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Abstract. In this study, approximation properties of the Mellin-type non-

linear integral operators defined on multivariate functions are investigated.
In order to get more general results than the classical aspects, we mainly

use the summability methods defined by Bell. Considering the Haar measure

with variation semi-norm in Tonelli’s sense, we approach to the functions of
bounded variation. Similar results are also obtained for uniformly continuous

and bounded functions. Using suitable function classes we investigate the rate

of convergence in the approximation. Finally, we give a non-trivial application
verifying our approach.

1. Introduction

In this paper, we study the approximation properties of the Mellin-type non-
linear integral transforms which have some important applications in many ar-
eas, such as, optical physics, engineering, statistics, economics, signal process (see
[10, 11, 15, 16, 17, 19, 25, 26]). We have mainly motivated from the recent papers by
Angeloni and Vinti (see [5, 6]). We use the Haar measure, which is invariant under
multiplicative group operation, instead of the Lebesgue measure. In the approxima-

tion to multivariate functions defined on the N -dimensional open interval (0,∞)
N

,
we consider a general summability process rather than the usual convergence, which
enables us to get more general results than the classical aspects.

It is known that a summability method is a common and useful method to handle
the lack of the usual convergence. It is also used for acceleration of convergence
rate of a sequence. We adopt the Bell-type summability methods which are more
general than the Cesàro convergence [18] and almost convergence [22].

Recall the following definitions from the summability theory:
Let A = {[aνnk]} (n, k, ν ∈ N) be a family of infinite matrices. For a sequence

x = (xk), A−transform of x is a sequence Ax := {(Ax)
ν
n} defined by (Ax)

ν
n =∑∞

k=1 a
ν
nkxk (n, ν ∈ N) if the series is convergent for every n, ν. Then x is A-

summable to a number L if limn→∞ (Ax)
ν
n = L uniformly in ν ∈ N. We will denote

this convergence by
A− limx = L.

In this method, regularity of a family of matrices play an important role since
the usual approximation result becomes a special case of a regular summability
process. For general properties of A-summability methods, we refer to the papers
[13, 14, 20, 21, 22].
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We say that a method A is regular if limx = L implies A− limx = L. A
characterization for regularity of a method was given by Bell in [14]: “A is reg-
ular if and only if (a) for every k ∈ N, limn→∞ aνnk = 0 uniformly in ν; (b)
limn→∞

∑∞
k=1 a

ν
nk = 1 uniformly in ν; (c) for each n, ν ∈ N,

∑∞
k=1 |aνnk| <∞, and

there exist integers N,M such that supn≥N,ν∈N
∑∞
k=1 |aνnk| ≤M”. Throughout the

paper we will assume that the method A is regular together with nonnegative real
entries.

In this paper, we investigate the Mellin-type nonlinear integral operators defined
by

Tn,ν(f ; s) =

∞∑
k=1

aνnk

∫
RN+

Kk(t, f(st))
dt

〈t〉
(1.1)

where f ∈ L∞µ
(
RN+
)

i.e., f is essentially bounded with respect to the Haar measure.
Here we use the following notations:

• RN+ = {(x1, x2, . . . , xN ) : xi > 0 for i = 1, 2, . . . , N},
• s = (s1, s2, . . . , sN ), t = (t1, t2, . . . , tN ) ∈ RN+ ,
• st = (s1t1, s2t2, . . . , sN tN ),
• 〈t〉 = t1t2 . . . tN .

In (1.1), we adopt the followings:

• A = {[aνnk]}∞n=1 is a regular summability method,

• Kk(s, t) : RN+×R→ R is a family of kernels such that Kk(s, t) = Lk(s)Hk(t)

for every s ∈ RN+ , t ∈ R and k ∈ N,

• Lk : RN+ → R is a sequence of functions such that Lk ∈ L1
µ

(
RN+
)
,

• Hk : R → R is a sequence of functions such that Hk (0) = 0 and Hk is
Lipschitz, uniformly in k ∈ N i.e., there exists a constant C > 0 such that
|Hk (x)−Hk (y)| ≤ C |x− y| for all x, y ∈ R and k ∈ N.

Then, we observe that Tn,ν(f ; s) is well defined (see Proposition 2.1 for details).
Our aim is to apply summability process on the nonlinear integral operators in (1.1).
We should note that the usage of some summation techniques in the approximation
by linear operators may be found in the papers [8, 9, 24, 27]. In this study, we
generalize the results obtained by Angeloni and Vinti [5, 6]. More precisely, under
the suitable conditions on Lk, we will get an approximation with respect to the
variation semi-norm to an absolutely continuous function f of several variables by
means of Tn,ν(f). In this approximation we will use the Tonelli variation, which is
more appropriate than the other definitions of bounded variation in N -dimension.
Then we also evaluate the rate of convergence for suitable Lipschitz classes. The
same process will be done for the classical uniform norm. Finally in the last section,
we give a specific example verifying our approach.

2. Summability Process on the Operators (1.1) with respect to the
Variation Semi-norm

In this section, we investigate the convergence in variation of the nonlinear op-
erators given in (1.1).

We first need the following notations, which were considered in [1, 2, 3, 4, 5, 6,
7, 28, 29].

• I =
∏N
i=1 [ai, bi] denotes an N -dimensional interval in RN+ .
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• I ′j :=
[
a′j , b

′
j

]
denotes the N − 1 dimensional interval, which is obtained

by deleting the jth coordinate of I, i.e., I ′j =
∏N
i=1, i6=j [ai, bi], so that

I = I ′j × [aj , bj ].

• For any vector x = (x1, x2, . . . , xN ) ∈ RN+ we write x =
(
x′j , xj

)
where x′j :=

(x1, . . . , xj−1, xj+1, . . . xN ). Similarly, we also write f
(
x′j , xj

)
= f (x) for

any f : RN+ → R.

• L1
µ

(
RN+
)

denotes the space of all functions f : RN+ → R such that∫
RN+
|f (t)| dt

〈t〉
<∞,

where 〈t〉 = t1t2...tN .
• Let V[aj ,bj ]

[
f
(
x′j , ·

)]
be the one dimensional Jordan variation (in the usual

sense) of the jth section of f .
• Define the (N − 1)-dimensional integral Φj by

Φj (f, I) :=

b′j∫
a′j

V[aj ,bj ]
[
f
(
x′j , ·

)] dx′j〈
x′j
〉 ,

where
〈
x′j
〉

=
∏N
i=1, i 6=jxi.

• Φ denotes the Euclidean norm of the vector (Φ1, . . . ,ΦN ), that is

Φ (f, I) :=

{
N∑
k=1

Φ2
j (f, I)

} 1
2

,

where Φ (f, I) =∞ if Φj (f, I) =∞ for some j = 1, 2, . . . , N .

Then, the variation semi-norm of f on I ⊂ RN+ is defined as

VI [f ] := sup

m∑
i=1

Φ (f, Ji) ,

where the supremum is taken over all the finite families of N -dimensional intervals
{J1, J2, . . . , Jm} which form partition of I. Then if we pass supremum over all the
intervals I ⊂ RN+ , we get the variation of f on RN+ , namely

V [f ] := sup
I⊂RN+

VI [f ] .

Now let

BV
(
RN+
)

:=
{
f ∈ L1

µ

(
RN+
)

: V [f ] <∞
}
.

Notice that if f ∈ BV
(
RN+
)
, then f

(
x′j , ·

)
is of bounded variation in the classical

Jordan sense on R+ and VR+

[
f
(
x′j , ·

)]
∈ L1

µ

(
RN−1+

)
for almost every x′j ∈ RN−1+ .

A function f : RN+ → R is said to be locally absolutely continuous on I =∏N
i=1 [ai, bi] ⊂ RN+ if, for every j = 1, . . . , N and for every ε > 0 there exists

δ > 0 such that for almost every x′j ∈ RN−1+ and for all collection of nonover-

lapping intervals [αν , βν ] ⊂ [aj , bj ] ν = 1, . . . , n,
∑n
ν=1 (βν − αν) < δ implies∑n

ν=1

∣∣f (x′j , βν)− f (x′j , αν)∣∣ < ε. By ACloc
(
RN+
)
, we denote the set of all locally

absolutely continuous functions. Finally, we define

AC
(
RN+
)

:= BV
(
RN+
)
∩ACloc

(
RN+
)
,
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which is a closed subspace of BV
(
RN+
)

with respect to the variation functional (see
[5]).

We consider the following assumptions:

(i) There exists a constant A > 0 such that sup
n,ν∈N

∑∞
k=1 a

ν
nk ‖Lk‖L1

µ
= A <∞,

(ii) A− lim

 ∫
RN+

Lk (t) dt
〈t〉

 = 1,

(iii) for any δ > 0, A− lim

( ∫
|1−t|≥δ

Lk (t) dt
〈t〉

)
= 0, where 1 := (1, 1, · · · , 1),

(iv) VJ [Gk]
m(J) → 0 as k → ∞ uniformly in every proper bounded interval J ⊂ R,

where Gk (u) := Hk (u) − u; VJ [Gk] is the usual one dimensional Jordan
variation of Gk and m (J) is the length of the interval J ⊂ R.

Remark 2.1. Due to the nonlinearity of the kernels of our integral operators,
we need to use assumption (iv). Notice that condition (iv) implies the Lipschitz
property of Hk, asymptotically (see, for details, [6]). But then, the sum in the
definition of Tn,ν would start from a sufficiently large number k0. On the other
hand, our operators (1.1) may be written as follows:

Tn,ν (f ; s) =
∞∑
k=1

aνnkTk(f ; s),

where

Tk (f ; s) :=

∫
RN+

Kk(t, f(st))
dt

〈t〉
. (2.1)

Hence, if one takes A = {I}, the identity matrix, then we immediately get the
operators (2.1) which were considered in [5, 6]. In this case, our conditions (i)−(iii)
reduce to the ones in [5, 6].

Next result gives that the operator Tn,ν is well-defined.

Proposition 2.1. Let A = {[aνnk]} be a nonnegative regular summability method.
Then for all f ∈ L∞µ

(
RN+
)
, Tn,ν(f ; s) < ∞ for all s ∈ RN+ . Moreover, if the

condition (i) holds, then Tn,ν(f) ∈ L1
µ

(
RN+
)

for every f ∈ L1
µ

(
RN+
)
.

Proof. By the definition of the operator (1.1), using Hölder inequality it can be
seen that

|Tn,ν(f ; s)| ≤
∞∑
k=1

aνnk

∫
RN+

|Lk(t)| |Hk (f(st))| dt
〈t〉

≤ C
∞∑
k=1

aνnk

∫
RN+

|Lk(t)| |f(st)| dt
〈t〉
≤ C

∞∑
k=k0

aνnk ‖Lk‖L1
µ
‖f‖L∞

µ

≤ CA ‖f‖L∞
µ
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for every s ∈ RN+ . Moreover considering the condition (i), by the Fubini-Tonelli
theorem we obtain that

∫
RN+

|Tn,ν(f ; s)| ds
〈s〉
≤
∫
RN+

 ∞∑
k=1

aνnk

∫
RN+

|Lk(t)| |Hk (f(st))| dt
〈t〉

 ds

〈s〉

≤ C
∫
RN+

∞∑
k=1

aνnk |Lk(t)|

∫
RN+

|f(st)| ds
〈s〉

 dt

〈t〉

≤ C
∞∑
k=1

aνnk ‖Lk‖L1
µ
‖f‖L1

µ
≤ CA ‖f‖L1

µ
,

which gives the result. �

We also get the following result.

Proposition 2.2. Let A = {[aνnk]} be a nonnegative regular summability method.
If f ∈ BV

(
RN+
)

and condition (i) holds, then we have

V [Tn,ν(f)] ≤ (CA)V [f ] .

Proof. Let I = ΠN
i=1 [ai, bi] ⊂ RN+ and let {J1, . . . , Jm} be a partition of I with

Jq = ΠN
j=1 [qaj ,

q bj ], q = 1, 2, . . .m. For every fixed j = 1, . . . , N and q = 1, . . . ,m

assume that
{
s0j =q aj , . . . , s

λ
j =q bj

}
is a partition of the interval [qaj ,

q bj ]. Then
for each s′j ∈ I ′j , we obtain that

Sj :=

λ∑
µ=1

∣∣∣Tn,νf (s′j , sµj )− Tn,νf (s′j , sµ−1j

)∣∣∣
≤

λ∑
µ=1

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|
∣∣∣Hk

(
τtf

(
s′j , s

µ
j

))
−Hk

(
τtf

(
s′j , s

µ−1
j

))∣∣∣ dt〈t〉
≤ C

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|
λ∑
µ=1

∣∣∣τtf (s′j , sµj )− τtf (s′j , sµ−1j

)∣∣∣ dt〈t〉
≤ C

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|V[qaj ,qbj ]
[
τtf

(
s′j , ·

)] dt
〈t〉

,

where τtf (s) := f (st) s, t ∈RN+ denotes the dilation operator. Then passing to the
supremum over all partitions of [qaj ,

q bj ] , we get

V[qaj ,qbj ]
[
Tn,νf

(
s′j , ·

)]
≤ C

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|V[qaj ,qbj ]
[
τtf

(
s′j , ·

)] dt
〈t〉

.
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By the Fubini-Tonelli theorem, one can see that

Φj (Tn,ν(f), Jq) ≤ C

b′j∫
a′j

 ∞∑
k=1

aνnk

∫
RN+

|Lk(t)|V[qaj ,qbj ]
[
τtf

(
s′j , ·

)] dt
〈t〉

 ds′j〈
s′j
〉

= C

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|

 b′j∫
a′j

V[qaj ,qbj ]
[
τtf

(
s′j , ·

)] ds′j〈
s′j
〉
 dt

〈t〉

= C

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|Φj (τtf, Jq)
dt

〈t〉
.

Using the generalized Minkowski-type inequality it is not hard to see that

Φ (Tn,ν(f), Jq) ≤ C


N∑
j=1

 ∞∑
k=1

aνnk

∫
RN+

|Lk(t)|Φj (τt(f), Jq)
dt

〈t〉


2

1
2

≤ C
∞∑
k=1

aνnk


N∑
j=1

∫
RN+

|Lk(t)|Φj (τt(f), Jq)
dt

〈t〉


2

1
2

≤ C
∞∑
k=1

aνnk

∫
RN+

|Lk(t)|


N∑
j=1

(Φj (τt(f), Jq))
2


1
2

dt

〈t〉

= C

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|Φ (τt(f), Jq)
dt

〈t〉
.

Now summing over q = 1, . . . ,m and passing to the supremum over the partitions
of {J1, . . . , Jm} then we get the following:

VI [Tn,ν(f)] ≤ C
∞∑
k=1

aνnk

∫
RN+

|Lk(t)|VI [τt(f)]
dt

〈t〉
.

Since I ⊂ RN+ is an arbitrary interval, by (i)

V [Tn,ν(f)] ≤ C
∞∑
k=1

aνnk

∫
RN+

|Lk(t)|V [τt(f)]
dt

〈t〉

≤ CV [f ]

∞∑
k=1

aνnk ‖Lk‖L1
µ

= (CA)V [f ]

holds for all n, ν ∈ N. �

Now we get the first approximation result with respect to the variation semi-
norm.
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Theorem 2.3. Let A = {[aνnk]} be a nonnegative regular summability method.
Assume that conditions (i)− (iv) hold. Then, we have

lim
n→∞

V [Tn,ν(f)− f ] = 0, uniformly in ν ∈ N,

for every f ∈ AC
(
RN+
)
.

Proof. Using the same notation in the proof of Proposition 2.2, we may write from
the triangle inequality and condition (i) that

Sj :=

λ∑
µ=1

∣∣∣(Tn,νf)
(
s′j , s

µ
j

)
− f

(
s′j , s

µ
j

)
−
[
(Tn,νf)

(
s′j , s

µ−1
j

)
− f

(
s′j , s

µ−1
j

)]∣∣∣
≤

λ∑
µ=1

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|
∣∣Hk

(
f
(
s′jt
′
j , s

µ
j tj
))
− f

(
s′jt
′
j , s

µ
j tj
)

−
[
Hk

(
f
(
s′jt
′
j , s

µ−1
j tj

))
− f

(
s′jt
′
j , s

µ−1
j tj

)]∣∣∣ dt〈t〉
+

λ∑
µ=1

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|
∣∣f (s′jt′j , sµj tj)− f (s′j , sµj )

−
[
f
(
s′jt
′
j , s

µ−1
j tj

)
− f

(
s′j , s

µ−1
j

)]∣∣∣ dt〈t〉
+

∣∣∣∣∣∣∣
∞∑
k=1

aνnk

∫
RN+

Lk(t)
dt

〈t〉
− 1

∣∣∣∣∣∣∣
λ∑
µ=1

∣∣∣f (s′j , sµj )− f (s′j , sµ−1j

)∣∣∣

holds. Now passing to the supremum over the partitions of the interval [qaj ,
q bj ]

we get the next inequality

V[qaj ,qbj ]
[
Tn,νf

(
s′j , ·

)
− f

(
s′j , ·

)]
≤
∞∑
k=1

aνnk

∫
RN+

|Lk(t)|V[qaj ,qbj ]
[
τt (Hk ◦ f − f)

(
s′j , ·

)] dt
〈t〉

+

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|V[qaj ,qbj ]
[
(τt (f)−f)

(
s′j , ·

)] dt
〈t〉

+ V[qaj ,qbj ]
[
f
(
s′j , ·

)] ∣∣∣∣∣∣∣
∞∑
k=1

aνnk

∫
RN+

Lk(t)
dt

〈t〉
− 1

∣∣∣∣∣∣∣ .
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Hence, the Fubini-Tonelli theorem implies that

Φj (Tn,ν(f)− f, Jq)

≤
∞∑
k=1

aνnk

∫
RN+

|Lk(t)|Φj (τt (Hk ◦ f − f) , Jq)
dt

〈t〉

+

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|Φj (τt (f)−f, Jq)
dt

〈t〉

+ Φj [f, Jq]

∣∣∣∣∣∣∣
∞∑
k=1

aνnk

∫
RN+

Lk(t)
dt

〈t〉
− 1

∣∣∣∣∣∣∣ .

Using the generalized Minkowski inequality, we obtain that

Φ (Tn,ν(f)− f, Jq)

≤
∞∑
k=1

aνnk

∫
RN+

|Lk(t)|Φ (τt (Hk ◦ f − f) , Jq)
dt

〈t〉

+

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|Φ (τt (f)−f, Jq)
dt

〈t〉

+ Φ (f, Jq)

∣∣∣∣∣∣∣
∞∑
k=1

aνnk

∫
RN+

Lk(t)
dt

〈t〉
− 1

∣∣∣∣∣∣∣ .

Summing over q = 1, . . . ,m and after passing to the supremum over all the parti-
tions of N -dimensional interval I, one can see that

VI [Tn,ν(f)− f ]

≤
∞∑
k=1

aνnk

∫
RN+

|Lk(t)|VI [τt (Hk ◦ f − f)]
dt

〈t〉

+

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|VI [τt (f)−f ]
dt

〈t〉

+ VI [f ]

∣∣∣∣∣∣∣
∞∑
k=1

aνnk

∫
RN+

Lk(t)
dt

〈t〉
− 1

∣∣∣∣∣∣∣
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holds. Since I ⊂ RN+ is arbitrary, we derive the following inequality:

V [Tn,ν(f)− f ] ≤
∞∑
k=1

aνnk

∫
RN+

|Lk(t)|V [τt (Hk ◦ f − f)]
dt

〈t〉

+

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|V [τt (f)−f ]
dt

〈t〉

+ V [f ]

∣∣∣∣∣∣∣
∞∑
k=1

aνnk

∫
RN+

Lk(t)
dt

〈t〉
− 1

∣∣∣∣∣∣∣
=: I1(n, ν) + I2(n, ν) + I3(n, ν).

It follows from the properties of variation in RN+ that

V [τt (Hk ◦ f − f)] = V [Hk ◦ f − f ]

for every t ∈ RN+ . Now, if we consider the hypothesis (iv), then Proposition 3.3 in
[6] implies that, for a given ε > 0 there exists k0 such that V [Hk ◦ f − f ] < ε for
every k > k0. Then, we can divide I1(n, ν) into two parts as follows:

k0∑
k=1

aνnk

∫
RN+

|Lk(t)|V [Hk ◦ f − f ]
dt

〈t〉
+

∞∑
k=k0+1

aνnk

∫
RN+

|Lk(t)|V [Hk ◦ f − f ]
dt

〈t〉

=: I11 (n, ν) + I21 (n, ν).

We observe that

I11 (n, ν) ≤M
k0∑
k=1

aνnk,

where M = max1≤k≤k0

V [Hk ◦ f − f ]
∫
RN+

|Lk(t)| dt〈t〉

. We also get

I21 (n, ν) ≤ ε
∞∑

k=k0+1

aνnk

∫
RN+

|Lk(t)| dt
〈t〉

.

Now using the regularity of A and also considering the hypothesis (i), both I11 (n, ν)
and I21 (n, ν) converge to zero as n tends to infinity (uniformly in ν).

On the other hand, from Theorem 1 in [5], for every ε > 0, there exists a δ > 0
such that |1− t| < δ implies

V [τt (f)−f ] < ε. (2.2)

So, we divide I2(n, ν) into two parts as follows:

∞∑
k=1

aνnk

∫
|1−t|<δ

|Lk(t)|V [τt (f)−f ]
dt

〈t〉
+

∞∑
k=1

aνnk

∫
|1−t|≥δ

|Lk(t)|V [τt (f)−f ]
dt

〈t〉

:= I12 (n, ν) + I22 (n, ν).
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Now considering (iii) and (2.2), it is obvious that

I12 (n, ν) + I22 (n, ν) ≤ Aε+ V [τt (f)−f ] ε

≤ (A+ 2V [f ]) ε

holds for sufficiently large n ∈ N and for each ν ∈ N, which means that I12 (n, ν)
and I22 (n, ν) converge to zero as n tends to infinity (uniformly in ν).

Finally, condition (ii) guarantees that I3(n, ν) also goes to zero as n tends to
infinity (uniformly in ν). Therefore, the proof is completed. �

Now we study the rate of approximation for the operators in (1.1) using the
suitable Lipschitz class of functions of AC

(
RN+
)
. To evaluate the order of approx-

imation we need the following assumptions which are observed by modifying the
assumptions (ii) , (iii) and (iv).

Let 0 < α ≤ 1. Then we will assume that

∞∑
k=1

aνnk

∫
RN+

Lk (t)
dt

〈t〉
− 1 = O

(
n−α

)
as n→∞ (uniformly in ν), (2.3)

for any fixed δ > 0,

∞∑
k=1

aνnk

∫
|1−t|<δ

|Lk (t)| |log t|α dt

〈t〉
= O

(
n−α

)
as n→∞ (uniformly in ν), (2.4)

∞∑
k=1

aνnk

∫
|1−t|≥δ

|Lk (t)| dt
〈t〉

= O
(
n−α

)
as n→∞ (uniformly in ν). (2.5)

We use the following class of functions, which was introduced in [5, 6]:

V LipN (α) :=
{
f ∈ AC

(
RN+
)

: V [τtf − f ] = O (|log t|α) , as |1− t| → 0
}
,

where log t := (log t1, . . . , log tN ) , t ∈ RN+ .

Theorem 2.4. Let {Lk} be a sequence of kernels such that supk∈N ‖Lk‖L1
µ

= M <

∞ for some M > 0, and let α ∈ (0, 1]. Assume that (2.3), (2.4), (2.5) hold.
Assume further that {βk} is a null sequence of positive real numbers satisfying that

VJ [Gk]
m(J) ≤ βk

(for all k ∈ N and for every bounded interval J ⊂ R)
(2.6)

and
∞∑
k=1

aνnkβk = O
(
n−α

)
as n→∞ (uniformly in ν). (2.7)

Then for every f ∈ V LipN (α)

V [Tn,νf − f ] = O
(
n−α

)
as n→∞ (uniformly in ν).
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Proof. By the proof of the Theorem 2.3 it is obvious that

V [Tn,νf − f ] ≤
∞∑
k=1

aνnkV [Hk ◦ f − f ]

∫
RN+

|Lk(t)| dt
〈t〉

+

∞∑
k=1

aνnk

∫
RN+

|Lk(t)|V [τt (f)−f ]
dt

〈t〉

+ V [f ]

∣∣∣∣∣∣∣
∞∑
k=1

aνnk

∫
RN+

Lk(t)
dt

〈t〉
− 1

∣∣∣∣∣∣∣
:= J1(n, ν) + J2(n, ν) + J3(n, ν).

About J1(n, ν), by Proposition 4.1 in [6], (2.6) implies that V [Hk ◦ f − f ] ≤ βk
and using the hypothesis supk∈N ‖Lk‖L1

µ
= M <∞ it follows that

J1(n, ν) ≤M
∞∑
k=1

aνnkβk,

which implies

J1(n, ν) = O(n−α) as n→∞ (uniformly in ν). (2.8)

due to the assumption (2.7). About J2(n, ν), since f ∈ V LipN (α), there exists K,
δ > 0 such that V [τtf − f ] ≤ K |log t|α whenever |1− t| < δ. Then it is not hard
to see that

J2(n, ν) =

∞∑
k=1

aνnk

∫
|1−t|<δ

|Lk(t)|V [τt (f)−f ]
dt

〈t〉

+

∞∑
k=1

aνnk

∫
|1−t|≥δ

|Lk(t)|V [τt (f)−f ]
dt

〈t〉

≤ K
∞∑
k=1

aνnk

∫
|1−t|<δ

|Lk(t)| |log t|α dt

〈t〉

+ 2V [f ]

∞∑
k=1

aνnk

∫
|1−t|≥δ

|Lk(t)| dt
〈t〉

.

Then, using (2.4) and (2.5), we get

J2(n, ν) = O(n−α) as n→∞ (uniformly in ν). (2.9)

Finally, from (2.3), we immediately see that

J3(n, ν) = O(n−α) as n→∞ (uniformly in ν). (2.10)

So, combining (2.8), (2.9) and (2.10), the proof is completed. �
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3. Approximation by the Operators (1.1) with respect to the
Uniform Norm

In this section we study the approximation properties of the nonlinear operator
(1.1) by using the classical uniform norm on RN+ , denoted by ‖·‖∞.

Let |x| be the Euclidean norm of the N -dimensional vector x. We say that a
real-valued function defined on RN+ is log-uniformly continuous if, for every ε > 0,

there exists a δ > 0 such that |f (x)− f (y)| < ε for every x,y ∈ RN+ satisfying

|logx− logy| < δ (see, for instance, [12, 23]). By B
(
RN+
)

and UClog

(
RN+
)

we de-
note the spaces of all bounded functions and all log-uniformly continuous functions
on RN+ , respectively. We also define BUClog

(
RN+
)

:= UClog

(
RN+
)
∩B

(
RN+
)
.

In the uniform approximation, we need the following assumption instead of (iv):

(iv)
′ ‖Gk‖J → 0 as k → ∞ for every bounded interval J ⊂ R, where Gk(u) =
Hk(u)−u as stated before and ‖·‖J denotes the usual uniform norm on the
interval J .

We first get the next result.

Proposition 3.1. Let A = {[aνnk]} be a nonnegative regular summability method.
If f ∈ B

(
RN+
)

and (i) holds, then there exists a positive constant D such that

‖Tn,ν(f)‖∞ ≤ D ‖f‖∞
for every n, ν ∈ N, which implies Tn,ν

(
B
(
RN+
))
⊂ B

(
RN+
)
.

Proof. By the definition of the operator (1.1), one can see that

|Tn,ν(f ; s)| ≤
∞∑
k=1

aνnk

∫
RN+

|Lk(t)| |Hk (f(st))| dt
〈t〉

≤ C
∞∑
k=1

aνnk

∫
RN+

|Lk(t)| |f(st)| dt
〈t〉

≤ C ‖f‖∞
∞∑

k=k0

aνnk ‖Lk‖L1
µ

≤ CA ‖f‖∞ ,

which gives
‖Tn,ν(f)‖∞ ≤ D ‖f‖∞

with D := CA. Here the constants C and A come from the Lipschitz property and
condition (i). �

Then, we obtain the following approximation result with respect to the uniform
norm.

Theorem 3.2. Let A = {[aνnk]} be a nonnegative regular summability method.

Assume that conditions (i)−(iii) and (iv)
′

hold. Then, for every f ∈ BUClog

(
RN+
)
,

we have
lim
n→∞

‖Tn,ν(f)− f‖∞ → 0, uniformly in ν ∈ N,

or, equivalently,
A− limTk(f) = f,

where Tn,ν and Tk are given by (1.1) and (2.1), respectively.
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Proof. Using the triangle inequality, we get the following

‖Tn,ν(f)− f‖∞ ≤
∞∑
k=1

aνnk

∫
RN+

|Lk(t)| ‖τt (Hk ◦ f − f)‖∞
dt

〈t〉

+

∞∑
k=1

aνnk

∫
RN+

|Lk(t)| ‖τt(f)− f‖∞
dt

〈t〉

+ ‖f‖∞

∣∣∣∣∣∣∣
∞∑
k=1

aνnk

∫
RN+

Lk(t)
dt

〈t〉
− 1

∣∣∣∣∣∣∣
:= I1(n, ν) + I2(n, ν) + I3(n, ν).

Observe that ‖τt (Hk ◦ f − f)‖∞ = ‖Hk ◦ f − f‖∞ = ‖Gk (f)‖∞ for every t ∈ RN+ .
On the other hand since f is bounded, one can conclude that

|Gk (f (x))| ≤ ‖Gk‖J = sup
u∈J
|Hk (u)− u| ,

where J = [C1, C2] and C1, C2 are the minimum and maximum values of f on RN+
respectively. Hence by (iv)

′
, for every ε > 0 there exists a number k0 such that

‖Gk‖J < ε for all k > k0. Then the sum I1(n, ν) becomes

I1(n, ν) ≤
k0∑
k=1

aνnk ‖Gk‖J
∫
RN+

|Lk(t)| dt
〈t〉

+ εA

≤ D
k0∑
k=1

aνnk + εA,

where D := max1≤k≤k0

‖Gk‖J ∫
RN+

|Lk(t)| dt〈t〉

. Also considering the regularity of

A, we immediately see that

lim
n→∞

I1(n, ν) = 0, uniformly in ν.

Since f is log-uniformly continuous on RN+ , for every ε > 0 there exists a γ > 0
such that |log (st)− log (s)| < γ implies |f (st)− f (s)| < ε. Using the fact that

|log (st)− log (s)| = |log (s) + log (t)− log (s)| = |log (t)| ,

we observe that |log t| < γ implies |f (st)− f (s)| < ε. Also since |log t| → 0 as
|1− t| → 0, for a given γ > 0, there is a δ > 0 such that |log t| < γ whenever
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|1− t| < δ. Hence, taking into account the condition (i), we get

I2(n, ν) =

∞∑
k=1

aνnk

∫
|1−t|<δ

|Lk(t)| ‖τtf − f‖∞
dt

〈t〉

+

∞∑
k=1

aνnk

∫
|1−t|≥δ

|Lk(t)| ‖τtf − f‖∞
dt

〈t〉

< Aε+ 2 ‖f‖∞
∞∑
k=1

aνnk

∫
|1−t|≥δ

|Lk(t)| dt
〈t〉

.

Hence, from the assumption (iii) we obtain that

lim
n→∞

I2(n, ν) = 0, uniformly in ν.

Finally, condition (ii) immediately gives that

lim
n→∞

I3(n, ν) = 0, uniformly in ν.

Combining the above results, the proof is completed. �

Now we investigate the order of approximation. For this, in addition to the
conditions (2.3), (2.4) and (2.5) we need the following Lipschitz class.

Let 0 < α ≤ 1. Then, by ULipN (α) we denote the class of all functions f
belonging to BUClog

(
RN+
)

for which

‖τt(f)− f‖∞ = O (|log t|α) , as |1− t| → 0.

Theorem 3.3. Let A = {[aνnk]} be a nonnegative regular summability method and
let {Lk} be a sequence of kernels such that supk∈N ‖Lk‖L1

µ
= M < ∞ for some

M > 0, and let α ∈ (0, 1]. Assume that (2.3), (2.4), (2.5) hold. Assume further
that {γk} is a null sequence of positive real numbers satisfying that

‖Gk‖J ≤ γk
(for all k ∈ N and for every bounded interval J ⊂ R)

(3.1)

and

∞∑
k=1

aνnkγk = O
(
n−α

)
as n→∞ (uniformly in ν). (3.2)

Then, for every f ∈ ULipN (α),

‖Tn,ν(f)− f‖∞ = O
(
n−α

)
as n→∞ (uniformly in ν).
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Proof. As in the proof of the Theorem 3.2, it is clear that

‖Tn,ν(f)− f‖∞ ≤
∞∑
k=1

aνnk ‖Gk‖J
∫
RN+

|Lk(t)| dt
〈t〉

+

∞∑
k=1

aνnk

∫
RN+

|Lk(t)| ‖τt(f)− f‖∞
dt

〈t〉

+ ‖f‖∞

∣∣∣∣∣∣∣
∞∑
k=1

aνnk

∫
RN+

Lk(t)
dt

〈t〉
− 1

∣∣∣∣∣∣∣
:= J1(n, ν) + J2(n, ν) + J3(n, ν)

holds. From (3.1), we get

J1(n, ν) ≤M
∞∑
k=1

aνnkγk.

Therefore, using this and also considering the assumptions (2.3), (2.4), (2.5), (3.2)
we easily arrive to the following:

Ji(n, ν) = O
(
n−α

)
as n→∞ (uniformly in ν).

for each i = 1, 2, 3, which completes the proof. �

4. An Application and Graphical Illustrations

In this section, using the operators (1.1), we approximate to the function

f (x, y) :=
1√
2
|(sin (log x) , sin (log y))| (4.1)

defined on R2
+.

Using the inverse triangle inequality, one can see that

|f (x, y)− f (u, v)| = 1√
2
||(sin (log x) , sin (log y))| − |(sin (log u) , sin (log v))||

≤ 1√
2
|(sin (log x)− sin (log u) , sin (log y)− sin (log v))|

≤ 1√
2
|(log x− log u, log y − log v)| .

Then we immediately get f ∈ BUClog

(
R2

+

)
.

Define the functions Lk : R2
+ → R and Hk : R→ R as follows, respectively:

Lk (s, t) :=


4k2

π

(
(−1)

k
+ 1
)
st, if (s− 1)2 + (t− 1)2 ≤ 1

4k2

0, otherwise

(4.2)

and

Hk (u) :=

{
u+ eu/k − 1, if 0 ≤ u < 1
u+ e1/(uk) − 1, if u ≥ 1,

(4.3)

where we extend Hk (u) in the odd-way for u < 0.
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Consider the Cesàro matrix summability A = {C1} = {(cnk)} given by (see [18])

cnk =

{
1

n
, 1 ≤ k ≤ n

0, otherwise.

Now take α = 1
2 . Then, we show that all conditions (i)− (iv) and (2.3)− (2.7)

hold. By the definition of Lk, we get

n∑
k=1

cnk ‖Lk‖L1
µ

=
4

nπ

n∑
k=1

k2
(
(−1)k + 1

) ∫∫
(1−s)2+(1−t)2≤ 1

4k2

dsdt

=
1

n

n∑
k=1

(
(−1)k + 1

)
=

{
1, if n is even
1− 1

n , if n is odd,

which immediately implies (i). Using the last equality, we may also write that

∣∣∣∣∣∣∣
n∑
k=1

cnk

∫
R2

+

Lk(s, t)
dsdt

st
− 1

∣∣∣∣∣∣∣ ≤
1

n
≤ 1√

n
,

which gives conditions (ii) and (2.3) for α = 1
2 . Now, for any fixed δ > 0, we get

n∑
k=1

cnk

∫∫
(1−s)2+(1−t)2<δ2

|Lk(s, t)|
(
log2 s+ log2 t

)1/4 dsdt
st

≤ 1

n

n∑
k=1

∫
R2

+

|Lk(s, t)|
(
log2 s+ log2 t

)1/4 dsdt
st

=
4

nπ

n∑
k=1

k2
(
(−1)k + 1

) ∫∫
(1−s)2+(1−t)2≤ 1

4k2

(
log2 s+ log2 t

)1/4
dsdt.

Since (1 − s)2 + (1 − t)2 ≤ 1
4k2 ≤

1
4 , we observe that 1

2 ≤ s ≤ 3
2 which implies

|log s| ≤ |1− s| . Similarly, |log t| ≤ |1− t| due to 1
2 ≤ t ≤

3
2 . Hence,

log2 s+ log2 t ≤ (1− s)2 + (1− t)2
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holds. Then, it follows from the last inequality that

n∑
k=1

cnk

∫∫
(1−s)2+(1−t)2<δ2

|Lk(s, t)|
(
log2 s+ log2 t

)1/4 dsdt
st

≤ 4

nπ

n∑
k=1

k2
(
(−1)k + 1

) ∫∫
(1−s)2+(1−t)2≤ 1

4k2

(
(1− s)2 + (1− t)2

)1/4
dsdt

=
4

nπ

n∑
k=1

k2
(
(−1)k + 1

) 2π∫
0

1/2k∫
0

r3/2drdθ

≤ 2

n

n∑
k=1

1√
k
.

Since
∑n
k=1

1√
k
≤ 2
√
n, we may write that

n∑
k=1

cnk

∫∫
(1−s)2+(1−t)2<δ2

|Lk(s, t)|
(
log2 s+ log2 t

)1/4 dsdt
st
≤ 4√

n
,

which guarantees that condition (2.4) is satisfied for α = 1
2 . By using a similar way,

for any fixed δ > 0 and for any sufficiently large n, we observe that

n∑
k=1

cnk

∫∫
(1−s)2+(1−t)2≥δ2

|Lk(s, t)| dsdt
st

=
1

n

[ 1
2δ ]∑
k=1

∫∫
(1−s)2+(1−t)2≥δ2

|Lk(s, t)| dsdt
st

+
1

n

n∑
k=[ 1

2δ ]+1

∫∫
(1−s)2+(1−t)2≥δ2

|Lk(s, t)| dsdt
st

with the convention that the empty summation is zero, where [·] means the integer
part. From (4.2) , the second summation on the right-hand side of the last equality
must be zero. Since

[ 1
2δ ]∑
k=1

∫∫
(1−s)2+(1−t)2≥δ2

|Lk(s, t)| dsdt
st

=
4

π

[ 1
2δ ]∑
k=1

k2
(
(−1)k + 1

) ∫∫
δ2≤(1−s)2+(1−t)2≤ 1

4k2

dsdt

≤ 8

π

[ 1
2δ ]∑
k=1

k2
2π∫
0

1/2k∫
δ

rdrdθ

≤ 1

δ
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we obtain that
n∑
k=1

cnk

∫∫
(1−s)2+(1−t)2≥δ2

|Lk(s, t)| dsdt
st
≤ 1

δn
≤ 1

δ
√
n
,

which yields conditions (iii) and (2.4) for α = 1
2 .

Figure 1. Approximation to f by means of Tn,ν (f) for odd values
of n = 15, 23, 35.

Figure 2. Approximation to f by means of Tn,ν (f) for even val-
ues of n = 4, 10, 20.

Finally, we know from [6] that the function Hk in (4.3) satisfies assumptions (iv)
and (iv)′; and also for every bounded interval J ⊂ R

VJ [Gk]

m(J)
≤ 2e

k
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holds. Hence, defining the null sequence {βk} = { 2e√
k
}, one can get assumptions

(2.6) and (2.7).
As a result, it is possible to approximate to the function f defined by (4.1) by

means of the sequence {Tn(f)} based on (4.2) and (4.3). This approximation is
indicated in Figures 1 and 2 for different values of n, where the bottom surface
coloured with blue shows the graph of f .
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