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Abstract—Summarization of videos depicting human activities is a

timely problem with important applications, e.g., in the domains of

surveillance or film/TV production, that steadily becomes more relevant.

Research on video summarization has mainly relied on global clustering

or local (frame-by-frame) saliency methods to provide automated algo-

rithmic solutions for key-frame extraction. This work presents a method

based on selecting as key-frames video frames able to optimally recon-

struct the entire video. The novelty lies in modelling the reconstruction

algebraically as a Column Subset Selection Problem (CSSP), resulting

in extracting key-frames that correspond to elementary visual building

blocks. The problem is formulated under an optimization framework

and approximately solved via a genetic algorithm. The proposed video

summarization method is being evaluated using a publicly available

annotated dataset and an objective evaluation metric. According to the

quantitative results, it clearly outperforms the typical clustering approach.

Keywords—Video Summarization, Sparse Dictionary Learning, Genetic
Algorithm

I. INTRODUCTION

In recent years, the need for succinct presentation of digital

videos depicting human activities has increased exponentially. Data

from surveillance cameras or professional capture sessions are two

such cases where an automated algorithmic solution would greatly

benefit the end-users, allowing them rapid browsing, analysis, an-

notation and archiving of lengthy video footage, while significantly

reducing storage requirements. Video summarization addresses this

problem by generating compact versions of a video stream, after

having determined its most informative and representative content

[1]. Static summarization algorithms typically extract a set of salient

video frames, i.e., key-frames that represent the entire video content.

They are contrasted with dynamic summarization methods, where a

video skim is being constructed as a sequence of short video key-

segments concatenated in the correct temporal order, thus forming

a meaningfully shortened version of the original stream. This work

deals with the problem of static video summarization, i.e., key-frame

extraction, and skim construction is not addressed.

Typically, information is extracted by analysing the available

modalities (visual, audio or textual) to detect high-level semantic

content, e.g. depicted objects or events, as well as computing low-

level features from the video stream. To accomplish this task, each

video frame is first described by low-level image features, with the

most commonly employed frame descriptor being variants of global

joint image histograms in the HSV color space [2] [3].

In most of the relevant literature, summarization is implicitly

defined as a frame sampling problem, with systematic sample acquisi-

tion methods being presented that try to simultaneously satisfy several

heuristic criteria, such as compactness (lack of content redundancy in

the selected key-frames / key-segments), outlier inclusion (selection

of atypical key-frames / key-segments) and coverage (representation

of the entirety of the original video in the produced summary).

The traditional summarization method derived from this heuristic

definition is video frame clustering, e.g., with the frames closest to the

estimated cluster centroids being selected as key-frames. The number

of clusters may depend on the video length [2].

Various similar summarization approaches have also been pro-

posed, implicitly obeying the aforementioned heuristic criteria: e.g.,

a computational geometry-based approach [4] that results in key-

frames equidistant to each other in the sense of video content, or

a fast method which selects as key-frames the video frames that

locally maximize an aggregate intra-frame difference (computed using

color features) [5]. However, clustering still dominates the relevant

literature due to its simplicity, suitability to the problem and relatively

low computational requirements. In many cases, information about

the way a video is naturally segmented into shots (e.g., in movies

[6]) is also exploited to assist the summarization process [7] [3] [2]

[8], e.g. by applying clustering at shot-level. Typically, the extracted

key-frame set is pruned in a refinement post-processing stage. The

remaining key-frames are temporally ordered to produce a meaningful

summary.

The above described approaches can be applied to generic video,

while methods exploiting video type-specific information have also

been proposed. In surveillance videos, temporal segmentation (shot

boundaries detection [9]) is not a viable option due to the lack of cuts,

therefore motion detection is employed in order to create summaries

that contain sets of object actions, like pedestrian walking. Detected

actions taking place in different direction and speed, are fused into a

single scene to form a short length video or graphical cue containing

as many actions as possible [10]. However, this is not a useful

approach in the very similar scenario of raw videos from professional

capture sessions (e.g., television or film production), where also the

camera is static and natural segmentation into shots is absent, since

the preferred summarization goal would be to select one key-frame

per depicted activity.

In [11] and [12] the video summarization problem is formu-

lated in terms of sparse dictionary learning, with extracted key-

frames enabling optimal reconstruction of the original video from

the selected dictionary. Such an approach implies an interesting and

formal definition of a video summary, as the set of key-frames

that can linearly reconstruct the full-length video in an algebraic

sense. However, the conciseness of the summary is only enforced via

optimization using a sparsity constraint, with no guarantees that such

a process will actually converge to a small number of key-frames.

Thus, compactness is not assured.

Our paper, following in this line of work, attempts to overcome



this limitation and provide a novel reconstruction-based algebraic

method where the number of key-frames is a fixed, user-provided

parameter, as in typical clustering approaches. To this end, the

Column Subset Selection Problem (CSSP) is employed for problem

modelling and solved using a genetic algorithm. Thus, the proposed

method is able to extract a set of key-frames constituting elemental

visual building blocks of the original video sequence, implicitly

defining the summary as a subset of the video frames from which

the entire full-length video may be linearly reconstructed. To our

knowledge, the CSSP has not been employed before in the context

of a key-frame extraction algorithm.

II. VIDEO SUMMARIZATION BASED ON THE COLUMN SUBSET

SELECTION PROBLEM

The first step of video summarization is video frame description.

In the proposed approach, each video is assumed to be composed

of a temporally ordered sequence of Nf video frames of dimension

M ×N , each one being a set of K matrices Vik ∈ R
M×N , where

0 ≤ i < Nf and k ∈ l, h, o, e. K is the number of available image

channels: l stands for luminance, h for color hue, o for optical flow

magnitude and e for edge map. Each Vik is a digitized 8-bit image

with a resolution of M ×N pixels.

A global and a local descriptor were separately employed and

compared: global, 16-bin video frame intensity histogram, as well as

visual word histograms based on SURF descriptors [13] and a Bag-

of-Features representation scheme [14]. Intensity histograms were

selected due to their prevalence in video summarization literature,

while SURF descriptors due to their great performance at a relatively

low computational cost in object recognition applications [13]. In

the first case, for the i-th frame, the histograms are being separately

computed on each image channel and then concatenated. In the second

case, a single set of descriptors Di is derived by simply concatenating

corresponding 128-dimensional SURF vectors separately computed

on the available channels. The vector correspondence between chan-

nels is established in terms of spatial pixel coordinate matching,

while the interest points are initially detected solely on Vil, i.e., on

luminance. Each Di, composed of Pi 128K-dimensional description

vectors, is then transformed into a single Kc-dimensional BoF visual

word histogram di [14], where c is a codebooks size parameter. The

adoption of the BoF approach was motivated by its proven suitability

for the representation of human activities, since it discards most of

the spatial information and thus provides partial invariance to changes

in camera viewpoint, number of human subjects, scale, rotation and

occluded object parts [15].

Human activity videos are mainly composed of elementary visual

building blocks assembled in several combinations. Given the above

video description strategy, this is expressed with each video being

represented as a histogram matrix D, where several columns consti-

tute linear combinations of other columns. Thus, the summarization

objective is for the estimated summary C to mainly contain columns

that form a set of linearly independent basis vectors, spanning the

space of all columns in D. In this sense, C will tend to be able

to reconstruct the original matrix D in a manner well-suited to the

task at hand, ideally extracting key-frames representative of all the

depicted human activities.

Therefore, the proposed method models key-frame extraction as

a matrix Column Subset Selection Problem (CSSP) [16], which, to

our knowledge, has not been attempted before. Below, the CSSP is

briefly discussed. Assuming a low-rank Kc × Nf matrix D and a

parameter C < Nf , CSSP consists in selecting a subset of exactly

C columns of D, which will form a new Kc × C matrix C that

captures as much of the information contained in the original matrix

as possible. The goal is to construct a matrix C ∈ R
Kc×C such that

the quantity

‖D− (CC
+)D‖F (1)

is minimized. In the above, ‖ · ‖F is the Frobenius matrix norm and

C
+ is the pseudoinverse of C. Thus, the goal is to minimize the

reconstruction error between the entire video D and the projection of

D onto the span of the C columns contained in the summary C. If

C was a full-rank matrix, then CC
+ would equal the identity matrix

and the reconstruction error would be 0. Thus, minimizing Equation

(1) is equivalent to finding a subset matrix C that is as close to

full-rank as possible.

CSSP is an obvious choice for mathematically modelling a feature

selection process as an optimization problem. It can be optimally

solved by exhaustive search in O(NC) time [16], which clearly

is a very impractical approach. Thus, approximate algorithms with

lower computational complexity have been presented in the relevant

literature, with the goal of finding a suboptimal but acceptable

solution.

In [17], a genetic approach is successfully employed for the

approximate solution of the CSSP, by directly using Equation (1) as a

fitness function. The method is evaluated on several small, randomly

generated matrices and is shown to produce good results for a fixed

small value of C. In this work, the same approach was adopted and

adapted into the proposed algorithm.

Due to the nature of the CSSP, there is no need for a regular-

izing function R(C), like the one in [12]. The degree of summary

compactness and conciseness is directly regulated by a strict, user-

provided parameter C, as in most commonly employed clustering-

based summarization methods. The desired solution is a set of matrix

column indices with cardinality equal to C. Since D ∈ R
Kc×Nf , for

the k-th such index with an assigned value gk the following hold:

k ∈ N, k ∈ [1, · · · , C]. (2)

gk ∈ N, gk ∈ [1, · · · , Nf ]. (3)

A genetic algorithm is employed to approximate an optimal solution

[17]. Each candidate/chromosome is encoded in the form of a

sequence of column indices sorted in increasing order. Every such

chromosome is of length C and population size is N . Roulette

selection at each iteration is adopted as the mating pool formation

strategy. Assuming fit(l) is the evaluated fitness of hl, i.e., the l-th
candidate in the current population, this method assigns a selection

probability plsel = fit(l)/
∑N

m=1
fit(m) to the l-th chromosome.

Below, the value assigned to the k-th gene of a chromosome h
l is

denoted by h
l
k.

An order-preserving variant of 1-point crossover [17] is utilized

as the main genetic operator. Specifically, in order to combine parent

chromosomes hl and h
m, a random position k is selected as crossover

point and is inspected for suitability. k is considered to be suitable

as a crossover point, if the following condition holds:

(hl
k < h

m
k+1) ∧ (hm

k < h
l
k+1). (4)

This constraint ensures that both offspring will be valid candidates,

containing properly ordered matrix column indices. In case Equation

(4) does not hold for position k, a different position is selected and



inspected. This process continues until either a suitable crossover

point has been detected, or all possible positions have been deemed

unsuitable. In the former case, crossover is applied and the two parent

chromosomes are replaced by their offspring. In the latter case, each

of the implicated chromosomes is passed unaltered to the population

of the next generation with probability plsel or pmsel, respectively. If hl

or hm is not being retained, it is replaced in the next generation by a

copy of the fittest current candidate h
n with probability pnsel. If hn is

also not selected for retention, the process continues with the second

fittest of the current candidates, and so on, until a chromosome has

been selected.

An order-preserving variant of mutation [17] is employed as the

second genetic operator. Specifically, the k-th gene of a chromosome

h
n, with an assigned valued of hn

k , is randomly selected and replaced

by a value determined by the neighbouring genes, according to

Equation (5):

h
n
k =











rand(0,hn
k+1), if k = 1

rand(hn
k−1,h

n
k+1), if k ∈ (1, C)

rand(hn
k−1, Nf + 1), if k = C.

(5)

where rand(a, b) uniformly selects a random integer from the interval

(a, b). Although this operator ensures a proper ordering of the indices,

it has no effect when h
n
k−1, hn

k and h
n
k+1 are successive integers.

The matrix column indices encoded in the evaluated chromosome

h
n give rise to the matrix Cn, composed of a subset of the columns in

D. Thus, the fitness function that needs to be maximized is expressed

as:

fit(hn) = ‖D− (CnC
+

n)D‖−1

F . (6)

The method may be easily extended to accommodate additional

desired summary properties, through proper manipulation of the em-

ployed fitness function. Additionally, an interesting research avenue

would be a way to evaluate summarization results for different values

of the parameter C, i.e., the desired key-frame set cardinality, since

ground truth is typically not available. This resembles the problem

of selecting a proper K in K-Means clustering. An obvious route to

tackle this problem is to run the algorithm for multiple consecutive

values of C and construct a signal with the corresponding CSSP

reconstruction errors. It is reasonable to expect the error to steadily

decrease for larger values of C. Then, a proper value for C may

be identified at the point where the signal’s derivative drops below a

threshold. Less obvious and more efficient approaches to this problem

could be explored in future research.

III. EVALUATION

In order to experimentally evaluate the proposed method, a subset

of the publicly available, annotated IMPART video dataset [18] was

employed. It depicts three subjects/actors in two different settings:

one outdoor and one indoor. A living room-like setting was set-up

for the latter, while two action scripts were executed during shooting,

prescribing human activities by a single human subject: one for the

outdoor and one for the indoor setting. In each shooting session,

the camera was static and the script was executed three times in

succession, one time per subject/actor. This was repeated three times

per script, for a total of 3 indoor and 3 outdoor shooting sessions.

Thus each script was executed three times per actor. Three main

actions were performed, namely “Walk”, “Hand-wave” and “Run”,

while additional distractor actions were also included and jointly

categorized as “Other” (e.g., “Jump Up-Down”, “Jump Forward”,

Fig. 1. Example frames from the IMPART video dataset. The respective

activities are “Run” (top left), “Walk” (bottom left), “Jump” (top right) and

“Hand-wave” (bottom right).

TABLE I. A COMPARISON OF THE MEAN IR SCORES FOR DIFFERENT

VIDEO DESCRIPTION/REPRESENTATION AND SUMMARIZATION METHODS.

Method K-Means++ CSSP

Global Histogram 0.571 0.636

SURF 0.484 0.534

“Bend Forward”). During shooting, the actors were moving along

predefined trajectories defined by three waypoints (A, B and C).

Summing up, the dataset consists of 6 MPEG-4 compressed video

files with a resolution of 720 x 540 pixels, where each one depicts

three actors performing a series of actions one after another. The

mean duration of the videos is about 182 seconds, or 4542 frames.

Sample video frames of the dataset are shown in Figure 1.

Ground truth annotation data provided along with the IMPART

dataset do not describe key-frames pre-selected by users, as in [2]

(which would be highly subjective), but obvious activity segment

frame boundaries. This fact was exploited to evaluate the proposed

framework as objectively as possible. Given the results of each

summarization algorithm for each video, the number of extracted key-

frames derived from actually different activity segments (hereafter

called independent key-frames) can be used as an indication of

summarization success. Therefore, the ratio of extracted independent

key-frames by the total number of requested key-frames K, hereafter

called Independence Ratio (IR) score, is a practical evaluation metric.

The proposed method and the K-Means++ algorithm [19] for

frame clustering were objectively evaluated and contrasted using

the IMPART dataset and the IR metric. The fast OpenCV [20]

implementations of the method in [21] and of the SURF detector

and descriptor were employed for optical flow estimation and local

video frame description, respectively. In all video frames, the Laplace

operator was used for deriving the edge map image channel, after

median-filtering for noise suppression.

TABLE II. A COMPARISON OF THE MEAN EXECUTION TIME

REQUIREMENTS PER-FRAME (IN MILLISECONDS) FOR DIFFERENT VIDEO

DESCRIPTION/REPRESENTATION AND SUMMARIZATION METHODS.

Method K-Means++ CSSP

Global Histogram 706 1119

SURF 1208 1789



(a)

(b)

Fig. 2. Key-frames extracted on a sample of the IMPART dataset, using a) K-Means++ and b) the proposed CSSP-based method.

A crucial, user-provided parameter controlling the grain of sum-

marization is the desired number of clusters K and of the columns

C in the summary matrix C, in clustering and in the proposed

summarization method, respectively. It corresponds to the number

of requested extracted key-frames per video. The actual number Q of

different activity segments (known from the ground truth) was used

both as K and C for each video. Codebook size c was set to 80, while

the following parameters were used for the genetic algorithm: the

maximum number of generations was set to 100, the population size

L was set to 200, the crossover rate was set to 0.9, the mutation rate

was set to 0.005 and the elitism rate was set to 10%. The experiments

were performed on a high-end PC, with a Core i7 @ 3.5 GHz CPU

and 32 GB RAM, while the codebase was developed in C++.

Table I presents the IR scores, averaged over the entire employed

dataset, that were achieved by the two competing approaches, using

the. two employed video description schemes (global intensity his-

tograms and SURF-based visual word histograms). In all cases, all

discussed video frame channels (luminance, color hue, optical flow

magnitude map, edge map) were exploited through description vector

concatenation.

Table II presents the mean required execution times per-frame (in

milliseconds), over the entire employed dataset, that were achieved

by the competing approaches. These measurements include the time

necessary for all description, representation and summarization stages

for all image channels, as well as the time needed for image channel

computation per-frame.

Figures 2a,b depict the key-frames extracted using the K-

Means++ algorithms and the proposed CSSP-based method, respec-

tively, on a short sample of the IMPART dataset, composed of 5

activity segments: two “Walk”, one “Run”, one “Hand-wave” and

one “Other” action (a “Jump Forward”). K and C were set to 5,

while the global image histograms description scheme was employed.

By visual inspection, clustering seems to produce a key-frame set

with greater redundancy (two frames are almost identical), while the

proposed method apparently decomposes the video into elemental

visual word subsets, including a blank key-frame depicting only the

static background. It is interesting that the “Run” segment is not

captured by either method, which may be attributed to its high

similarity to the “Walk” segments. It is reasonable that a more

elaborate video description scheme is necessary to overcome this

limitation.

As it can be seen, local SURF descriptors are outperformed by the

more common and faster global image histograms, which confirms the

findings of [22] that in the absence of clear shot boundary information,

global image color histograms produce better results than SIFT and

SURF. This suggests that sparsely sampled and highly invariant

descriptors designed for recognition tasks are not necessarily suitable

for video summarization. Regarding the competing summarization

approaches, it is evident that the proposed method is quantitatively

better than the established clustering technique, in terms of the IR

metric. However, this comes at the cost of higher computational

requirements: it demands approximately 1.5 times the runtime of the

clustering approach.

IV. CONCLUSIONS

A matrix reconstruction-based method for summarization of

videos depicting human activities was presented, that guarantees

desired conciseness through fixed key-frame set cardinality. The

novelty lies in modelling the problem as a Column Subset Selection

Problem (CSSP), with the extracted key-frames corresponding to

elementary visual building blocks that may linearly reconstruct the

original video. This was formulated under an optimization framework

and approximately solved via a genetic algorithm. The proposed

video summarization method was evaluated using a publicly available

annotated dataset and an objective evaluation metric. According to

the quantitative results, it clearly outperforms the typical clustering

approach, while previous findings regarding the suitability of simple

global image histograms, in contrast to recognition-oriented local

image descriptors, to the task of video summarization were validated.
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[21] G. Farnebäck, “Two-frame motion estimation based on polynomial
expansion,” in Image analysis, pp. 363–370. Springer, 2003.

[22] E J.Y. Cahuina and G. C. Chavez, “A new method for static video sum-
marization using local descriptors and video temporal segmentation,” in
Conference on Graphics, Patterns and Images (SIBGRAPI). 2013, pp.
226–233, IEEE.


