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ABSTRACT

High density oligonucleotide array technology is
widely used in many areas of biomedical research
for quantitative and highly parallel measurements of
gene expression. Affymetrix GeneChip arrays are
the most popular. In this technology each gene is
typically represented by a set of 11±20 pairs of
probes. In order to obtain expression measures it is
necessary to summarize the probe level data. Using
two extensive spike-in studies and a dilution study,
we developed a set of tools for assessing the effect-
iveness of expression measures. We found that the
performance of the current version of the default
expression measure provided by Affymetrix
Microarray Suite can be signi®cantly improved by
the use of probe level summaries derived from
empirically motivated statistical models. In particu-
lar, improvements in the ability to detect differen-
tially expressed genes are demonstrated.

INTRODUCTION

Affymetrix GeneChip arrays (1) are used by thousands of
researchers worldwide. The number of publications in
scienti®c journals based on data produced using this tech-
nology is proof of its success. To probe genes, oligonucleo-
tides of length 25 bp are used (2). Typically, a mRNA
molecule of interest (usually related to a gene) is represented
by a probe set composed of 11±20 probe pairs of these
oligonucleotides. Each probe pair is composed of a perfect
match (PM) probe, a section of the mRNA molecule of
interest, and a mismatch (MM) probe that is created by
changing the middle (13th) base of the PM with the intention
of measuring non-speci®c binding. For simplicity, in this
paper we will refer to the probed DNA molecules of interest as
genes. After scanning the arrays hybridized to labeled RNA
samples, intensity values PMij and MMij are recorded for
arrays i = 1,¼, I and probe pairs j = 1,¼, J, for any given
probe set.

To de®ne a measure of expression representing the amount
of the corresponding mRNA species it is necessary to
summarize probe intensities for each probe set. Several

model-based approaches to this problem have been proposed.
We have developed an effective expression measure motiva-
ted by a log scale linear additive model. This summary statistic
is referred to as the log scale robust multi-array analysis
(RMA).

Using carefully prepared test data we can de®ne tasks where
we have an expectation of correct results. We used data from
spike-in and dilution experiments to conduct various assess-
ments on the RMA expression measure and two widely used
competitors. Speci®cally, we compared the measures of
expression according to three criteria of special interest to
biomedical researchers. Any complete analysis of an expres-
sion measure should include at least assessments of the
measure's precision, consistency of fold change, and speci®-
city and sensitivity of the measure's ability to detect
differential expression. We performed these assessments and
demonstrated the substantial bene®ts of using the RMA
measure to users of the GeneChip technology.

MATERIALS AND METHODS

The ®rst version of Affymetrix's analysis software (3) used an
average over probe pairs of the differences PMij ± MMij, j =
1,¼, J, for each array i. A robust average was used to protect
against outlier probes. Summary statistics, such as this average
difference (AD), are motivated by underlying statistical
models. A model for AD is PMij ± MMij = qi + eij, j = 1,¼,
J. The expression quantity on array i is represented with the
parameter qi. AD is an appropriate estimate of qi if the error
term eij has equal variance for j = 1,¼, J. However, the equal
variance assumption does not hold for GeneChip probe level
data, since probes with larger mean intensities have larger
variances (4). In the latest version of their software (5),
Affymetrix uses a log transformation that is successful at
reducing the dependence of the variance on the mean.
Speci®cally, the MAS 5.0 signal is de®ned as the anti-log of
a robust average (Tukey biweight) of the values log(PMij ±
CTij), j = 1,¼, J. To avoid taking the log of negative numbers,
CT is de®ned as a quantity equal to MM when MM < PM, but
adjusted to be less than PM when MM > PM, which in general
occurs for about one-third of all probes (4,6). A model for
MAS 5.0 is log(PMij ± CTij) = log(qi) + eij, j = 1,¼, J.

A recent paper (7) reported that variation of a speci®c probe
across multiple arrays could be considerably smaller than the
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variance across probes within a probe set. In the log2 scale, the
between-array standard deviation (SD) is in general ®ve times
smaller than the within-probe set SD (4,7). To account for this
strong probe af®nity effect, a multiplicative model, PMij ±
MMij = qifj + eij, i = 1,¼, I, j = 1,¼, J, was proposed (7). The
probe af®nity effect is represented by fj. For analyses where
multiple arrays are available a model-based expression index
is de®ned as the maximum likelihood estimate (under the
assumption that the errors follow a normal distribution) of
the expression parameters qi. This estimate will depend on the
probe af®nity effects fj, which we can estimate if we have
enough arrays. The software package dChip (http://www.
biostat.harvard.edu/complab/dchip/) can be used to ®t this
model and obtain what we refer to as the dChip expression
measure. Outlier probe intensities are removed as part of the
estimation procedure (7).

Using data from a spike-in experiment (described in more
detail below) we found that appropriately removing back-
ground and normalizing probe level data across arrays results
in an improved expression measure motivated by a log scale
linear additive model. The model can be written as T(PMij) =
ei + aj + eij, i = 1,¼, I, j = 1,¼, J, where T represents the
transformation that background corrects, normalizes, and logs
the PM intensities, ei represents the log2 scale expression
value found on arrays i = 1,¼, I, aj represents the log scale
af®nity effects for probes j = 1,¼, J, and eij represents error as
above. Notice that this is an additive model for the log
transform of (background corrected, normalized) PM inten-
sities. It is quite different from the additive model in PM ± MM
that was found unsatisfactory in Li and Wong (7), most likely
because of the very strong mean variance dependence that
would be present in such an additive model. A robust linear
®tting procedure, such as median polish (8), was used to
estimate the log scale expression values ei. The resulting
summary statistic is referred to as RMA. The normalization
and background correction procedures used are reported
elsewhere (4,9). Recent results (4,10) suggest that subtracting
MM as a way of correcting for non-speci®c binding is not
always appropriate. It is possible that information about non-
speci®c binding is contained in the MM values, but empirical
results demonstrate that mathematical subtraction does not
translate to biological subtraction. We have found that, until a
better solution is proposed, simply ignoring these values is
preferable.

There is no gold standard to compare and test summaries of
probe level data. For this reason, data from spike-in experi-
ments have been used to assess the technology and to motivate
normalization procedures (1,11,12). In a recent paper (13) a
dilution/mixture experiment was used to compare existing
expression measures. In a similar way, we used data from
spike-in and dilution experiments to conduct various assess-
ments on the MAS 5.0, dChip and RMA expression measures.
Speci®cally, we compare the measures of expression accord-
ing to three criteria: (i) the precision of the measures of
expression, as estimated by standard deviations across repli-
cate chips; (ii) the consistency of fold change estimates based
on widely differing concentrations of target mRNA hybridized
to the chip; (iii) the speci®city and sensitivity of the measures'
ability to detect differential expression, presented in terms of
receiver operating characteristic (ROC) curves.

For the dilution study (http://qolotus02.genelogic.com/
datasets.nsf/), two sources of cRNA, human liver tissue and
a central nervous system cell line (CNS), were hybridized to
human arrays (HG-U95A) in a range of dilutions and
proportions (4). We studied data from six groups of arrays
that had hybridized liver and CNS cRNA at concentrations of
1.25, 2.5, 5.0, 7.5, 10.0 and 20.0 mg total cRNA. Five replicate
arrays were available for each generated cRNA (n = 60 total).

For the spike-in studies, different cRNA fragments were
added to the hybridization mixture of the arrays at different
pM concentrations. The cRNAs were spiked-in at a different
concentration on each array (apart from replicates) arranged in
a cyclic Latin square design with each concentration appear-
ing once in each row and column. All arrays had a common
background cRNA. We used data from two different studies,
one from Affymetrix (http://www.affymetrix.com/analysis/
download_center2.affx) where 14 human genes were spiked-
in at concentrations ranging from 0 to 1024 pM and one
from GeneLogic (http://qolotus02.genelogic.com/datasets.nsf/)
where 11 control cRNA fragments were spiked-in at
concentrations ranging from 0 to 100 pM.

The GeneLogic spike-in experiment consists of a number of
arrays each hybridized to samples with suitable concentrations
of 11 different cRNA fragments added to a hybridization
mixture consisting of cRNA from the same AML tissue. The
11 control cRNAs were BioB-5, BioB-M, BioB-3, BioC-5,
BioC-3 and BioDn-5 (all Escherichia coli), CreX-5 and CreX-
3 (phage P1), and DapX-5, DapX-M and DapX-3 (a Bacillus
subtilis gene) (11,14,15). The cRNA were chosen to match the
target sequence for each of the Affymetrix control probe sets.
For example, for DapX (a B.subtilis gene), the 5¢, middle
and 3¢ target sequences (identi®ed by DapX-5, DapX-M and
DapX-3) were each synthesized separately and spiked-in at
a speci®c concentration. Thus, for example, DapX-3
target sequence may be added to the total hybridization
solution of 200 ml to give a ®nal concentration of 0.5 pM. The
11 control cRNAs were spiked-in at a different concentration
on each array (apart from replicates). The 12 concentrations
used were 0.5, 1, 1.5, 2, 3, 5, 12.5, 25, 37.5, 50, 75 and 100 pM,
and these were arranged in a 12 3 12 cyclic Latin square,
with each concentration appearing once in each row and
column. The 12 combinations of concentrations used on the
arrays were taken from the ®rst 11 entries of the 12 rows of
this Latin square. Three replicated hybridizations were carried
out for each combination of concentrations of the spiked-in
material.

The Affymetrix spike-in experiment was done in a similar
fashion. It consists of a series of human genes spiked-in at
known concentrations. They represent a subset of the data
used to develop and validate the MAS 5.0 algorithm. The
Latin square consists of 14 spiked-in gene groups in 14 array
groups. The concentration of the 14 groups in the ®rst array
group are 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and
1024 pM. Each subsequent array group rotates the spike-in
concentrations by one group, i.e. array group 2 begins with
0.25 pM and ends at 0 pM, on up to array group 14, which
begins with 1024 pM and ends with 512 pM. There were three
replicates for each concentration combination, except for two
combinations for which 12 replicates were formed.

The results presented in the ®gures and tables were ob-
tained using the R environment (16), which can be freely
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downloaded from http://www.r-project.org/. All the data (cel
®les) containing the probe level intensities are available on the
World Wide Web as stated above. To obtain the MAS 5.0
expression measures these ®les were processed with MAS
5.0 software. The software package dChip (http://www.
biostat.harvard.edu/complab/dchip/) was used to obtain the
dChip measures. The default PM-only model version was
used. The RMA measures were computed using the Methods
for Affymetrix Oligonucleotide Arrays R package (17), which
is freely available on the World Wide Web (http://www.
bioconductor.org).

RESULTS

A common measure of precision used in the literature to
compare replicate arrays is the squared correlation coef®cient
(R2). For the dilution data we computed average R2 over all
120 pairs of replicates (two tissues 3 six concentrations 3 10
different pairs in each group of ®ve replicates). We found that
RMA outperformed dChip, which in turn outperformed MAS
5.0, with their average R2 values being 0.995, 0.993 and 0.990,
respectively. The differences between the R2 averages are
statistically signi®cant. However, because of the strong probe
af®nity effect, GeneChip arrays will in general have R2 values
close to 1, even for non-replicate arrays. The gene-speci®c log
expression SD across replicates is a more informative
assessment. We computed the SD of the expression values
(log2 scale) across the ®ve replicates in each of the six
concentration groups. Smooth curves were then ®tted to
scatter plots of these SD values versus average expression
value (log2 scale) (Fig. 1). This plot showed that RMA had a
smaller SD at all levels of expression, with the SD for RMA
being one-tenth that of the SD for MAS 5.0 and one-®fth of
that for dChip at very low levels of average expression (1±2 on
the log2 scale). To ensure that signal detection was not
sacri®ced for the gains in noise reduction, we examined the
ability of the expression measures to detect the increase in
cRNA across the concentration groups. As a summary of
signal detection we computed the average, over all genes, of
the expression versus concentration lines on the log±log scale
(second and third rows in Table 1). Since every fold increase
in concentration of the target sample should give rise to the
same fold increase in an expression measure, a line ®tted on
the log±log scale should have slope 1. For reasons we don't
understand, all three measures lead to slopes well below 1, but
on this criterion, RMA and MAS 5.0 performed similarly.
dChip had a slightly smaller signal. This assessment demon-
strated that RMA has similar accuracy but better precision
than the other two summaries.

A basic application of the GeneChip technology is to study
differences in gene expression between different RNA sam-
ples. Observed fold change in expression measures is used to
assess differential expression (3). While the Affymetrix
protocol calls for 15 mg of RNA, in practice the amount of
target mRNA available for the hybridization reactions can
differ greatly depending on the cells or tissue type under study.
In some cases the available RNA will be ampli®ed, and in
others the hybridization will be carried out with <15 mg. It is
desirable to have estimated fold changes in expression largely
independent of the amount of target mRNA used. For an
extreme example, suppose that one series of experiments is

done with 20 mg of RNA in each hybridization, and another
series is identical, but uses just 1.25 mg of RNA. Ideally, the
answers should be very similar. For each gene we computed
fold change estimates between the liver and CNS samples
using the 10 arrays in the 1.25 mg concentration group for each
of the three expression measures. We then computed estimates
using the arrays in the 20 mg concentration group. Because
fold change is a relative measure, estimates should be
independent of the amount of RNA that is hybridized to the
arrays. Log (base 2) fold change estimates of gene expression
between liver and CNS samples computed from arrays
hybridized to 1.25 mg of cRNA were plotted against the
same estimates obtained from arrays hybridized to 20 mg for
all three measures (Fig. 2). The correlation of fold change
estimates from the different concentrations (Table 1) demon-
strated that RMA and dChip provided more consistent
estimates than MAS 5.0. RMA was slightly better than
dChip. Using MAS 5.0 (Fig. 2A), 1223 genes had at least a
2-fold discrepancy (shown with larger dots) between the two
fold change estimates. For dChip there were 302 (Fig. 2B) and
for RMA (Fig. 2C) there were only 22. This assessment
demonstrated that RMA provides more consistent estimates of
fold change.

A typical application of GeneChip technology is ®nding
genes that are differentially expressed in different tissues.
Successful fold change analysis will detect all and only genes
that are differently expressed due to biological variation.
Because in the spike-in experiments arrays were hybridized to
the same background, successful differential expression
analyses should identify only the spiked-in genes as being
differentially expressed. The absence of a batch mode in MAS

Figure 1. The smooth curves shown were ®tted to the scatter plots of SD
versus average of log (base 2) expression for each gene using MAS 5.0,
dChip and RMA on the dilution data. All genes for all six concentrations in
liver and CNS groups were used.
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Figure 2. (A) Log (base 2) fold change estimates of gene expression between liver and CNS samples computed from arrays hybridized to 1.25 mg of cRNA
using MAS 5.0 plotted against the same estimates obtained from arrays hybridized to 20 mg. Genes demonstrating 2- to 3-fold inconsistencies are shown with
squares. Genes demonstrating inconsistencies larger than 3-fold are shown with circles. (B) As (A) but using dChip. (C) As (A) but using RMA.

Table 1. Summary statistics from dilution experiment (details described in the text)

Assessment MAS 5.0 dChip RMA

Average R2 over 120 pairs of replicates 0.990 0.993 0.995
Average slope over all genes across dilution concentrations (liver) 0.65 0.59 0.67
Average slope over all genes across dilution concentrations (CNS) 0.63 0.58 0.67
Correlation of fold change estimates from different concentrations 0.85 0.95 0.97
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5.0 and dChip made running comparisons for all pairs
prohibitive due to time. We therefore chose 10 pairs of arrays
at random from both Affymetrix and GeneLogic spike-in
studies. For each of these pairs we computed estimates of fold
change using the three expression measures. Then, for a large

range of cut-off values we computed the number of false
positives (non-spiked-in genes with fold change estimates
larger than the cut-off) and the number of true positives
(spiked-in genes with fold change estimates larger than the
same cut-off). ROC curves were created by plotting the true
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positive rates (sensitivity) versus false positive rates (1 ±
speci®city). The true positive rates were estimated for the
®ltering operation, Observed Fold Change > cut-off, for a
large range of cut-off values, by calculating the proportion of
genes spiked-in at different concentrations that satisfy the
®ltering criterion. False positive rates were calculated in a
similar way by computing the proportion of non-spiked-in
genes that satisfy the ®ltering criteria. Areas under ROC
curves can be used to compare speci®city and sensitivity of
competing tests. The fact that the RMA curves dominated the
dChip and MAS 5.0 curves demonstrated that the differential
expression calls obtained with RMA have higher sensitivity
and speci®city than those obtained with the other two
measures (Fig. 3A and B). The true fold changes resulting
from our random choice of pairs ranged from 3/2 to 1024. The
task of detecting fold changes much larger than 2 might be
considered less important than that of reliably detecting
changes 2-fold or less, so we chose 10 pairs where the true fold
changes were exactly 2 and repeated the analysis. The
superiority of RMA appears even greater in this assessment
(Fig. 3C). For comparisons of two arrays, Affymetrix software
provides an alternative to fold change analysis based on the P
value of a non-parametric test statistic (5). Test statistics can
be created for RMA and dChip based on estimates of standard
error obtained from probe level data (4,7). We repeated the

above analysis for the test statistic and found the Affymetrix's
P value approach to work as well as the test statistic based on
RMA and better than dChip's version (Fig. 3D and E).
However, Affymetrix's P value analysis can only be used
when comparing two arrays. We performed fold change
analyses on two sets of 12 arrays with the same spiked-in
concentrations and found RMA to have almost perfect
sensitivity and speci®city (Fig. 3F). In this comparison,
dChip performed almost as well as RMA and signi®cantly
better than MAS 5.0. This assessment demonstrated that using
RMA provides higher speci®city and sensitivity when using
fold change analysis to detect differential expression.

To understand why fold change analysis using RMA has
better sensitivity and speci®city we looked at Mg = log2(Yg/Xg)
versus Ag = log2ÖXgYg = (logXg + logYg)/2, (MvA) plots for
expressions Xg and Yg from two arrays being compared for all
genes, g = 1,¼, G. Log scale scatter plots of Yg versus Xg are
commonly seen in the literature. MvA plots are 45° rotations
of these scatter plots (18). We found MvA plots useful because
log fold change (the quantity of most interest) is represented
on the y-axis and average absolute log expression (another
quantity of interest) on the x-axis. We selected one array from
one of the Affymetrix spike-in experiments to use as a
reference and then computed Mg and Ag for the comparisons of
that array with all other arrays in the experiment using MAS

Figure 3. (Previous page and above) ROC curves for spike-in experiments. (A) For 10 pairs of arrays, chosen at random from the Affymetrix spike-in
experiment, true positive rates (sensitivity) are estimated for the ®ltering operation, Observed Fold Change > cut-off, for a large range of cut-off values, by
calculating the proportion of genes spiked-in at different concentrations that satisfy the ®ltering criterion. False positive rates (1 ± speci®city) are calculated in
a similar way by computing the proportion of non-spiked-in genes, which satisfy the ®ltering criteria. (B) As (A) but using the GeneLogic spike-in experi-
ment. (C) As (A) but selecting 10 comparisons for which the fold changes of spike-in concentrations are 2. (D) As (A) but using the ®ltering operation test
statistic > cut-off. We used the software default test statistics for MAS 5.0 and dChip. (E) As (D) but using the GeneLogic spike-in experiment. (F) As (A)
but comparing the average fold changes obtained from two sets of 12 replicate arrays.
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5.0 (Fig. 4A), dChip (Fig. 4B) and RMA (Fig. 4C). In these
plots, the colored numbers represent the log (base 2) fold
change in concentrations of all 14 spiked-in genes. Each
distinct fold change is represented with a different color as a
visual aid. The -` and ` represent fold changes with a zero in
the numerator or denominator, respectively. The red points
represent non-spiked-in genes with a fold change larger than 2.
Except for the colored numbers, including `, genes should
have log fold changes of 0. The fact that using RMA resulted

in plots with fewer red points demonstrated that its smaller
variance, especially for genes with lower absolute expression
(Fig. 4A±C) resulted in better detection capability of genes
spiked-in at different concentrations in the different arrays.
Most of the genes having log fold changes of 2 when 0 was
expected (red points in Fig. 4A) for MAS 5.0 were due to this
large variance at the low end. Color box plots (Fig. 5) of fold
change estimates demonstrated that RMA produces fold
changes closer to 1 for genes that are not changing than

Figure 4. MvA plots (described in the text) for Affymetrix's spike-in experiment. (A) For MAS 5.0, observed log (base 2) fold change (M) is plotted against
average log (base 2) expression (A) for all genes from spike-in experiment array pairs. A reference array was selected from one of the replicate spike-in
experiments and compared to all other arrays in that replicate experiment. The colored numbers represent the log (base 2) fold change in concentrations of all
14 spiked-in genes. Each distinct fold change is represented with a different color as a visual aid. The ±` and ` represent fold changes with a zero in the
numerator or denominator, respectively. The red points represent non-spiked-in genes with a fold change larger than 2. (B) As (A) but using dChip. (C) As
(A) but using RMA.
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those for MAS 5.0, with those for dChip being in between. In
particular, the interquartile ranges of log2 fold change for
equivalently expressed genes were 0.92, 0.22 and 0.19 for
MAS 5.0, dChip and RMA, respectively.

Figures 2 and 4 also show that RMA compressed fold
change estimates by 10±20% when compared to MAS 5.0.
However, we believe that this modest loss of accuracy is well
worth the substantial gains in precision achieved by RMA in
relation to MAS 5.0. Our ongoing research is aimed at
incorporating the MM intensities in such a way as to improve
accuracy without sacri®cing precision.

DISCUSSION

We have developed a summary of Affymetrix GeneChip
probe level data, RMA, which serves as a measure of gene
expression and compared it to other standard measures.
Through the analyses of dilution and spike-in data sets we
have shown that our measure performs better than MAS 5.0
and dChip. Speci®cally we found that: (i) RMA has better
precision; in particular, for lower expression values we found
that RMA provides a greater than 5-fold reduction of the
within-replicate variance as compared to dChip and MAS 5.0;
(ii) RMA provided more consistent estimates of fold change;
(iii) RMA provided higher speci®city and sensitivity when
using fold change analysis to detect differential expression.
For example, Figure 3C shows that for a false positive rate of
5%, the true positive rates were as different as 5, 60 and 75%
for MAS 5.0, dChip and RMA, respectively, when performing
fold change analysis. This greater sensitivity and speci®city of
RMA in detection of differential expression provides a useful
improvement for researchers using the Affymetrix GeneChip
technology.
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Figure 5. Box plots showing the distribution of observed fold changes for
non-spiked in genes. The different colors represent the different quantiles.
The relationship of color and quantile is demonstrated in the ®rst box from
the left.
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