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SUMMABILITY OF FOURIER ORTHOGONAL SERIES
FOR JACOBI WEIGHT ON A BALL IN Rd

YUAN XU

Abstract. Fourier orthogonal series with respect to the weight function
(1 − |x|2)µ−1/2 on the unit ball in Rd are studied. Compact formulae for
the sum of the product of orthonormal polynomials in several variables and
for the reproducing kernel are derived and used to study the summability of the
Fourier orthogonal series. The main result states that the expansion of a con-
tinuous function in the Fourier orthogonal series with respect to (1−|x|2)µ−1/2

is uniformly (C, δ) summable on the ball if and only if δ > µ + (d − 1)/2.

1. Introduction

The purpose of this paper is to study the summability of the Fourier orthogonal
series with respect to the weight function (1 − |x|2)µ−1/2 on the unit ball in Rd.
The main result states that the expansion of a continuous function in orthogonal
series is uniformly (C, δ) summable if and only if δ > µ+ (d− 1)/2, which provides
a complete answer for the Cesáro summability for these weight functions. Primitive
study in this direction has been conducted for years (cf. [6, Vol. II, Chapter XII]),
but the sharp result as such seems to be obtained for the first time. To motivate
our approach, we start with some general background on orthogonal polynomials
in several variables.

Let Πd be the space of polynomials in d variables and Πd
n be the subspace of

polynomials of degree at most n. Let W be a nonnegative weight function on Rd

with integral 1. For each n ∈ N0, there are rd
n =

(
n+d−1

n

)
many linearly independent

polynomials of degree exactly n in d variables that are mutually orthogonal. The
number rd

n is the same as the number of distinct monomials of degree n, or the
cardinality of the set {α ∈ Nd

0 : |α|1 = n}, where |α|1 denote the `1 norm of α.
We denote by {Pn

α }, α ∈ Nd
0, |α|1 = n and 0 ≤ n < ∞, one family of orthonormal

polynomials that forms a basis of Πd, where the superscript n means that Pn
α ∈ Πd

n.
We arrange the polynomials {Pn

α }|α|1=n according to the lexicographical order as
Pα1 , . . . , Pα

rd
n
, αi ∈ Nd

0. A useful vector notation

Pn = (Pn
α1
, Pn

α2
, . . . , Pn

α
rd

n

)T ,(1.1)
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2440 YUAN XU

is introduced in [14]. The orthonormal property of Pn
α means that

∫
Rd

Pn
α (x)Pm

β (x)W (x)dx = δn,mδα,β , or
∫

Rd

Pn(x)PT
m(x)W (x)dx = δn,mI,

where I is the identity matrix of size rd
n.

One of the essential problems in dealing with orthogonal polynomials in several
variables is the non-uniqueness of the orthogonal basis. Let V d

n denote the subspace
spanned by the polynomials Pn

αj
, 1 ≤ j ≤ rd

n. Then it is easy to see that for any
orthogonal matrix Qn of size rd

n the components of the polynomial vector QnPn

form an orthonormal basis of V d
n . On the other hand, any two orthonormal bases

of V d
n differ by an orthogonal matrix. It turns out that many results concerning

orthogonal polynomials in several variables can be stated uniquely in terms of V d
n

rather than in terms of a particular basis of V d
n . Based on this principal we have

used the notation Pn in [14] and a number of subsequent papers to study orthogonal
polynomials in several variables, in which results parallel to the theory of orthogonal
polynomials in one variable are established (cf. [15] and the references there). The
principle is particularly evident when one deals with the Fourier orthogonal series.
Let f be integrable with respect to W . The Fourier orthogonal expansion of f with
respect to a sequence of orthonormal polynomials {Pn

α } is given by

f ∼
∞∑

n=0

∑
|α|1=n

an
α(f)Pn

α (f), where an
α(f) =

∫
Pn

α (x)f(x)W (x)dx.(1.2)

The expansion can be viewed in terms of the V d
n , which becomes clear when we

write the expansion using Pn as follows:

f ∼
∞∑

n=0

projVn
f =

∞∑
n=0

aT
n (f)Pn, where an(f) =

∫
f(x)Pn(x)W (x)dx.

(1.3)

In fact, the n-th reproducing kernel of the orthonormal polynomials, defined by

Kn(x,y) =
n∑

k=0

∑
|α|1=k

P k
α (x)P k

α (y) =
n∑

k=0

PT
k (x)Pk(y),(1.4)

is easily seen to depend on the V d
k ’s rather than a particular basis of V d

k . The n-th
partial sum Snf of the expansion can be written in terms of Kn(·, ·) as

Snf =
n∑

k=0

aT
k (f)Pk =

∫
Kn(·,y)f(y)W (y)dy.(1.5)

Clearly, a more basic quantity that depends on V d
n rather than a particular basis

of V d
n is the sum of orthonormal polynomials [Pn(x)]T Pn(y).

For general weight functions, the summability of Snf to f has been studied
in [16]. The special weight function often warrants better results. In order to
achieve sharp results for the summability of the Fourier orthogonal series, it is
essential to have a compact formula for Kn(x,y). In one variable, this is given
by the Christoffel-Darboux formula which works for every weight function. In
several variables, however, the corresponding Christoffel-Darboux formula is not
enough for this purpose; the compact formula has to be derived case by case. So
far, little has been done in this direction. In this paper, we will derive such a
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SUMMABILITY OF ORTHOGONAL SERIES ON A BALL 2441

formula for the weight function Wµ(x) = wµ(1− |x|2)µ−1/2 on the unit ball, where
wµ is a normalization constant. In fact, we will derive a compact formula for
[Pn(x)]T Pn(y), which takes the form

[Pn(x)]T Pn(y) =
n+ µ+ d−1

2

µ+ d−1
2

∫ π

0

C
(µ+ d−1

2 )
n (x · y +

√
1− |x|2

√
1− |y|2 cosψ)

× (sinψ)2µ−1dψ
/ ∫ π

0

(sinψ)2µ−1dψ, x,y ∈ Bd,

where C(λ)
n denotes the classical Gegenbauer polynomial. Clearly, this formula re-

sembles the product formula for the Gegenbauer polynomials, which is the above
formula with d = 1. It is well-known that the product formula has many inter-
esting applications; it yields, in particular, a convolution structure that has been
used to deal with the summability of ultraspherical series. For orthogonal poly-
nomials in several variables, product formulae are known only for a few classical
weight functions and they often follow from those of one variable; for example, we
mention the product Jacobi weight functions and the weight function (1 − |z|2)µ

on the unit disk of the complex plane ([10]). Part of the reason is that the product
formula depends on the choice of the particular orthogonal basis. For the purpose
of studying summability of the orthogonal series, however, the compact formula for
[Pn(x)]T Pn(y) turns out to be sufficient; it enables us to prove our result on the
Cesáro summability, which states that the Fourier orthogonal series with respect
to Wµ is uniformly (C, δ) summable if and only if δ > µ + (d − 1)/2. Moreover,
the compact formula enables us to extend several inequalities for the sums of ul-
traspherical polynomials to several variables, including an inequality of Askey and
Gasper, from which follows that the (C, δ) means of the Fourier orthogonal series
with respect to Wµ is positive if and only if δ ≥ 2µ+ d.

The paper is organized as follows. In Section 2, we fix notation and present
a family of orthonormal polynomials. The compact formula for [Pn(x)]T Pn(y) is
proved in Section 3; the results on positive sums and preliminary on summability
are presented in Section 4. The main results on summability are given in Section
5.

2. Definition and preliminary

Throughout this paper we write x = (x1, . . . xd)T ∈ Rd and x · y = x1y1 + . . .+
xdyd for the standard inner product of Rd. We use the notation |·| for the Euclidean
norm |x|2 = x · x and we write |x|1 = |x1| + . . . + |xd|. Throughtout this paper
we use Bd to denote the unit ball in Rd and Sd−1 to denote the unit sphere in Rd;
that is,

Bd = {x ∈ Rd : |x| ≤ 1} and Sd−1 = {x ∈ Rd : |x| = 1}.
The weight function that we deal with in this paper is the normalized function

Wµ(x) = Wµ,d(x) = wµ(1− |x|2)µ− 1
2 , µ ≥ 0, x ∈ Bd,(2.1)

where wµ is a constant chosen so that the integral of Wµ is 1,

wµ = wµ,d =
2

ωd−1

Γ(µ+ d+1
2 )

Γ(µ+ 1
2 )Γ(d

2 )
=

Γ(µ+ d+1
2 )

πd/2Γ(µ+ 1
2 )
.(2.2)
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Here and in the following, we use ωd−1 to denote the surface area of Sd−1; it is
known that ωd−1 = 2πd/2/Γ(d/2). The value of wµ can be verified by the use of the
standard coordinates x = rx′, x′ ∈ Sd−1, as follows:∫

Bd

(1− |x|2)µ− 1
2 dx =

∫ 1

0

∫
Sd−1

dω(1− r2)µ− 1
2 rd−1dr

=
ωd−1

2

∫ 1

0

(1− t)µ− 1
2 t

d−2
2 dt.

The weight function Wµ : Rd 7→ R is a radial function; occasionally we will write
Wµ(r) with r ∈ R, as if it is a function from R 7→ R, the slight abuse of notation
should not cause any confusion. Whenever it is necessary we will write Wµ,d to
emphasis the dependence on d. For d = 1, the orthogonal polynomials with respect
to the weight function Wµ are the ultraspherical polynomials, customarily denoted
by C(µ)

n , which is why we use the power µ− (1/2) instead of µ in the definition of
Wµ.

To describe orthogonal polynomials with respect to Wµ, we will need to recall
the definition of ultraspherical polynomials. The basics are contained in [13, p. 80].
We are interested in the polynomials C(λ)

n for λ ≥ 0. They are orthogonal with
respect to (1 − x2)λ−1/2 on [−1, 1] and they satisfy

∫ 1

−1

[
C(λ)

n (x)
]2

(1− x2)λ− 1
2 dx = 21−2λπ

[
Γ(λ)

]−2 Γ(n+ 2λ)
(n+ λ)Γ(n + 1)

=: hn, λ > 0,

(2.3)

where for λ = 0, the above relation holds under the limit relation

lim
λ→0

λ+ n

λ
C(λ)

n (cos θ) =

{
1, for n = 0,
2 cosnθ, for n = 1, 2, ....

(2.4)

These polynomials enjoy many properties, some of them are given in the end of the
section.

We now present one family of orthonormal polynomials with respect to Wµ

explicitly. For d ≥ 2, we denote these polynomials by {Pn,(µ)
α } or {Pn,(µ)

α,d } when
we need to emphasis the dependence on d. For the simplicity of the notation, it
is more convenient to deal with the index λ = µ + (d − 1)/2; i.e., we work with
Wλ−(d−1)/2. For d = 2, these orthonormal polynomials are given in [11] by

P
n,(λ− 1

2 )

k (x, y) = [hn
k,2]

− 1
2C

(λ+k)
n−k (x)(1 − x2)k/2C

(λ− 1
2 )

k (y(1− x2)−
1
2 ), 0 ≤ k ≤ n,

where hn
k,2 are constants chosen so that Pn,(µ)

k are normalized; in this case, it is
more natural to use the subscript k instead of α = (k, n− k). In general, for d ≥ 2,
we need the following notation. For x = (x1, . . . , xd)T ∈ Rd, we denote by xj ∈ Rj ,

x0 = 0, xj = (x1, . . . , xj)T , 1 ≤ j ≤ d− 1.(2.5)

For α ∈ N0, |α|1 = n, we rewrite it as

α = (k1, . . . , kd−1, n− k1 − . . .− kd−1) = (k1, . . . , kd−1, n− |k|1),
where |k|1 = k1 + . . . + kd−1. Let n ∈ N0 and n = k0 ≥ k1 ≥ k2 ≥ . . . ≥ kd−1 ≥
kd = 0. For α = (k1, . . . , kd−1, n − |k|1), we define the polynomial Pn,(λ−d−1

2 )
α ,
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λ > (d− 1)/2, by

P
n,(λ− d−1

2 )
α (x) = [hn

α,d]
− 1

2

d−1∏
j=0

(1− |xj |2)
kj−kj+1

2 C
(λ+kj+1− j

2 )

kj−kj+1

( xj+1√
1− |xj |2

)
,(2.6)

where

hn
α,d =

Γ(λ+ 1)π
d
2

Γ(λ+ 1− d
2 )

d∏
j=1

2j+1−2λ−2kj Γ(2λ+ kj−1 + kj − j + 1)
(2λ+ 2kj−1 − j + 1)Γ(kj−1 − kj + 1)[Γ(λ+ kj − j−1

2 )]2
.

(2.7)

Moreover, for λ = (d − 1)/2, we also define Pn,(0)
α by the formula (2.6) with the

understanding that the limit (2.4) is used whenever λ → 0; the formula (2.7) for
hn

α,d in the case of λ = (d − 1)/2 has an additional factor ηkd−1 , which takes the
value 1/2 if kd−1 > 0 and 1 if kd−1 = 0.

Proposition 2.1. The family of polynomials {Pn,(µ)
α } is orthonormal with respect

to Wµ on Bd; i.e., ∫
Bd

Pn,(µ)
α (x)Pm,(µ)

β (x)Wµ(x)dx = δα,βδn,m.

Proof. Again we work with µ = λ− (d− 1)/2. Throughout this proof we write, see
(2.6),

P̃
n,(λ− d−1

2 )

α,d (x) =
d−1∏
j=0

(1 − |xj |2)
kj−kj+1

2 C
(λ+kj+1− j

2 )

kj−kj+1

( xj+1√
1− |xj |2

)
.

Let α′ = (k1 − kd−1, . . . , kd−2− kd−1, n− |k|1 + (d− 2)kd−1). Then it follows from
the definition that

P̃
n,(λ−d−1

2 )

α,d (x) = P̃
n−kd−1,(λ+kd−1− d−2

2 )

α′,d−1 (xd−1)

× (1− |xd−1|2)
kd−1

2 C
(λ− d−1

2 )

kd−1

( xd√
1− |xd−1|2

)
.

If we write β = (j1, . . . , jd−1,m− |j|), then it follows that∫
Bd

P̃
n,(λ− d−1

2 )
α (x)P̃m,(λ− d−1

2 )

β (x)(1 − |x|2)λ− d
2 dx

=
∫

Bd−1
P̃

n−kd−1,(λ+kd−1−d−2
2 )

α′,d−1 (xd−1)P̃
m−jd−1,(λ+jd−1− d−2

2 )

β′,d−1 (xd−1)

× (1 − |xd−1|2)λ+
kd−1+jd−1−d+1

2 dxd−1

∫ √
1−|xd−1|2

−
√

1−|xd−1|2
C

(λ− d−1
2 )

kd−1

( xd√
1− |xd−1|2

)
× C

(λ− d−1
2 )

jd−1

( xd√
1− |xd−1|2

)
×

(
1− x2

d

1− |xd−1|2
)λ− d

2 dxd√
1− |xd−1|2

.

Changing variable xd 7→
√

1− |xd−1|2 t, the second integral is seen to be equal to

δkd−1,jd−1

∫ 1

−1

[
C

(λ− d−1
2 )

kd−1
(t)

]2

(1− t2)λ− d
2 dt.
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The first integral with kd−1 = jd−1 allows us to continue this process. To the end,
we conclude that the desired equation holds true with hn

α,d given by

hn
α,d = wλ− d−1

2 ,d

d∏
j=1

∫ 1

−1

[
C

(λ+kj− j−1
2 )

kj−1−kj
(t)

]2

(1 − t2)λ+kj− j
2 dt.

The formula for hn
α,d follows from inserting (2.2) and (2.3) to the above equation.

It should be pointed out that the study of orthogonal polynomials with respect to
Wµ,d has been undertaken for many years (cf. [6, Vol. II, Chapter XII]). In the early
studies, instead of using orthonormal polynomials, the polynomials V n,(µ)

α ∈ Πd
n,

|α|1 = n, defined by

(1− 2a · x + |a|2)−µ− d−1
2 =

∑
α∈Nd

0

aαV n,(µ)
α (x), a,x ∈ Rd,(2.8)

play an essential role, which can be traced all the way back to the work of Hermite.
The polynomials V n,(µ)

α and V m,(µ)
β are orthogonal with respect to Wµ,d if m 6= n,

but they are not orthogonal if m = n and the components of α−β are even integers.
Therefore, {V n,(µ)

α }|α|1=n is a basis for the subspace V d
n introduced in Section 1,

but the basis is not an orthogonal one. It implies, in particular, that Pn,(µ)
α can be

written as a linear combination of V n,(µ)
α . It follows from [6, Vol. II, p. 275, (14)]

that for each fixed n the polynomials Pn,(µ)
α satisfy the partial differential equation

d∑
j=1

∂

∂xj

{
∂F

∂xj
− xj

[
(2µ− 1)F +

d∑
k=1

xk
∂F

∂xk

]}
= −(n+ d)(n+ 2µ− 1)F.

In other words, Pn,(µ)
α are the eigenfunctions of a differential operator.

The ultraspherical polynomials enjoy many properties, several of them that we
shall need are recorded below. Two basic ones are [13, p. 80, (4.7.3) and (4.7.4)]

C(λ)
n (1) =

(
n+ 2λ− 1

n

)
, C(λ)

n (−x) = (−1)nC(λ)
n (x).(2.9)

Let us denote by C̃(λ)
n the orthonormal polynomial of degree n with respect to the

normalized weight function Wλ,1. Then, by (2.3), it follows that C̃(λ)
n = h

−1/2
n C

(λ)
n

and

C̃(λ)
n (1)C̃(λ)

n (x) =
n+ λ

λ
C(λ)

n (x).(2.10)

One deep property we shall need is the addition formula of Gegenbauer, which
states that [6, Vol. I, Sec. 3.15.1, (19)]

C(λ)
n (cos θ cosφ+ sin θ sinφ cosψ)(2.11)

=
n∑

k=0

aλ
k,n(sin θ)kC

(λ+k)
n−k (cos θ)(sin φ)kC

(λ+k)
n−k (cosφ)C(λ− 1

2 )

k (cosψ),

with

aλ
k,n =

Γ(2λ− 1)22k
[
Γ(k + λ)

]2(n− k)!(2k + 2λ− 1)[
Γ(λ)

]2
Γ(n+ k + 2λ)

.(2.12)
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When λ = 1/2, we factor out (2k + λ − 1) from aλ
k,n in (2.12) and use the limit

(2.4) in the formula (2.11). For ψ = 0 and λ → 0, the addition formula (2.11) is
reduced to the addition formula for cosine polynomials. From (2.12) and (2.9) it is
easy to verify that aλ

0,n = [C(λ)
n (1)]−1. Thus, from (2.11) follows the Gegenbauer’s

product formula [6, Vol. I, Sec. 3.15.1, (20)]

C
(λ)
n (cos θ)C(λ)

n (cosφ)

C
(λ)
n (1)

= cλ

∫ π

0

C(λ)
n (cos θ cosφ+ sin θ sinφ cosψ)(sinψ)2λ−1dψ,

(2.13)

where λ > 0 and

c−1
λ =

∫ π

0

(sinψ)2λ−1dψ =
∫ 1

−1

(1 − t2)λ−1dt = w−1
λ− 1

2 ,1
.(2.14)

The ultraspherical polynomials are special cases of the Jacobi polynomials. The
latter polynomials, usually denoted by P

(α,β)
n , are orthogonal with respect to the

weight function (1 − x)α(1 + x)β , α, β > −1. We use the standard notation as in
[13, p. 58]. The relation between the ultraspherical polynomials and the Jacobi
polynomials is given by [13, p. 80, (4.7.1)]

C(λ)
n (x) =

Γ(λ+ 1
2 )Γ(n+ 2λ)

Γ(2λ)Γ(n+ λ+ 1
2 )
P

(λ− 1
2 ,λ− 1

2 )
n (x).(2.15)

Other properties of these polynomials that are needed will be given in the place
where they are used.

3. Compact formulae

The main results in this section are the compact formulae for
[
P(µ)

n (x)
]T P(µ)

n (y)
and K(µ)

n (x,y), which are independent of the choice of the orthonormal bases.

Theorem 3.1. For Wµ on Bd, µ > 0,[
P(µ)

n (x)
]T P(µ)

n (y) =
n+ µ+ d−1

2

µ+ d−1
2

×
∫ π

0

C
(µ+ d−1

2 )
n (x · y +

√
1− |x|2

√
1− |y|2 cosψ)(3.1)

× (sinψ)2µ−1dψ
/ ∫ π

0

(sinψ)2µ−1dψ, x,y ∈ Bd,

and, for µ = 0,[
P(0)

n (x)
]T P(0)

n (y) =
n+ d−1

2

d− 1

[
C

( d−1
2 )

n (x · y +
√

1− |x|2
√

1− |y|2)(3.2)

+C( d−1
2 )

n (x · y −
√

1− |x|2
√

1− |y|2)
]
, x,y ∈ Bd.

Proof. For x ∈ Bd we define a mapping x 7→ (θ1, . . . , θd) by

x1 = cos θ1,
x2√

1− x2
1

= cos θ2,
xd√

1− x2
1 − . . .− x2

d−1

= cos θd.
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Moreover, for y ∈ Bd we associate it with (φ1, . . . , φd) through this mapping. Using
the notation xj in (2.5), we write

x · y = xd−1 · yd−1 + xdyd = xd−1 · yd−1

+
√

1− |xd−1|2
√

1− |yd−1|2 cos θd cosφd,

from which and the fact that
√

1− |x|2 =
√

1− |xd−1|2 sin θd it follows readily
that

x · y +
√

1− |x|2
√

1− |y|2 cosψ

= xd−1 · yd−1 +
√

1− |xd−1|2
√

1− |yd−1|2 (cos θd cosφd + sin θd sinφd cosψ).

We write ψd = ψ and define ψj , 1 ≤ j ≤ d− 1, by

cosψj = cos θj+1 cosφj+1 + sin θj+1 sinφj+1 cosψj+1.(3.3)

Then we can continue the above process inductively to conclude that

x · y +
√

1− |x|2
√

1− |y|2 cosψ

= xd−1 · yd−1 +
√

1− |xd−1|2
√

1− |yd−1|2 cosψd−1

= . . . = x1 · y1 +
√

1− |x1|2
√

1− |y1|2 cosψ1.

Since x1 = x1 = cos θ1 and y1 = y1 = cosφ1, we can use the addition formula
(2.11) for the ultraspherical polynomials to conclude that

C(λ)
n (x · y +

√
1− |x|2

√
1− |y|2 cosψ)

= C(λ)
n (x1 · y1 +

√
1− |x1|2

√
1− |y1|2 cosψ1)

=
n∑

k1=0

aλ
k1,n(sin θ1)k1C

(λ+k1)
n−k1

(cos θ1)(sin φ1)k1C
(λ+k1)
n−k1

(cosφ1)C
(λ− 1

2 )

k1
(cosψ1).

Formula (3.3) for ψ1 allows us to use the addition formula on C
(λ− 1

2 )

k1
(cosψ1); the

new formula so derived contains C(λ−1)
k2

(cosψ2), which allows us to continue the
process inductively. Consequently, we conclude that for λ > (d− 1)/2,

C(λ)
n (x · y +

√
1− |x|2

√
1− |y|2 cosψ)(3.4)

=
n∑

k1=0

. . .

kd−2∑
kd−1=0

aλ
k1,na

λ− 1
2

k1,k2
· · · aλ− d−2

2
kd−1,kd−2

× (sin θ1)k1C
(λ+k1)
n−k1

(cos θ1)(sin φ1)k1C
(λ+k1)
n−k1

(cosφ1) · · · (sin θd−1)kd−1

× C
(λ− d−2

2 +kd−1)

kd−2−kd−1
(cos θd−1)(sinφd−1)kd−1C

(λ− d−2
2 +kd−1)

kd−2−kd−1

× (cosφd−1)C
(λ− d−1

2 )

kd−1
(cosψd−1)

=
n∑

k1=0

. . .

kd−2∑
kd−1=0

d−1∏
j=1

a
λ− j−1

2
kj ,kj−1

(sin θj)kjC
(λ+kj− j−1

2 )

kj−1−kj
(cos θj)(sinφj)kj

× C
(λ+kj− j−1

2 )

kj−1−kj
(cosφj)C

(λ− d−1
2 )

kd−1
(cosψd−1).
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We integrate the above equation with respect to (sinψ)2λ−ddψ, using (3.3), and
apply the product formula (2.13) to conclude that

cλ− d−1
2

∫ π

0

C(λ)
n (x · y +

√
1− |x|2

√
1− |y|2 cosψ)(sinψ)2λ−ddψ(3.5)

=
n∑

k1=0

. . .

kd−2∑
kd−1=0

d∏
j=1

a
λ− j−1

2
kj ,kj−1

(sin θj)kjC
(λ+kj− j−1

2 )

kj−1−kj
(cos θj)

× (sinφj)kjC
(λ+kj− j−1

2 )

kj−1−kj
(cosφj),

where we have used the fact that kd = 0 and

a
λ− d−1

2
kd,kd−1

= a
λ− d−1

2
0,kd−1

=
[
C

(λ− d−1
2 )

kd−1
(1)

]−1

.

On the other hand, from the definition of our orthonormal polynomials in (2.6), we
have that [

P(λ− d−1
2 )

n (x)
]T P(λ− d−1

2 )
n (y) =

∑
|α|1=n

Pn
α (x)Pn

α (y)(3.6)

=
n∑

k1=0

. . .

kd−2∑
kd−1=0

[
hn

α,d

]−1
d∏

j=1

(sin θj)kjC
(λ+kj− j−1

2 )

kj−1−kj
(cos θj)

× (sinφj)kjC
(λ+kj− j−1

2 )

kj−1−kj
(cosφj).

Moreover, from the formulae (2.7) and (2.12) it follows readily that[
hn

α,d

]−1 =
π

d
2 Γ(λ+ 1− d

2 )
Γ(λ+ 1)

2λ+ 2n
2λ− d

d∏
j=1

22λ−j−1

π

[
Γ(λ− j−1

2 )
]2

Γ(2λ− j)

d∏
j=1

a
λ− j−1

2
kj ,kj−1

,

which can be simplified by the use of the identity (cf. [1, p. 256, (6.1.18)])

Γ(2λ− j) =
22λ−j−1

√
π

Γ(λ− j − 1
2

)Γ(λ− j

2
);

the result is [
hn

α,d

]−1 =
λ+ n

λ

d∏
j=1

a
λ− j−1

2
kj ,kj−1

.

Using this identity and comparing (3.5) and (3.6), we obtain the desired formula
(3.1) for µ = λ− (d− 1)/2 > 0.

To prove (3.2) in the case µ = 0, or λ = (d−1)/2, we use the limit relation (2.4).
We note that it follows from (3.3) and the elementary trigonometric identities such
that

cosψd−1 = cos(θd − φd), if ψ = 0; cosψd−1 = cos(θd + φd), if ψ = π.

These formulae are used to derive from (3.4), taking into account (2.4), that

n+ d−1
2

d− 1
C

( d−1
2 )

n (x · y ±
√

1− |x|2
√

1− |y|2) =
n∑

k1=0

. . .

kd−2∑
kd−1=0

d−1∏
j=1

a
d−j
2

kj ,kj−1
(sin θj)kj

× C
(kj+

d−j
2 )

kj−1−kj
(cos θj)(sinφj)kjC

(kj+
d−j
2 )

kj−1−kj
(cosφj)C

(λ− d−1
2 )

kd−1
(cos(θd ∓ φd)).
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On the other hand, from the addition formula for cosine, we have

C(0)
m (cos θd)C(0)

m (cosφd) = C(0)
m (cos(θd − φd)) + C(0)

m (cos(θd + φd))

for m > 0, while for µ = 0 the right hand side has a factor 1/2. Thus, it follows as
in (3.6) that

[
P(0)

n (x)
]T P(0)

n (y) =
n∑

k1=0

. . .

kd−2∑
kd−1=0

[
hn

α,d

]−1
d−1∏
j=1

(sin θj)kjC
(kj+ d−j

2 )

kj−1−kj
(cos θj)

× (sinφj)kjC
(kj+

d−j
2 )

kj−1−kj
(cosφj)

[
C

(0)
kd−1

(cos(θd − φd)) + C
(0)
kd−1

(cos(θd + φd))
]
.

To conclude the proof, we compare the coefficients of the two expressions. We omit
the details.

It is worthwhile to mention that if we restrict y to the surface of the ball by
setting |y| = 1, then the compact formula (3.1) or (3.2) takes the form

[
P(µ)

n (x)
]T P(µ)

n (y) =
n+ µ+ d−1

2

µ+ d−1
2

C
(µ+ d−1

2 )
n (x · y), |y| = 1,

which is closely related to the addition formula for the spherical harmonics (cf. [6,
Vol. II, p. 244, (2)]).

Next we derive a compact formula for the reproducing kernel function K(µ)
n (·, ·).

Theorem 3.3. For Wµ on Bd, µ > 0,

K(µ)
n (x,y) =

∫ π

0

[
C

(µ+ d+1
2 )

n (x · y +
√

1− |x|2
√

1− |y|2 cosψ)(3.7)

+ C
(µ+ d+1

2 )
n−1 (x · y +

√
1− |x|2

√
1− |y|2 cosψ)

]
× (sinψ)2µ−1dψ

/∫ π

0

(sinψ)2µ−1dψ

=
2Γ(µ+ d+2

2 )Γ(n+ 2µ+ d)
Γ(2µ+ d+ 1)Γ(n+ µ+ d

2 )

×
∫ π

0

P
(µ+ d

2 ,µ+ d
2−1)

n (x · y +
√

1− |x|2
√

1− |y|2 cosψ)

× (sinψ)2µ−1dψ
/∫ π

0

(sinψ)2µ−1dψ, x,y ∈ Bd,
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and, for µ = 0,

K(0)
n (x,y) =

1
2

[
C

( d+1
2 )

n (x · y +
√

1− |x|2
√

1− |y|2)
(3.8)

+ C
( d+1

2 )
n−1 (x · y +

√
1− |x|2

√
1− |y|2)

]
+

1
2

[
C

( d+1
2 )

n (x · y −
√

1− |x|2
√

1− |y|2)

+ C
( d+1

2 )
n−1 (x · y −

√
1− |x|2

√
1− |y|2)

]
=

Γ(d+2
2 )Γ(n+ d)

Γ(d+ 1)Γ(n+ d
2 )

[
P

( d
2 , d

2−1)
n (x · y +

√
1− |x|2

√
1− |y|2)

+ P
( d
2 , d

2−1)
n (x · y −

√
1− |x|2

√
1− |y|2)

]
, x,y ∈ Bd.

Proof. According to [13, p. 83, (4.7.29)] we have
k + λ

λ
C

(λ)
k (x) = C

(λ+1)
k (x)− C

(λ+1)
k−2 (x), k ≥ 0,

where C(λ+1)
−2 = C

(λ+1)
−1 = 0, from which it follows readily that

n∑
k=0

k + λ

λ
C

(λ)
k (x) = C(λ+1)

n (x) + C
(λ+1)
n−1 (x).

The first equal sign in (3.7) is the consequence of (3.1) and this identity. From [1,
p. 782, (22.7.19)] the Jacobi polynomials P (α,β)

n satisfies

(2n+ α+ β)P (α,β−1)
n (x) = (n+ α+ β)P (α,β)

n + (n+ α)P (α,β)
n−1 (x).

Choosing α = β = λ − 1/2 in the formula and taking care of the normalization
constants in the Jacobi and the ultraspherical polynomials (see (2.15)) we have

C(λ)
n (x) + C

(λ)
n−1(x) =

2Γ(λ+ 1
2 )Γ(n+ 2λ− 1)

Γ(2λ)Γ(n+ λ− 1
2 )

P
(λ− 1

2 ,λ− 3
2 )

n (x),(3.9)

from which the second equal sign in (3.7) follows readily. The proof of (3.8) is
similar.

4. Positivity and summability

In this section and the next one we discuss the summability of Cesáro means of
the Fourier orthogonal series. First we recall the definition of Cesàro summability.
The sequence {sn} is summable by Cesàro’s method of order δ, (C, δ), to s if

1(
n+δ

n

) n∑
k=0

(
n− k + δ − 1

n− k

)
sk

converges to s as n→∞. If for each n ∈ N0 sn is the n-th partial sum of the series∑∞
k=0 ck, the Cesàro means can be rewritten as

1(
n+δ

n

) n∑
k=0

(
n− k + δ

n− k

)
ck.

For the basic properties of Cesàro summability see [17, Chap. III].
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We denote by Sδ
n,d(Wµ; f) the (C, δ) means of the Fourier orthogonal series with

respect to Wµ. For later use, we also denote by Kδ
n,d(Wµ; ·, ·) the (C, δ) means of

the orthogonal polynomial series; i.e.,

Kδ
n,d(Wµ;x,y) =

1(
n+δ

n

) n∑
k=0

(
n− k + δ

n− k

)[
P(µ)

k (x)
]T P(µ)

k (y)(4.1)

=
1(

n+δ
n

) n∑
k=0

(
n− k + δ − 1

n− k

)
K(µ)

k,d(x,y),

so that, by the formula (1.5), we can write

Sδ
n,d(Wµ; f) =

∫
Bd

f(y)Kδ
n,d(Wµ;x,y)Wµ(y)dy.(4.2)

Moreover, for d = 1, we write K(µ)
n and Kδ

n for K(µ)
n,1 and Kδ

n,1(Wµ), respectively.
Our first result concerns the nonnegative summability method. For the ultra-

spherical polynomials, an inequality due to Kogbetliantz (see [2, p. 71]) states
that

n∑
k=0

(
n− k + 2λ+ 1

2λ+ 1

)
k + λ

λ
Cλ

k (x) ≥ 0,(4.3)

which implies that the (C, 2λ+ 1) means of the orthogonal expansion with respect
to Wλ,1 is nonnegative. For d ≥ 1, we have

Theorem 4.1. For µ ≥ 0, the (C, 2µ+ d) Cesàro means of the Fourier orthogonal
series with respect to Wµ define a positive linear operator. Consequently, for f ∈
C(Bd), the (C, 2µ+ d) Cesàro means converge uniformly to f on Bd.

Proof. The positivity of the (C, 2µ+ d) means states that, by (4.1) and (4.2),
n∑

k=0

(
n− k + 2µ+ d

n− k

)
P(µ)

k

T
(x)P(µ)

k (y) ≥ 0,

which follows readily, by formulae (3.1) and (3.2), from inequality (4.3) of Kog-
betliantz.

By orthogonality, the positivity implies, in particular, that the (C, 2µ+d) means
are uniformly bounded. Moreover, since Sn,df preserves polynomials of degree
less than n, it is easily seen that Sδ

n,d(Wµ;P ) converges uniformly to P for any
polynomial P . Therefore, the uniform convergence of the (C, 2µ+ d) means for the
continuous functions follows readily from the density of polynomials in C(Bd).

We note that for µ = 0 the theorem states that the (C, d) means are positive;
in particular, for d = 1, the corresponding weight function becomes the Chebyshev
weight of the first kind and the theorem, under the standard transformation x 7→
cos θ, goes back to the famous Fejér theorem on the positivity of the (C, 1) means
of the Fourier series. Another extension of Fejér’s theorem to several variables has
been given in [3] for `−1 Fourier partial sums, which is equivalent to the expansion
in the product Chebyshev polynomials on [−1, 1]d.

The order 2µ + d in the theorem is sharp for the positivity. For convergence,
however, the positivity is not necessary, as we shall see in the next section. In the
rest of this section, we mention other results on the positivity of the polynomial
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sums. An inequality of Askey and Gasper for the ultraspherical polynomials states
(see [2, p. 74, (8.12)]) that

n∑
k=0

(
n− k + a

n− k

)(
k + a

k

)
Cλ

k (x)
Cλ

k (1)
≥ 0, 3 ≤ a ≤ 2λ+ 1,(4.4)

for −1 ≤ x ≤ 1. Let us denote by the boldface letter e an element on the boundary
of Bd; i.e., |e| = 1. It follows readily from Theorem 3.1 that[

P(µ)
n (e)

]T P(µ)
n (e) =

n+ µ+ d−1
2

µ+ d−1
2

C
(µ+ d−1

2 )
n (1).

Hence, we can rewrite formula (3.1) in Theorem 3.1 as follows:[
P(µ)

n (x)
]T P(µ)

n (y)[
P(µ)

n (e)
]T P(µ)

n (e)
=

1

C
(µ+ d−1

2 )
n (1)

∫ π

0

C
(µ+ d−1

2 )
n (x · y +

√
1− |x|2

√
1− |y|2 cosψ)

× (sinψ)2µ−1dψ
/∫ π

0

(sinψ)2µ−1dψ, x,y ∈ Bd.

From this formula and an analogy formula for the case µ = 0, we obtain readily
that

Theorem 4.2. For 3 ≤ a ≤ 2µ+ d,
n∑

k=0

(
n− k + a

n− k

)(
k + a

k

)
[P(µ)

k ]T (x)P(µ)
k (y)

P(µ)
k

T
(e)P(µ)

k (e)
≥ 0, x,y ∈ Bd.

We note, however, that the positivity stated in Theorem 4.1 is not a special case
of the inequality in Theorem 4.2. Actually, the inequality of Kogbetliantz is not
a special case of (4.4), but a special case of the extension of (4.4) for the Jacobi
polynomials [8]; the link can be seen from (3.9).

5. Summability of Fourier orthogonal series

The formulae we derived in Theorem 3.1 suggests that the behavior of the poly-
nomial

[
P(µ)(x)

]T P(µ)(y) resembles a polynomial of one variable. This is especially
true when one of the variables is on the boundary of the ball, which suggests the
following interesting observation.

Lemma 5.1. For µ ≥ 0,

K(µ)
n,d(x, e) = K

(µ+ d−1
2 )

n (x · e, 1), x ∈ Bd, |e| = 1.(5.1)

Proof. From (3.7) and (3.8) it follows readily that

K(µ)
n,d(x, e) =

2Γ(µ+ d+2
2 )Γ(n+ 2µ+ d)

Γ(2µ+ d+ 1)Γ(n+ µ+ d
2 )
P

(µ+ d
2 ,µ+ d−2

2 )
n (x · e), µ ≥ 0.

On the other hand, from [13, p. 71, (4.5.3)] we have that

K̃(α,β)
n (x, 1) =

1
2α+β+1

Γ(n+ α+ β + 2)
Γ(α+ 1)Γ(n+ β + 1)

P (α+1,β)
n (x),

where K̃
(α,β)
n is the reproducing kernel with respect to the weight function

(1 − x)α(1 + x)β . From this formula we can derive the formula for K(µ)
n (x, 1),

which is the reproducing kernel with respect to the normalized weight function
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Wµ,1(x) = wµ,1(1 − x2)µ−1/2. By setting α = β = µ− 1/2 and taking the value of
wµ,1 in (2.2) into consideration, we obtain that

K(µ)
n (x, 1) =

2Γ(µ+ 1
2 )Γ(n+ 2µ+ 1)

Γ(2µ+ 1)Γ(n+ µ+ 1
2 )
P

(µ+ 1
2 ,µ− 1

2 )
n (x).

Letting µ 7→ µ + (d − 1)/2 and comparing the formulae for K(µ+ d−1
2 )

n (x, 1) and
K(µ)

n,d(x, e) concludes the proof.

Formula (5.1) allows us to reduce the summability on the boundary of Bd to
that of one variable. The result is the following.

Theorem 5.2. Let f be continuous on the closed ball Bd. The expansion of f in
the Fourier orthogonal series with respect to Wµ is (C, δ) summable at the boundary
of Bd, provided δ > µ+ d−1

2 . Moreover, it is not (C, δ) summable if δ = µ+ d−1
2 .

Proof. By formula (4.2), it follows from Helly’s theorem [13, p. 13] that it suffices
to show that

I(µ)
n,d =

∫
Bd

∣∣∣Kδ
n,d(Wµ; e,y)

∣∣∣Wµ,d(y)dy

=
∫

Bd

∣∣∣ n∑
k=0

(
n− k + δ − 1

n− k

)
K(µ)

k,d(e,y)
∣∣∣Wµ,d(y)dy

is bounded if and only if δ > µ + d−1
2 . From Lemma 5.1 and using the standard

transformation y = ry′, where |y′| = 1, we have

I(µ)
n,d =

∫ 1

0

rd−1

∫
Sd−1

∣∣∣ n∑
k=0

(
n− k + δ − 1

n− k

)
K

(µ+ d−1
2 )

k (y · e, 1)
∣∣∣dωWµ,d(r)dr

=
∫ 1

0

rd−1

∫
Sd−1

∣∣∣Kδ
n(Wµ+ d−1

2 ,1;y · e, 1)
∣∣∣dωWµ,d(r)dr.

Since the inner integral can be viewed as an average of a function whose variable
is an inner product over the sphere, it should be invariant under the orthogonal
transformation; in fact, it is a radial function. We can apply the following general
formula that holds for g : R 7→ R;∫

Sd−1
g(x · y)dω(y) = ωd−2

∫ 1

−1

g(s|x|)(1 − s2)
d−3
2 ds, x ∈ Rd,(5.2)

which can be easily verified and it appeared already in [9, p. 8]. It follows then
that

I(µ)
n,d = ωd−2

∫ 1

0

rd−1

∫ 1

−1

∣∣∣Kδ
n(Wµ+ d−1

2 ,1; rs, 1)
∣∣∣(1− s2)

d−3
2 dsWµ,d(r)dr.

Making a change of variable s 7→ t/r and exchanging the order of integration, we
obtain that

I(µ)
n,d = ωd−2

∫ 1

−1

∣∣∣Kδ
n(Wµ+ d−1

2 ,1; t, 1)
∣∣∣ ∫ 1

|t|
(r2 − t2)

d−3
2 rWµ,d(r)dr dt.

Let φ : [−1, 1] 7→ R be the function defined by

φ(t) =
∫ 1

|t|
(r2 − t2)

d−3
2 rWµ,d(r)dr =

wµ,d

2

∫ 1

t2
(u− t2)

d−3
2 (1 − u)µ− 1

2 du.
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It is easy to see that the integral is a Beta integral over [t2, 1] (cf. [1, p. 258]); thus,
it follows that

φ(t) = Aµ(1− t2)µ+ d−2
2 , where Aµ =

wµ,d

2

∫ 1

0

u
d−3
2 (1 − u)µ− 1

2 du.

Hence, we obtain the formula

I(µ)
n,d = ωd−2Aµ

∫ 1

−1

∣∣∣Kδ
n(Wµ+ d−1

2 ,1; t, 1)
∣∣∣(1− t2)µ+ d−2

2 dt = I(µ+ d−1
2 )

n,1 ,

where in the last equality we determine the constant by setting n = 0. There-
fore, the (C, δ) summability of the orthogonal series with respect to Wµ,d, on the
boundary of Bd, is equivalent to that of the (C, δ) summability of the ultraspherical
polynomial series with index µ+ d−1

2 at the end point x = 1. The desired result now
follows from Theorem 9.1.3 in [13, p. 246], where the result is stated for the Jacobi
series and a shift of 1/2 on the index is necessary for the ultraspherical series.

For d = 1 the condition δ > µ turns out to be sharp for the uniform convergence
of Sδ

n(Wµ,1; f) on [−1, 1], which, in fact, can be derived from the convergence at
x = 1 by using a convolution structure enjoyed by the ultraspherical polynomials.
The convolution structure follows from the product formula (2.13), which holds
actually for the Jacobi series ([7], and see [12] for the addition formula for Jacobi
polynomials). For d ≥ 1, formula (3.1), or (3.2), is not a product formula for two
individual polynomials, but holds for a sum of the product of polynomials; it’s not
clear whether it will yield an analogous convolution structure for the Fourier or-
thogonal series on Bd. Nevertheless, the formula is enough for proving the uniform
convergence on Bd.

Theorem 5.3. Let f be continuous on the closed ball Bd. The expansion of f in
the Fourier orthogonal series with respect to Wµ is uniformly (C, δ) summable on
Bd if, and only if, δ > µ+ d−1

2 .

Proof. The necessary part has been proved in the previous theorem. From (4.2)
and the Helly’s theorem, it suffices to prove that

I(µ)
n,d(x) =

∫
Bd

∣∣∣Kδ
n,d(Wµ,d;x,y)

∣∣∣Wµ,d(y)dy

is uniformly bounded over Bd if δ > µ + (d − 1)/2. We consider the case µ = 0
first. By (3.2) and (2.10) we have from (4.1) that

Kδ
n,d(W0,d;x,y) =

1
2
Kδ

n(W d−1
2 ,1; 1,x · y +

√
1− |x|2

√
1− |y|2)

+
1
2
Kδ

n(W d−1
2 ,1; 1,x · y −

√
1− |x|2

√
1− |y|2).
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Using the standard change of variables y = ry′, y′ ∈ Sd−1 and formula (5.2), we
obtain

∫
Bd

∣∣∣Kδ
n(W d−1

2 ,1; 1,x · y ±
√

1− |x|2
√

1− |y|2)
∣∣∣W0,d(y)dy

=
∫ 1

0

rd−1

∫
Sd−1

∣∣∣Kδ
n(W d−1

2 ,1; 1, rx · y′ ±
√

1− |x|2
√

1− r2)
∣∣∣dωW0,d(r)dr

=ωd−2

∫ 1

0

∫ 1

−1

rd−1
∣∣∣Kδ

n(W d−1
2 ,1; 1, r|x|s

±
√

1− |x|2
√

1− r2)
∣∣∣(1− s2)

d−3
2 W0,d(r)dsdr

=
a
(0)
d

2

∫ 1

0

∫ 1

−1

∣∣∣Kδ
n(W d−1

2 ,1; 1,±u
√

1− |x|2

+ |x|
√

1− u2 s)
∣∣∣(1 − s2)

d−3
2 (1− u2)

d−2
2 dsdu,

where a
(0)
d = ωd−2w0,d and the last equality follows from a change of variable

r 7→ √
1− u2. Put these formulae together and it follows readily that

I(0)
n,d(x) ≤ a

(0)
d

2

∫ 1

−1

∫ 1

−1

∣∣∣Kδ
n(W d−1

2 ,1; 1, uv +
√

1− v2
√

1− u2 s)
∣∣∣(5.3)

× (1− s2)
d−3
2 (1 − u2)

d−2
2 dsdu := J (0)

n,d(v),

where v =
√

1− |x|2. From this formula, the proof will be essentially reduced
to that of ultraspherical polynomials in one variable. Before we proceed, we first
reduce I(µ)

n,d , µ > 0, to a similar form. By (3.1) and (2.10) we have from (4.1) that
for µ > 0,

Kδ
n,d(Wµ,d;x,y)

= cµ

∫ 1

−1

Kδ
n(Wµ+ d−1

2 ,1; 1,x · y +
√

1− |x|2
√

1− |y|2 t)(1 − t2)µ−1dt.

Therefore, changing variables y = ry′ and using (5.2) as in the case of µ = 0, we
follow the procedure that leads to (5.3) to conclude that

I(µ)
n,d(x) ≤ a

(µ)
d

∫ 1

0

∫ 1

−1

∫ 1

−1

∣∣∣Kδ
n(Wµ+ d−1

2 ,1; 1, uvt+
√

1− u2
√

1− v2 s)
∣∣∣(1 − t2)µ−1dt

× (1− s2)
d−3
2 u2µ(1− u2)

d−2
2 dsdu := J (µ)

n,d (v), v =
√

1− |x|2,

where a(µ)
d = ωd−2wµ,d and the inequality results from moving the absolute value

inside the inner most integral. Changing variable t 7→ p/u in the inner integral and
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exchanging the order of integrals with respect to du and dp, we obtain

J (µ)
n,d (v) =a(µ)

d

∫ 1

0

∫ u

−u

∫ 1

−1

∣∣∣Kδ
n(Wµ+ d−1

2 ,1; 1, vp+
√

1− u2
√

1− v2 s)
∣∣∣

× (1 − s2)
d−3
2 ds

(
1− p2

u2

)µ−1 dp

u
u2µ(1− u2)

d−2
2 du

=a(µ)
d

∫ 1

−1

∫ 1

|p|

∫ 1

−1

∣∣∣Kδ
n(Wµ+ d−1

2 ,1; 1, vp+
√

1− u2
√

1− v2 s)
∣∣∣

× (1 − s2)
d−3
2 ds(u2 − p2)µ−1u(1− u2)

d−2
2 dudp;

changing the variable again with s 7→ q/
√

1− u2 and exchanging the order of
integrals with respect to du and dq, we obtain

J (µ)
n,d (v) =a(µ)

d

∫ 1

−1

∫ 1

|p|

∫ √
1−u2

−√1−u2

∣∣∣Kδ
n(Wµ+ d−1

2 ,1; 1, vp+
√

1− v2 q)
∣∣∣

×
(
1− q2

1− u2

) d−3
2 dq√

1− u2
(u2 − p2)µ−1u(1− u2)

d−2
2 dudp

=a(µ)
d

∫ 1

−1

∫ √
1−p2

−
√

1−p2

∣∣∣Kδ
n(Wµ+ d−1

2 ,1; 1, vp+
√

1− v2 q)
∣∣∣

×
[ ∫ √

1−q2

|p|
(1− q2 − u2)

d−3
2 (u2 − p2)µ−1udu

]
dqdp.

Upon changing variable u2 7→ x, it is easy to see that the integral inside the square
bracket is a Beta integral; it follows that∫ √

1−q2

|p|
(1− q2 − u2)

d−3
2 (u2 − p2)µ−1udu = b

(µ)
d (1− q2 − p2)µ+ d−3

2 ,

where

b
(µ)
d =

1
2

∫ 1

0

(1− t)
d−3
2 tµ−1dt =

Γ(d−1
2 )Γ(µ)

2Γ(µ+ d−1
2 )

.

Therefore, changing variable q 7→ s
√

1− p2 in the last expression of J (µ)
n,d and using

the above identity, we finally end up with

J (µ)
n,d (v) = a

(µ)
d b

(µ)
d

∫ 1

−1

∫ 1

−1

∣∣∣Kδ
n(Wµ+ d−1

2 ,1; 1, vp+
√

1− v2
√

1− p2 s)
∣∣∣(5.4)

× (1 − s2)µ+ d−3
2 (1− p2)µ+ d−2

2 dsdp.

Since the formula for b(µ)
d implies that b(0)d = 1/2, we see that (5.3) corresponds

to (5.4) with µ = 0. We now use (5.4) to prove that J (µ)
n,d is uniformly bounded

whenever δ > µ + (d − 1)/2, which can be proved as in the summability for the
ultraspherical series of one variable. Without introducing the convolution structure
explicitly, we give a complete proof here. We start with the formula

∫ 1

−1

g(uv +
√

1− v2
√

1− u2 s)(1 − s2)λds =
∫ 1

−1

g(z)Dλ(u, v, z)(1− z2)λ+ 1
2 dz,

(5.5)
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which follows from a change of variable, with Dλ defined by

Dλ(u, v, z) =
(1− u2 − v2 − z2 + 2uvz)λ

[(1− u2)(1 − v2)(1 − z2)]λ+ 1
2

whenever 1−u2− v2− z2 +2uvz ≥ 0 and Dλ(u, v, z) = 0, otherwise. In particular,
Dλ(u, v, z) is nonnegative and it is symmetric with respect to its three variables.
Moreover, setting g(z) = 1 yields∫ 1

−1

Dλ(u, v, z)(1− z2)λ+ 1
2 dz =

∫ 1

−1

(1− s2)λds = w−1
λ+ 1

2 ,1
.(5.6)

Using formula (5.5) with λ = µ+ (d− 3)/2 we obtain from (5.4) that

J (µ)
n,d (v) =a(µ)

d b
(µ)
d

∫ 1

−1

∫ 1

−1

∣∣∣Kδ
n(Wµ+ d−1

2 ,1; 1, z)
∣∣∣Dµ+ d−3

2
(u, v, z)(1− z2)µ+ d−2

2 dz

× (1− u2)µ+ d−2
2 du

=a(µ)
d b

(µ)
d

∫ 1

−1

∣∣∣Kδ
n(Wµ+ d−1

2 ,1; 1, z)
∣∣∣( ∫ 1

−1

Dµ+ d−3
2

(u, v, z)(1− u2)µ+ d−2
2 du

)
× (1− z2)µ+ d−2

2 dz.

By the symmetry of Dλ and (5.6) we have that the inner integral is equal to
[wµ+ d−2

2 ,1]
−1 and we conclude that

Jn,d(v) =
∫ 1

−1

∣∣∣Kδ
n(Wµ+ d−1

2 ,1; 1, z)
∣∣∣W d−1

2 ,1(z)dz,

where the constant is determined by the fact that

a
(µ)
d b

(µ)
d = wµ+ d−2

2 ,1wµ+ d−1
2 ,1

which can be easily verified using (2.2) and ωd−2 = 2π(d−1)/2/Γ((d− 1)/2). There-
fore, the conclusion of the theorem follows from that of ultraspherical polynomials
([13, p. 246]); it also follows from Theorem 5.2 in view of Lemma 5.1.

For primitive results on Cesáro summability, usually under the assumption that
2µ is an integer, we refer to [6, Vol. II, Section 12.7]. In the early studies, functions
are usually expanded in the series of orthogonal polynomials V n,(µ)

α in (2.8), called
Appell series, with the help of a second family of polynomials that is biorthogonal
in connection with V

n,(µ)
α . As we mentioned before that V n,(µ)

α forms a basis for
the space V d

n spanned by Pn,(µ)
α , |α|1 = n; it follows from the interpretation in (1.3)

that the partial sums of the Appell series should be the same as the Sn,d(Wµ, f).
Beyond the results recorded in [6], we are not aware of any other result in this
direction.

The theorem gives a complete answer to the question of uniform summability of
the Fourier orthogonal series with respect to Wµ. Surprisingly, the analog result
does not seem to be known for any other family of classical weight functions. In-
deed, even for the product Jacobi weight functions such as

∏d
i=1(1 − x2

i )
µ−1/2 on

[−1, 1]d, for which the orthogonal polynomials are just products of ultraspherical
polynomials, the (C, δ) summability of the Fourier orthogonal series has not been
studied for µ > 0, while the case µ = 0 reduces to the `-1 summability of multiple
Fourier series (cf. [3]).
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To conclude this paper we mention one interesting observation for the summa-
bility of the Fourier orthogonal expansion of a radial function. For a radial function
f we write f(x) = f0(|x|), where f0 : R+ 7→ R. Because of the radial symmetry
of the weight function Wµ, the Fourier orthogonal expansion of a radial function
should be radial as well. This is indeed the case as can be easily seen using (5.2).
Hence, we can denote by sn,d(Wµ; f0) : R+ → R the partial sum Sn,d(Wµ,d; f,x),
r = |x|, whenever f is a radial function.

Theorem 5.4. Let f be a radial function. Let f̃0 be defined by f̃0(r) = f0(
√

1− r2).
Then for 2µ ∈ N0,

sn,d(Wµ; f0, r) = sn,2µ+1(Wµ+ d−1
2

; f̃0,
√

1− r2).(5.7)

Proof. We give only an outline of the proof for µ > 0; the case µ = 0 is similar.
We write the Fourier coefficients an(f) (see (1.3)) as a(µ)

n,d(f). By (3.1), making the
change of variables y = ry′ and using (5.2) we obtain that[
a(µ)

n,d(f)
]T P(µ)

n,d(x) = cµ
n+ µ+ d−1

2

µ+ d−1
2

×
∫

Bd

f(y)
∫ 1

−1

C
(µ+ d−1

2 )
n (x · y +

√
1− |x|2

√
1− |y|2 t)(1− t2)µ−1dtWµ(y)dy

= cµwµ

n+ µ+ d−1
2

µ+ d−1
2

ωd−2

∫ 1

0

f0(r)
∫ 1

−1

∫ 1

−1

C
(µ+ d−1

2 )
n (r|x|s +

√
1− r2

√
1− |x|2 t)

× (1− t2)µ−1dt(1 − s2)
d−3
2 ds rd−1(1− r2)µ− 1

2 dr.

The last expression is radial in x and it depends on f0. We denote it by[
a(µ)

n,d(f0)
]T P(µ)

n,d(r); the change of notation is consistent with the notation of sn,d.
Changing the variable r 7→ √

1− u2, from the fact that f0 becomes f̃0 and that
rd−1(1− r2)µ− 1

2 dr becomes (1− u2)
d−2
2 u2µdu, which is symmetric with respect to

µ and (d− 1)/2, it follows that[
a(µ)

n,d(f0)
]T P(µ)

n,d(r) =
[
a( d−1

2 )
n,2µ+1(f̃0)

]T P( d−1
2 )

n,2µ+1(
√

1− r2),

where the constant is determined by setting n = 0. The desired result follows
readily.

In particular, when µ = 0, the formula (5.7) states that

sn,d(W0; f0, r) = sn,1(W d−1
2

; f̃0,
√

1− r2).

Thus, for a radial function f on Bd, its expansion in the Fourier orthogonal series
with respect to W0,d can be reduced to the expansion of f̃0 in the ultraspherical
series.

Finally let us mention that the compact formula also makes it possible to study
the asymptotics of [Pn(x)]T Pn(x), from which the asymptotics of the Christoffel
function [Kn(x,x)]−1 in [5] follows; the result will be presented in another place.
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