ 1).

B The forward limit

Here we take the amplitudes in table 1 and derive their forms in the forward limit. This
is straightforward for the all-scalar amplitudes — they can be written in terms of the
Mandelstam variables, and we simply set t = 0 and use the massless relation s+ t+ u = 0
to write u = −s. For amplitudes involving spins, this is slightly more complicated as they
are covariant under the little groups transformations of the external particles. Remarkably,
for massless particles with any spins, it is shown (in the helicity basis) that the elastic
amplitudes in the forward limit are always invariant under the little group scaling, and can
be treated as if they are scalar amplitudes [5]. Here we try to provide a somewhat simpler
derivation within the framework of the helicity amplitudes. The key observation is that in
a forward elastic scattering, by definition, the incoming particle 1 and the outgoing particle
3 (or 2 and 4) are the same particle with the same momentum and quantum numbers. In
general, each particle has a different scaling and the amplitude has to transform according
to the helicities of the external particles, as shown in eq. (A.5). However, in the forward
elastic limit, one could impose without the loss of generality that (note the t here is not
the Mandelstam variable t)

t1 = t3 , t2 = t4 . (B.1)
16We shall omit the derivation here, which can be found in refs. [23–25]. Also note that for massless

particles, the 3-point amplitudes vanish for real momenta, but they can be written down for complex
momenta.
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Physically, the little group scaling of massless particles corresponds to the rotation around
the axis of the momentum and the translation along it. eq. (B.1) is indeed only possible
in the forward limit, where particle 1 and 3 are along the same direction.

We recall that in the all-in/all-out convention, particle 1 and 3 (2 and 4) have opposite
helicities, h1 = −h3, h2 = −h4, as suggested in table 1. Under eq. (B.1), the amplitude in
the forward limit (denoted as Ã) thus scales as

Ã ∼ Π
i
t−2hi
i = t

−2(h1+h3)
1 t

−2(h2+h4)
2 = 1 , (B.2)

which indeed shows that forward elastic amplitudes are invariant under little group scaling
in the massless case, regardless of the particle spins. As such, they can be written in terms
of the Mandelstam variables, and more specifically, in terms of s alone by setting t = 0
and u = −s. For the terms in table 1, we then have

Ã[2]
4 ≡ A

[2]
4 |t→0 ∝ s , Ã[4]

4 ≡ A
[4]
4 |t→0 ∝ s2 . (B.3)

To verify eq. (B.3), we note that the Mandelstam variables are invariant under the simul-
taneous exchanges 1↔ 3 and 2↔ 4, and so should the forward amplitudes,

x ≡ 〈12〉[23] |t→0 = 〈34〉[41] |t→0 = −〈32〉[21] |t→0 ,

y ≡ 〈12〉[34] |t→0 = 〈34〉[12] |t→0 , (B.4)

where the shorthands x and y are defined purely for convenience. We then have

x2 = − 〈12〉[12]〈23〉[23] |t→0 = −su |t→0 = s2 ,

y2 = 〈12〉[12]〈34〉[34] |t→0 = s2 . (B.5)

Thus, without loss of generality one could pick up the solution with a positive sign and write

〈12〉[23] →
t=0

s ,

〈12〉[34] →
t=0

s . (B.6)

We have also shown in section 2.2 that the only pole generated by higher dimensional oper-
ators in the 4-point elastic amplitudes is the s-channel pole in the A[4]

4 of the V −1 V −2 V +
1 V +

2
amplitude in table 1. Without t-channel poles, all amplitudes are finite in the forward limit.
Therefore, the amplitude expansion in eq. (2.6) can be written in the forward limit as

Ã4 =
∑
n

g̃[−2n]s
n , (B.7)

where g̃ are the coefficients of each term with mass dimension −2n as labelled in the
subscript. Certain SM contribution, such as a t-channel photon exchange, could invalidate
eq. (B.7), but is known and can be subtracted, as mentioned in section 4.1. eq. (B.7) now
matches exactly with the expansion in eq. (2.2) in the limit µ2 → 0, with g̃[−2n] = cn. Each
term in the amplitude expansion (A[2]

4 , A[4]
4 , . . . ) thus provides one sum rule for operator

coefficients of the corresponding dimension (6, 8, . . . ).
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