
Summarization of Twitter Microblogs

Beaux Sharifi*, David Inouye+ and Jugal K. Kalita*

*Department of Computer Science, University of Colorado, Colorado Springs, CO 80918
+Department of Computer Science, University of Texas at Austin, Austin, TX 78712

Email: {beaux.sharifi,davidinouye}@gmail.com, jkalita@uccs.edu

Due to the sheer volume of text generated by a microblog site like Twitter, it is
often difficult to fully understand what is being said about various topics. This
paper presents algorithms for summarizing microblog documents. Initially, we
present algorithms that produce single-document summaries but later extend
them to produce summaries containing multiple documents. We evaluate the
generated summaries by comparing them to both manually produced summaries
and, for the multiple-post summaries, to the summarization results of some of the

leading traditional summarization systems.

Keywords: Twitter; Informal Text; Summarization

Received 00 January 2009; revised 00 Month 2009

1. INTRODUCTION

Twitter1, the microblog site started in 2006, has become
a social phenomenon. More than 340 million Tweets
are sent out every day2. While a majority of posts
are conversational or not particularly meaningful, about
3.6% of the posts concern topics of mainstream news3.
Twitter has been credited with providing the most
current news about many important events before
traditional media, such as the attacks in Mumbai in
November 2008. Twitter also played a prominent
role in the unfolding of the troubles in Iran in 2009
subsequent to a disputed election, and the so-called
Twitter Revolutions4 in Tunisia and Egypt in 2010-11.

To help people who read Twitter posts or tweets,
Twitter provides two interesting features: an API that
allows users to search for posts that contain a topic
phrase and a short list of popular topics called Trending
Topics. A user can perform a search for a topic and
retrieve a list of most recent posts that contain the
topic phrase. The difficulty in interpreting the results
is that the returned posts are only sorted by recency,
not relevancy. Therefore, the user is forced to manually
read through the posts in order to understand what
users are primarily saying about a particular topic.

A website called WhatTheTrend5 attempts to
provide definitions of trending topics by allowing users
to manually enter descriptions of why a topic is
trending. Here is an example of a definition from
WhatTheTrend:

Why is Justin Bieber popular right now? The

1http://www.twitter.com
2http://blog.twitter.com/2012/03/twitter-turns-six.

htm
3http://www.pearanalytics.com/blog/tag/twitter/
4http://en.wikipedia.org/wiki/Twitter_Revolution
5http://www.whatthetrend.com

young Canadian R&B/pop singer has a lot of
fans who like to tweet about him!

The Twitter API only allows users to see the most
recent posts on a topic in chronological order; it
does not provide any relevancy based ordering of
posts. In addition, WhatTheTrend is limited because
it requires manual input and both the Twitter API and
WhatTheTrend suffer from spam and irrelevant posts
that reduce their utility to some extent. Otherwise,
for the general user, there is no way to get an overall
understanding of what is being written about on
Twitter. The motivation to create the summarizer
is to automate this process and generate a more
representative summary in less time and effort.

Twitter has grown by about 1500% every year since
its founding6. According to the same story, the Twitter
API fielded about 19 billion searches a month in 2010
compared to about 90 billion for Google7. The massive
rise of microblogging as a new form of communication
and data generation has opened up a new domain for
natural language processing that could be aimed at
discovering real time public opinion, news stories or
conversational topics. In order to understand and use
this flood of information, we feel that just being able
to search for a topic and receive the most recent posts
whose text matches the keywords is not enough. To
get a snapshot of what is being written about a topic
in terms of a large number of posts, it is necessary to
obtain a summary or a gist of these posts. If we use
the traditional term document to refer to each post (or
“tweet”), for our purposes, obtaining the summary of
a large set of documents on a certain topic specified

6http://www.networkworld.com/news/2010/

041410-biz-stone-says-twitter-has.html
7http://www.google.com

The Computer Journal, Vol. ??, No. ??, ????

2 B. Sharifi

by keywords means selecting the most significant one
or more documents from the set. It is also possible to
construct new documents by piecing together parts of
original documents or posts.

Data reduction or summarization is essential for
understanding and exploring any data. Even if data
summarization is only used in the initial phases of
data analysis and exploration, it is critical for providing
intuition about what questions would be interesting to
ask and what other data analysis methods could be
useful. In the case of microblogs, summarization is
necessary before any other data analysis can be done
because it would simply be impossible to read through
millions of tweets. In addition, summarization can be
a useful exploratory tool by itself. For example, a
short summary could be attached to each trending topic
and a user would then only have to read a short one
page Twitter page to understand all the trending topics
rather than reading thousands of somewhat random
posts. Each of the topics on the summary page would be
linked to the raw Twitter posts in case someone wanted
to explore the topic further. Another motivating
example of the utility of Twitter summarization is using
Twitter for market research. Many companies are
embedding unique hashtags (e.g. #AmericanIdol) in
their advertisements to track what viewers are saying
about a particular product or service. Combining
automatic summarization with Twitters search API,
companies could generate—in real time—condensed
summaries about what the majority of users are saying
about the hashtag topics they have defined. These could
then be used for understanding what the majority of
viewers are saying about their products of services with
less time and effort. One can provide copious additional
examples of situations where summarization of Twitter
documents would be useful, although we do not do so
since our main focus is the presentation and comparison
of a number of algorithms for summarization of twitter
documents.

In this paper, we discuss an effort to create
“summary” documents for Twitter trending topics. In
short, we perform a search on the Twitter API based
on trending topics to get a large number of documents
on a topic and then automatically create a summary
that is representative of all the documents on the topic.
We start by discussing algorithms to create single-
document summaries. We evaluate the single-document
summaries using two metrics for automatic summary
evaluation. We then extend the work to obtain
summaries containing multiple documents since a single
document may not be able to reflect the subtopics
surrounding a certain trending topic. We compare
our multi-document summaries with ones produced by
leading multi-document summarizers.

2. RELATED WORK

Although automatic summarization of longer docu-
ments has been researched extensively, processing short
and informal microblog posts has only recently been
considered. Automatically summarizing microblog top-
ics is a new area of research. Of course, summarizing mi-
croblogs can be viewed as an instance of the more gen-
eral problem of automated text summarization, which
is the problem of automatically generating a condensed
version of the most important content from one or more
documents for a particular set of users or tasks [1–3].
As early as the 1950’s, Luhn was experimenting

with methods for automatically generating extracts of
technical articles using surface features such as word
frequency [4]. Edmundson developed techniques that
added positional features such as formatting clues like
titles and headings for summarizing a diverse corpora
of documents to help users evaluate documents for
further reading [5]. Other early summarizing programs
include the FRUMP system [6], which analyzed UPI
news stories in about 50 domains and summarized them
using a script-based extraction of relevant information
in the specific domains. The TOPIC system [7] created
a hierarchical text graph from an input document
and then condensed the text based on the topics to
form summaries. The SCISOR system [8] created
conceptual summaries using heuristics that chose parts
of a concept graph created from Down Jones news wire
stories. Kupiec used a Näıve Bayes classifier trained
on a collection of 188 scientific documents and their
corresponding human created summaries to learn the
probabilities that a document sentence will be chosen
in the human summaries [9]. Kupiec’s work started
a trend that increasingly led to the use of supervised
learning and statistical methods in summarization. Yeh
et al. presented a summarizer that took into account
several features such as position, presence of positive
and negative keywords, centrality, and resemblance to
title. After considering these features, the summarizer
then used a genetic algorithm to create a scoring
function [10].
A number of algorithms have been developed for

various aspects of document summarization during
recent years. For the selection of summary content,
notable algorithms were developed including SumBasic
[11] and the centroid algorithm of Radev et al. [12].
SumBasic’s underlying premise is that words that
occur more frequently across the documents have a
higher probability of being selected for human created
multi-document summaries than words that occur less
frequently. This idea is similar to Luhn’s idea but
there are some significant differences. Vanderwende et
al. [11] introduce a new method called SumFocus which
imposes constraints on topic changes during summary
generation. The centroid algorithm [12] takes into
consideration a centrality measure of a sentence in
relation to the overall topic of the document cluster or

The Computer Journal, Vol. ??, No. ??, ????

Summarization of Twitter Microblogs 3

in relation to a document in the case of single document
summarization.

Ordering the sentences or other components in
any generated text including generated summaries is
an important area of research as well and several
algorithms have been proposed regarding this topic.
Althaus et al. assign costs to transitions in a discourse
using a cost function and compute optimal ordering
of sentences to create a maximally coherent discourse
in a local sense [13]. They show the problem to be
NP-complete but use modern and efficient heuristic
algorithms for the traveling salesman problem to
compute an optimal order. The LexRank algorithm
for computing the relative importance of sentences
or other textual units in a document (or a set of
documents) creates an adjacency matrix among the
textual units using an IDF-modified cosine distance
measure and then computes the stationary distribution
considering it to be a Markov chain [14]. The TextRank
algorithm [15] is also a graph-based approach that
creates an adjacency matrix and then finds the most
highly ranked sentences (or keywords) in a document
using the PageRank algorithm [16]. Barzilay and
Lapata use an entity-grid representation of discourse
to capture the pattern of entity distribution in a text
and use this information to create a representation of
the text as a set of entity transition sequences that can
be used to create summaries [17].

In most cases, text summarization is performed
for the purposes of saving users time by reducing
the amount of content to read. However, text
summarization has also been performed for purposes
such as reducing the number of features required
for classifying (e.g., [18]) or clustering (e.g., [19])
documents. Following another line of approach, early
work by Kalita et al. generated textual summaries of
database query results [20, 21]. Instead of presenting a
table of data rows as the response to a database query,
they generated textual summaries from predominant
patterns found within the data table.

With the growth of the Web, interest has grown on
how to improve summarization and how to summarize
new forms of documents such as Web pages (e.g.,
[22], [23], [24], [25]), discussion forums [26] and blogs
(e.g., [27], [28], [29]). In the context of the Web,
multi-document summarization is useful in combining
information from multiple sources. For example, if one
wants to summarize news items on a topic, the number
of source articles may be quite large. Information
may have to be extracted from many articles and
pieced together to form a comprehensive and coherent
summary. Thus, multiple document summarization is
an important and timely topic of research (e.g., [30],
[31], [32], [33], [34], [35], [36]). The major difference
between single document summarization and multi-
document summarization is the greater amount of
redundancy caused by using multiple source texts [37,
pp. 797]. A method of avoiding redundant sentences in

a summary is computing similarity between a sentence
already chosen to be in the summary and one being
proposed to be selected. Another solution may involve
clustering the important sentences picked out from the
various source texts and using only a representative
sentence from each cluster [38, Chapter 14], [39,
Chapter 5]. For multi-document summarization,
the ordering of extracted sentences (e.g., [13, 17],
mentioned earlier in this section) is important as well.
In the area of publicly available programs, MEAD
[40] is a flexible platform for multi-document multi-
lingual summarization. MEAD implements multiple
summarization algorithms and provides metrics for
evaluating multi-document summaries.
There have been a few recent efforts in summariz-

ing Twitter posts. We have been able to find work on
Twitter summarization by three groups of researchers
[41–43]. Harabagiu and Hickl [41] focus on summa-
rization of microblog posts, related to complex world
events. To summarize, they capture event structure
information from tweets and user behavior information
that captures how individual users describe information
relevant to a topic. Following Huang and Mitchell [44],
they infer event structure using a generative model with
the help of an Expectation Maximization algorithm [45].
They represent user actions in terms of tweet chains
considering retweets, responds and quoted tweets. They
use the “sleeping experts” learning framework [46] to
assess the relevance of content expressed by groups of
users linked by chains. Takamura et al. [42] summa-
rize Japanese Twitter posts on soccer games during
which people comment and express opinions play by
play as the game progresses on a timeline. They observe
two main ideas. First, similar timestamped documents
can mention different events if they are temporally dis-
tant. Second, documents on a single topic such as goals
scored at a specific time can occur with some tempo-
ral delay. They solve an optimization problem called
the p-median problem in an approximate manner after
imposing conditions based on these two observations.
Our prior work [43, 47–50] has focused on developing
and comparing algorithms for producing summaries of
Twitter posts. This paper puts together work in several
papers into a coherent whole and also extends it.

3. PROBLEM DESCRIPTION

By design, Twitter documents are very short because
they are limited to 140 characters. Our work is in the
context of a collection of such documents.
Our description of the first problem addressed in this

paper is as follows:

Given a set of Twitter documents that are all
related by containing a common search phrase
(i.e., a topic), generate a short summary in
terms of a representative document that best
describes the primary ”gist” of what users are
saying about that search phrase.

The Computer Journal, Vol. ??, No. ??, ????

4 B. Sharifi

However, a summary containing a single document
can only represent one idea surrounding a topic. With
this limited coverage of a specified microblog topic,
important or interesting information about a topic
may be easily overlooked. These short summaries
may provide simple indicative summaries that give
enough information to spark the interests of users, but
summaries containing multiple documents that cover
multiple subtopics of the original topic would push the
summaries towards being informative [51]. Therefore,
this research further explores several methods for
producing these summaries with multiple representative
documents.

The problem considered in the second part of this
paper can be defined as follows:

Given a topic keyword or phrase and a number
k, retrieve a set of k most representative
documents from a set of Twitter documents.

4. APPROACHES FOR SINGLE-

DOCUMENT TWITTER SUMMARIES

The first decision in developing a microblog summariza-
tion algorithm is to choose whether to use an abstrac-
tive or extractive approach. We choose an extractive
approach since its methodologies more closely relate to
the structure and diversity of microblogs. Abstractive
approaches are beneficial in situations where high rates
of compression are required. However, microblogs are
the antithesis to long documents. Microblog documents
are already highly condensed leading to the greater po-
tential of finding an extract from a collection to serve
as the summary. In addition, because microblogs are
unstructured and diverse in subject matter, abstractive
approaches would not be appropriate since they tend
to do best in very limited domains and require out-
side knowledge sources. Extractive techniques are also
known to better scale with more diverse domains [51].

We implement several extractive algorithms. We
start by implementing two preliminary algorithms for
single-document summarization based on very simple
techniques. We also develop and implement two
new algorithms for single-document summarization.
First, we create an algorithm that we call the
Phrase Reinforcement algorithm which uses a graph
to represent overlapping phrases in a set of related
microblog sentences. This graph allows the generation
of one or more summaries and is discussed in detail
in Section 6.1. We develop another new algorithm for
single-document summaries based on a well established
statistical methodology known as TF-IDF. The Hybrid
Document TF-IDF algorithm is discussed at length in
Section 6.2. We evaluate these algorithms extensively.

Next, we implement algorithms that produce
summaries containing multiple documents reflecting
the multi-faceted nature of Twitter documents on
a single topic. We develop several multi-document
summarization algorithms. Our two primary multi-

document summarization algorithms are a clustering-
based algorithm and a direct extension of the Hybrid
TF-IDF single-document summarization algorithm. We
perform an extensive evaluation of the multi-document
summarization algorithms as well.

5. NAIVE ALGORITHMS FOR SINGLE-

DOCUMENT SUMMARIES

While the two preliminary approaches are simplistic,
they serve a critical role towards allowing us to evaluate
the results of our primary algorithms.

5.1. Random Approach

Given a filtered collection of Twitter documents (i.e.,
posts) and topic sentences that are each related to a
single topic, we generate a summary by simply choosing
at random either a document or sentence from the set
of inputs. Though unlikely given the short nature of a
Twitter document, we note that sometimes a document
may contain more than one sentence.

5.2. Length Approach

Our second preliminary approach serves as an indicator
of how easy or difficult it is to improve upon the
random approach to summarization. Given a collection
of Twitter documents and sentences that are each
related to a single topic, we generate four independent
summaries. For two of the summaries, we choose
both the shortest and longest documents (i.e., posts)
from the collection. For the remaining two, we choose
both the shortest and longest topic sentences from the
collection.

6. PRIMARY ALGORITHMS FOR SINGLE-

DOCUMENT SUMMARIES

We discuss two primary algorithms: the Phrase
Reinforcement Algorithm and an adaptation of the well-
known TF-IDF approach.

6.1. The Phrase Reinforcement Algorithm

The Phrase Reinforcement (PR) algorithm generates
summaries by looking for the most commonly occurring
phrases. By representing these common phrases as
a weighted and directed acyclic graph, the algorithm
generates summaries by searching for the most weighted
paths through the graph.

6.1.1. Motivation
The algorithm is inspired by two observations. The first
is that users tend to use similar words when describing
a particular topic especially when immediately adjacent
to the topic phrase. For example, consider the following
documents collected on the day of the comedian Soupy
Sales’ death:

The Computer Journal, Vol. ??, No. ??, ????

Summarization of Twitter Microblogs 5

1. Our first Soupy Sales RIP cartoon
2. Aw, Soupy Sales died.
3. Just read that my favorite comedian Soupy Sales

died.
4. Soupy Sales – RIP – I always watched his show

when I was a kid - classic!

In these documents, we consider the words that
immediately follow the topic phrase Soupy Sales. Notice
that all documents contain words immediately after the
phrase Soupy Sales that in some way refer to his death.
Furthermore, documents 1 and 4 share the word RIP
and posts 2 and 3 share the word died. Therefore, there
exists some overlap in word usage adjacent to the phrase
Soupy Sales. This overlap occurs because there exists
only so many ways to express the main idea of Soupy
Sales’ death in a very short Twitter document.

The second observation is that microbloggers often
repeat the most relevant documents for a trending
topic by quoting others. Quoting has its own special
convention in Twitter and uses the following form: RT
@[TwitterAccountName]: Quoted Message. RT refers
to Re-Tweet and indicates one is copying a document
from the indicated Twitter account. For example, the
following are some quoted documents.

1. RT @dcagle: Our first Soupy Sales RIP cartoon
2. RT @RadioPages: Soupy Sales has died at 83.

Retweeting significantly reinforces the overlap of
word usage around a topic phrase. While microbloggers
occasionally use the same or similar words, retweeting
causes entire sentences to perfectly overlap with one
another. This, in turn, greatly increases the average
length of an overlapping phrase for a given topic. The
PR algorithm capitalizes on these behaviors. The main
idea of the algorithm is to determine the most heavily
overlapping phrase centered about the topic phrase.
This phrase is used as the topic’s summary. The
justification is that repeated information is often a good
indicator of its relative importance [4].

6.1.2. The Algorithm
The algorithm begins with the topic phrase for which
one desires to generate a summary. These phrases are
typically trending topics but can be other non-trending
topics as well. Assume our starting phrase is the
trending topic Soupy Sales. The input to the algorithm
is a set of posts that each contains the starting phrase.

Building a Word Graph We focus only on English
tweets in this paper. We use simple tools we have
developed ourselves to recognize word and sentence
boundaries.

The root node contains the topic phrase—in this case
soupy sales. The root node is shown in Figure 1a. We
build a graph showing how words occur before and after
the phrase in the root node after processing all the posts
on the topic. The graph can be thought of as containing

two halves: a sub-graph to the left of the root node
containing words occurring in specific positions to the
left of the root node’s phrase and a similar sub-graph
to the right of the root node.

To construct the left-hand side, the algorithm starts
with the root node. It reduces the set of input posts
to the set of posts that contain the current node’s
phrase. The current node and the root node are initially
the same. Since every input sentence is guaranteed
to contain the root phrase, our list of posts does not
change initially. Subsequently, the algorithm isolates
the set of words that occur immediately before the
current node’s phrase. From this set, duplicate words
are combined and assigned a count that represents how
many instances of those words are detected. For each
of these unique words, the algorithm adds them to the
graph as nodes with their associated counts to the left
of the current node.

In the graph, all the nodes are all in lower-case and
stripped of any non-alpha-numeric characters. Words
are tokenized in this manner in order to increase the
amount of overlap among words. The count of the
associated node’s phrase is exactly the number of
matches within the set of input posts that have the
same position and word sequence relative to the root
node. Nodes with a count less than two are not actually
added to the graph since the algorithm is looking for
overlapping phrases. The algorithm continues this
process recursively for each node added to the graph
until all the potential words have been added to the
left-hand side of the graph.

The algorithm repeats these steps symmetrically for
the right-hand side of the graph. At the completion
of the graph building process, the graph looks like the
one in Figure 1b. Usually, nodes with a count less than
two are not even added to the graph but in order to
help illustrate our graph without a volume of example
data, we temporarily add these nodes to the graph.
Since we originally allow non-overlapping phrases, we
now reinstate that restriction by pruning the graph of
any sub-trees containing nodes with a count less than
2. This reduces the graph to the one in Figure 1c.

Weighting Individual Word Nodes The algorithm
prepares for the generation of summaries by weighting
individual nodes. Node weighting is performed to
account for the fact that some words have more
informational content than others. For example, the
root node soupy sales contains no information since
it is common to every input sentence so we give it a
weight of zero. Common stop words are noisy features
that do not help discriminate between phrases so we
give them a weight of zero as well. Finally, for the
remaining words, we first initialize their weights to the
same values as their counts. Then, to account for the
fact that some phrases are naturally longer than others,
we penalize nodes that occur farther from the root node

The Computer Journal, Vol. ??, No. ??, ????

6 B. Sharifi

(a) Phrase Reinforcement root node for topic Soupy Sales.

(b) Fully constructed PR graph (allowing non-overlapping words/phrases).

(c) Fully constructed PR graph (requiring overlapping words/phrases).

(d) Fully constructed weighted PR graph (requiring overlapping words/phrases).

(e) Fully constructed PR graph for second half of summary. This demonstrates best complete summary.

FIGURE 1: Progression during the Phrase Reinforcement Algorithm

by an amount that is proportional to their distance:

weight(node) = (1)

count(node)� distance(node) ⇤ logb count(node).

The logarithm base b is a parameter and can be
used to tune the algorithm towards longer or shorter
summaries. For aggressive summarization (higher
precision), the base can be set to small values (e.g., 2 or
the natural logarithm ln). While for longer summaries
(higher recall), the base can be set to larger values (e.g.,
100). Weighting our example graph gives the graph in
Figure 1d. We assume the logarithm base b is set to 10
for helping generate longer summaries.

Generating Summaries In order to generate a sum-
mary, the algorithm looks for the most overlapping
phrase within the graph. Since the nodes’ weights
are proportional to their overlap, the algorithm has
to search for the phrase with the most weight. First,
we create the left partial summary by searching for all
paths (using a depth-first search algorithm) that begin
at the root node and end at a node on the left. The path
with the most weight is chosen. Assuming the algorithm
produces the graph shown in Figure 1d, the path with
most weight on the left-hand side of the root node has a
weight of 5.1 including the root node and contains the
nodes rip, comedian and soupy sales. Thus, the best

The Computer Journal, Vol. ??, No. ??, ????

Summarization of Twitter Microblogs 7

left partial summary is rip comedian soupy sales.
We repeat the partial summary creation process for

the right-hand side of the current root node soupy sales.
Since we want to generate phrases that are actually
found within the input sentences, we reorganize the tree
by placing the entire left partial summary, rip comedian
soupy sales in the root node. This way, when we filter
our input sentences to those containing this phrase,
we can only generate phrases found within the input
sentences. Assume we get the path shown in Figure 1e
as the most heavily weighted path on the right hand
side. The full summary generated by the algorithm for
our example is: rip comedian soupy sales dies at age 83.

Post-processing This summary has lost its case-
sensitivity and formatting since these features were
removed to increase the amount of overlap among
phrases. To recover these features, we perform a
simple best-fit algorithm between the summary and
the set of input sentences to find a matching phrase
that contains the summary. We know such a matching
phrase exists within at least two of the input sentences
since the algorithm only generates summaries from
common phrases. To find such a phrase, we divide
our summary into an ordered list of tokens. For
each input sentence, we search for the occurrence of
each token in order that they occur in the produced
summary token list. However, since we do not know
exactly how many formatting characters are between
each token, we permit up to a threshold number of
intervening characters between each summary token.
Once, we find the first matching phrase, this phrase
is our final summary. For our example, the algorithm
would produce the following final summary:

RIP Comedian Soupy Sales dies at age 83.

6.2. Hybrid Document TF-IDF Summariza-

tion

After analyzing the results obtained by the Phrase
Reinforcement approach, we notice that it significantly
improves upon our earlier results obtained using
näıve single-document(-sentence) summarizers but still
leaves room for improvement as its performance only
halves the difference between the random and manual
summarization methods (see Section 8.3). Therefore,
we develop another approach based upon a classical
technique dating back to early summarization work
performed by [4].

6.2.1. TF-IDF
Term Frequency Inverse Document Frequency (TF-
IDF) is a statistical weighting technique that has
been applied to many types of information retrieval
problems. For example, it has been used for automatic
indexing [52], query matching of documents [53], and
automated summarization [54]. Generally TF-IDF

is not known as one of the leading algorithms in
automated summarization.
For straightforward automated summarization, the

application of TF-IDF is fairly simplistic. The idea is to
assign each sentence within a document a weight that
reflects the sentence’s saliency within the document.
Once each sentence has been weighted, the sentences are
ordered by their weights from which the top k sentences
with the most weight are chosen as the summary. The
weight of a sentence is the summation of the individual
term weights within the sentence. Terms can be words,
phrases or any other type of lexical feature [55]. To
determine the weight of a term, we use the formula:

TF IDF = tf ij ⇤ log2
N

df j

(2)

where tf ij is the frequency of the term Tj within the
document Di, N is the total number of documents, and
df j is the number of documents within the set that
contain the term Tj [52].
The TF-IDF value is composed of two primary

parts. The term frequency component (TF) assigns
more weight to words that occur frequently within a
document because important words are often repeated
[4]. The inverse document frequency component (IDF)
compensates for the fact that some words such as
common stop words are frequent. Since these words
do not help discriminate between one sentence or
document over another, these words are penalized
proportionally to their inverse document frequency (the
logarithm is taken to balance the effect of the IDF
component in the formula). Therefore, TF-IDF gives
the most weight to words that occur most frequently
within a small number of documents and the least
weight to terms that occur infrequently or occur within
the majority of the documents.
One noted problem with TF-IDF is that the formula

is sensitive to document length. Singhal et al. note
that longer documents have higher term frequencies
since they often repeat terms while also having a
larger number of terms [55]. This does not have
any ill effects on single document summarization.
When generating a summary from multiple documents,
however, this becomes an issue because the terms within
the longer documents have more weight. To compensate
for this problem, many normalization methods have
been proposed. Some example methods include
cosine normalization, maximum tf normalization, byte
length normalization and pivoted document length
normalization [55]. We experimented with several
schemes and found that the simple normalization
method given in (Equation 7) works well for us. This
ensures that even documents that are really short have
a minimum amount of contribution to the weight.

6.2.2. Algorithm
Equation (2) defines the weight of a term in the context
of a document. However, we do not really have a

The Computer Journal, Vol. ??, No. ??, ????

8 B. Sharifi

document in the conventional sense although we have
been using the term document to refer to a short Twitter
post so far. We are dealing with a set of microblog
posts that are each limited to at most 140 characters in
length. Each document expresses a short thought on a
topic and several such short documents may be needed
to expresses an even a moderately complex thought or
discussion. So, one question we may pose is whether
it is necessary to tweak what we consider a document
for the TF-IDF computation to work. One option is
to define a single (macro-) document that encompasses
all the documents (posts) together. In this case, the
TF component’s definition is straightforward since we
can compute the frequencies of the terms across all the
posts in this (macro-) document. However, doing so
causes us to lose the IDF component since we only have
a single (macro-) document. On the other extreme, we
could characterize each post as a document—following
the traditional approach we have used in our discussions
in this paper so far—making the IDF component’s
definition clear. But, the TF component now has a
problem because each document (post) contains only a
handful of words, and therefore, most term frequencies
will be a small constant for a given document.

To handle this situation, we redefine TF-IDF in terms
of a hybrid document. We primarily define a document
as a single post. However, when computing the term
frequencies, we assume a (macro-) document containing
the entire collection of these short documents (posts).
Therefore, the TF component of the TF-IDF formula
uses the entire collection of documents (posts) while
the IDF component treats each post as a separate
document. This way, we have differentiated term
frequencies but also do not lose the IDF component.
For our purposes, a term is a single word in a document.

We next choose a normalization method since
otherwise the TF-IDF algorithm will always bias
towards longer documents. We normalize the weight of
a document by dividing it by a normalization factor.
Since common stop words do not help discriminate
the saliency of documents, we give each of these types
of words a weight of zero by comparing them with
a prebuilt list. Given this, our definition of the
TF-IDF summarization algorithm is now complete for
microblogs. We summarize this algorithm below in
Equations (3)-(7).

W (S) =

P#WordsInSentence

i=0 W (wi)

nf(S)
(3)

W (wi) = tf(w) ⇤ log2(idf(wi)) (4)

tf(wi) =
#OccurrencesOfWordInAllPosts

#WordsInAllPosts
(5)

idf(wi) =
#SentencesInAllPosts

#SentencesInWhichWordOccurs
(6)

nf(S) = max[MinimumThreshold, (7)

#WordsInSentence]

where W is the weight assigned to a sentence or a word,
nf is a normalization factor, wi is the ith word, and S

is a sentence.

6.2.3. Discussion
The essence of the Hybrid TF-IDF algorithm is its
ability to assign meaningful term frequency and inverse-
document frequency values to a very short document
type while also being able to carefully control the overall
weight and length of the target document. By defining
the term frequencies in terms of the entire set of words
within all of the candidate Twitter documents, we have
a much more representative set in order to judge a
word’s natural frequency compared to using a single
document. Using only a single Twitter document would
have resulted in all of the words having about the same
small term frequency since it is unlikely a word would
ever occur more than once within a single document
or two. Conversely, by choosing to use individual
documents for defining the inverse document frequency,
we are able to measure and weigh terms based on how
often those terms occur across documents. Words that
occur too frequently across the majority of documents
are most likely either the candidate phrase (which
by definition is in every document) or unknown stop
words. In either of these cases, these types of words do
not provide much discriminatory power. Alternatively,
words that occur with some higher frequency but not
in every document provide much greater discriminatory
power. Therefore, by defining a document in a hybrid
way, we have maximized the amount of information
available for both the term frequency and inverse-
document frequency components within the classical
TF-IDF equation.
One other important contribution of the Hybrid TF-

IDF equation is its normalization factor which allows it
to carefully control the overall target summary length.
As noted by [55] and noted earlier in this paper,
classical TF-IDF is very sensitive to document length
and often over-weighs terms from longer documents.
In our application of TF-IDF, we observed the same
effect. Without a normalization factor, classical TF-
IDF awarded the most weight to the longer documents
since the weight of a document is the simple sum of the
weights of the composing words. Therefore, initially
our implementation of TF-IDF resulted in simply the
longest documents always awarded the most weight. In
order to counteract this effect, we divide the weight
of a document by our normalization factor which is
just the maximum of either a predefined constant (i.e.
the Minimum Threshold) or the number of words in
the document. The Minimum Threshold is simply the
average desired target document length. In our case,
we set the constant to the average document length of
our manual summaries of around 10 words or so.
The document weight normalization factor has the

following effect. For documents that are longer than

The Computer Journal, Vol. ??, No. ??, ????

Summarization of Twitter Microblogs 9

the target summary length, these documents become
increasingly penalized for every word that is longer
than the target length. Where the longest document
would before have had the greatest overall weight, these
sentence weights get reduced to their average term
weight since we are dividing the sum of term weights by
the number of terms. The longer the document, the less
average term weight it will likely contain. Alternatively,
for documents shorter than the target summary length,
these documents will also get penalized since they will
be divided by a number larger than the number of terms
in the document. This is important since if we had
just divided by the number of terms like the previous
case, the formula would bias towards the shortest
documents since they would have the highest average
term weight. Therefore, we penalize shorter documents
as well by dividing the weight of shorter documents
by the minimum threshold which has the effect of
adding (MinimumThreshold � #WordsInSentence)
zero-weight terms to the document. Finally, the
combination of meaningful term frequencies, inverse
document frequencies, and deliberate control of the
overall target summary length give the Hybrid TF-
IDF algorithm the discriminatory power to differentiate
the most salient documents of a desired length within
the collection of available documents for a given topic
phrase.

7. EXPERIMENTAL SETUP AND EVALU-

ATION METRICS FOR SUMMARIES

7.1. Data Collection and Pre-processing

For five consecutive days, we collected the top ten
currently trending topics from Twitter’s home page at
roughly the same time every evening. For each topic,
we downloaded the maximum number of documents
(approximately 1500). Therefore, we had 50 trending
topics with a set of 1500 documents for each.

7.2. Preprocessing the Posts

Because microblog documents are an unstructured and
informal way of communicating, the documents were
preprocessed to remove spam and other noise features.
These pre-processing steps included the following.

1. Convert any HTML-encoded characters into
ASCII.

2. Convert any Unicode characters (e.g. “\u24ff”)
into their ASCII equivalents and remove. Since we
are dealing with English tweets only, we remove
Unicode characters outside the ASCII range.

3. Filter out any embedded URL’s (e.g. “http://”),
HTML (e.g. “<a.../a>”), headings (e.g.
“NEWS:”), references (e.g. “[...]”), tags (e.g.
“<...>”), and retweet phrases (e.g. “RT” and
“@AccountName”).

4. Discard the document if it is spam. We developed

a Näıve Bayes classifier for spam detection among
Twitter posts [47].

5. Discard the document if it is not in English. We use
some simple heuristics to determine the language
of a post.

6. Discard the document if another document by the
same user has already been acquired. This is to
obtain a wider variety of posts.

7. Reduce the remaining number of documents by
choosing the first 100 posts. This is done so that
our volunteers can write manual summaries needed
for evaluation using the same 100 posts as used by
the algorithms.

8. Break the document into sentences. Most tweets
have only one sentence.

9. Detect the longest sentence that contains the topic
phrase and use it to represent the document. This
step helps filter out extraneous noise sentences such
as “Wow!” or “That’s funny.”

These pre-processing steps and their rationale are
described more fully in [47].

7.3. Evaluation Methods

There is no definitive standard against which one can
compare the results from an automated summarization
system. Summary evaluation is generally performed
using one of two methods: intrinsic, or extrinsic. In
intrinsic evaluation, the quality of the summary is
judged based on direct analysis using a number of
predefined metrics such as grammaticality, fluency, or
content [3]. Extrinsic evaluations measure how well
a summary enables a user to perform some form of
task [51].
To perform intrinsic evaluation, a common approach

is to create one or more manual summaries and to
compare the automated summaries against the manual
summaries. One popular automatic evaluation metric
that has been adopted by the Document Understanding
Conference since 2004 is ROUGE. ROUGE is a suite
of metrics that automatically measure the similarity
between an automated summary and a set of manual
summaries [56]. One of the simplest ROUGE metrics is
the ROUGE-N metric:

ROUGE-N =

P

s2MS

P

n-grams2s match(n-gram)
P

s2MS

P

n-grams2s count(n-gram)
.

(8)
Here, MS is the set of manual summaries, n is the
length of the n-grams, count(n-gram) is the number of
n-grams in the manual summary, and match(n-gram)
is the number of co-occurring n-grams between the
manual and automated summaries.
Both precision and recall of the automated summaries

can be computed using related formulations of the
ROUGE metric. Given that MS is the set of manual
summaries and u is the set of unigrams in a particular

The Computer Journal, Vol. ??, No. ??, ????

10 B. Sharifi

manual summary, recall can be defined as

r = ROUGE-1 =

P

m2MS

P

u2m match(u)
P

m2MS

P

u2m count(u)

✓

=
matched

relevant

◆

,

(9)
where count(u) is the number of unigrams in the
manual summary and match(u) is the number of co-
occurring unigrams between the manual and automated
summaries. The ROUGE metric can be slightly altered
so that it measures the precision of the auto summaries
such that

p = ROUGE-10 =

P

m2MS

P

u2m match(u)

| MS | ⇤
P

u2a count(u)

✓

=
matched

retrieved

◆

,

(10)
where | MS | is the number of manual summaries and a

is the auto summary. Because both recall and precision
are important in summaries, the F-measure, which is
a type of average of precision and recall, is computed
such that

F-measure =
2pr

p+ r
. (11)

We weigh precision and recall equally since that is the
practice in all summarization literature as far as we
know.

Lin performed evaluations to understand how well
different forms of ROUGE’s results correlate with
human judgments [56]. One result of particular
consequence for our work is his comparison of ROUGE
with the very short (around 10 words) summary task of
DUC 2003. In DUC 2003, the documents summarized
were proper newspaper articles from sources such as
AP newswire (1998-2000), New York Times (1998-
2000), Financial Times of London (1991-1994) and The
Los Angeles Times (1989-1990). The source articles
were of normal length although various types of short
summaries were produced. In our case, the source
documents themselves are at most 140 characters or
about 10 words or so long. Lin found ROUGE-1
and other ROUGEs to correlate highly with human
judgments for very short summaries. Since this task
is similar to creating microblog summaries in that
the resulting summaries are short in both cases, we
implement ROUGE-1 as a metric.

Evaluation of text summarization is a complex and
controversial issue in computational linguistics [57].
There have been a few studies trying to determine
a good measure of summary quality for extractive
summaries besides ROUGE. Liu and Liu [58, 59]
demonstrate that ROUGE metrics correlate well with
human summaries when applied to transcripts of
meetings transcripts, after the metrics were slightly
modified to take into account characteristics of the
domain such as disfluencies and speaker information.
Many complex methods have been proposed (e.g., [57,
60]), but no one has conclusively shown that any of the
newly proposed methods work well in all situations. For
example, Saggion et al. [57] show that the correlation

between metrics such as Pyramids, Responsiveness and
ROUGE is strong for some datasets, but not for others.
By all accounts, ROUGE is still the most widely used
summarization evaluation framework [57]. We want
to leave this complex task of determining if metrics
other than ROUGE-1 work better for tweets to a future
researcher since it will be a paper by itself. In fact, our
current understanding is that it is difficult to find a
perfect metric. To overcome limitations of ROUGE, we
use manual evaluations as well.
Since we want some certainty that ROUGE-1

correlates with a human evaluation of automated
summaries, we also implement a manual metric used
during DUC 2002: the Content metric which asks a
human judge to measure how complete an automated
summary expresses the meaning of a human summary.

8. EVALUATION OF SINGLE-DOCUMENT

SUMMARIES

8.1. Manual Summaries

We asked two volunteers to generate a complete set of 50
manual summaries for all topics. The volunteers were
instructed to generate the best summary possible in
140 characters or less while using only the information
contained within the documents (see Table 1).

8.1.1. Manual Summary Evaluation
The manual summaries generated by our two volunteers
are semantically very similar to one another but have
different lengths and word choices. We use ROUGE-1
to compare the manual summaries against one another.
We compare the manual single-document summaries
against one another bi-directionally by assuming either
set was the set of automated summaries. We do
the same using the Content metric in order to
understand the semantic similarity between the two
summaries. By evaluating our two manual summaries
against one another, we help establish practical upper
limits of performance for automated single-document
summaries. These results in addition to the results of
the preliminary algorithms collectively establish a range
of expected performance for our primary algorithms for
single-document summarization.
To generate the Content performance, we asked a

volunteer to evaluate how well one single-document
summary expressed the meaning of the corresponding
manual summary. The average results for computing
the ROUGE-1 and Content metrics on the manual
summaries are shown in Table 2.

8.2. Performance of Näıve Algorithms for

Single-Document Summarization

The generation of random sentences produces an
average recall of 0.23, an average precision of 0.22, and
an F-measure of 0.23. These results are higher than we

The Computer Journal, Vol. ??, No. ??, ????

Summarization of Twitter Microblogs 11

TABLE 1: Examples of Manual Summaries

Topic Manual Summary 1 Manual Summary 2

#BeatCancer Every retweet of #BeatCancer will result in 1 cent
being donated towards Cancer Research.

Tweet #beatcancer to help fund cancer research

Kelly Clarkson Between Taylor Swift and Kelly Clarkson, which
one do you prefer.....?

Taylor Swift v. Kelly Clarkson

#MM #mm: Users post about their It’s Music Monday on Twitter!
favorite song, band, or line.
Same as #MusicMonday

Gossip Girl Gossip Girl’s fans hope that Chuck and Blair
make up their relationship by the next episode.

Chuck and Blair’s relationship in question after
Gossip girl episode

TABLE 2: Average ROUGE-1, Content scores, and
Length for manual summaries

Rouge-1
Content Length

F Precision Recall

Manual 1 0.34 0.31 0.37 4.4 11

Manual 2 0.34 0.37 0.31 4.1 9

Average 0.34 0.34 0.34 4.2 10

TABLE 3: Content Performance for Naive Summaries

Content Performance

Manual Average 4.1

Random Sentence 3.0

Shortest Sentence 2.2

originally anticipated given that our average manual F-
measure is only 0.34 (See Table 2). Careful examination
explains these results by considering two factors. Some
overlap is explained because the ROUGE-1 metrics
include common words. Second, while we call our first
preliminary approach “random”, we introduce some
bias into this approach by our preprocessing steps
discussed earlier.

To understand how random sentences are compared
to manual single-document summaries, we present
Content performance in Table 3. This table indicates
that the random sentence approach generated a Content
score of 3.0 on a scale of 5. In addition to choosing
random sentences, we also chose random documents
(posts)—which include the non-topic sentences. As
expected, this slightly improves the recall scores over
the random sentence approach (0.24 vs. 0.23) but
worsens the precision (0.17 vs. 0.22).

The random document (post) approach produces an
average length of 15 words while the random sentence
averaged 12 words. Since the random sentence approach
is closer to the average manual summary length, it
scores higher precision. Overall, the random sentence
approach produces a summary that is more balanced in
terms of recall and precision and a higher F-measure as
well (0.23 vs. 0.20).

The length-based second preliminary approach is
unsurprisingly disappointing. The shortest sentence
and shortest post approaches generate far too short

summaries, averaging only two or three words in length.
Because of their short length, these two approaches
generate very high precision but fail horribly at recall,
scoring less than either of the random approaches.
Choosing the longest sentence and longest post has the
exact opposite problem. These two approaches generate
fairly good recall (approximately the average manual
recall) but very low precision.
These results demonstrate a limitation of ROUGE-1:

to achieve a high combined ROUGE-1 score (i.e., F-
measure), the number of tokens in the automated and
manual summaries must be similar to each other since
ROUGE-1 is simply comparing unigrams. Therefore,
when using the ROUGE-1 metric, one must assure
that the manual and automated summaries have similar
lengths.

8.3. Performance of Phrase Reinforcement Al-

gorithm for Single-Document Summariza-

tion

The PR (Phrase Reinforcement) algorithm generates
summaries using complete documents as input since it
builds a connected graph of words around the central
topic. The algorithm ignores punctuation and treats
documents as a sequence of words.
Table 4 displays ROUGE-1 performance for the PR

algorithm using a logarithm base of 100 for the weight
of a node as described in Equation 1. The table
also displays ROUGE-1 results we computed earlier for
the manual and randomly generated summaries which
represent our expected range of results. The algorithm
produces an average recall of 0.30, an average precision
of 0.31, and a combined F-measure of 0.30. This is
a significant improvement over the random sentence
approach. However, it still leaves some room for
improvement since the manual summaries had an F-
measure of 0.34.
The PR algorithm generates an average Content

metric score of 3.66 (see Table 4). This score also shows
an improvement over the random summaries. Table 4
indicates that the PR summaries are on average only
two words longer in length than the average manual
summary and equal to the length of the average random
sentence. A sample of summaries is presented below in

The Computer Journal, Vol. ??, No. ??, ????

12 B. Sharifi

TABLE 4: ROUGE-1, Content and Length for the PR summaries

ROUGE-1
Content Length

F Precision Recall

Manual Average 0.34 0.34 0.34 4.2 10

Random Sentence 0.23 0.22 0.23 3.0 12

PR Phrase (log 100) 0.30 0.31 0.30 3.7 12

FIGURE 2: ROUGE-1 performance for different weightings of the Phrase Reinforcement algorithm.

Table 5.

The PR algorithm is able to tailor the length of its
summaries by adjusting the weights of nodes as defined
by Equation 1. For example, by assigning less weight
to nodes farther from the root phrase, the algorithm
prefers more common shorter phrases over less common
longer phrases. We vary the logarithm base for a variety
of values while measuring its effect on performance and
average summary length.

In Figures 2 and 3, we can see the effect of varying
the weighting parameter b within Equation 1. There
appears to be a threshold (in our case of when b ⇡
100) for which smaller values of b begin reducing
the average summary length. As b decreases, the
algorithm begins trading ROUGE-1 recall performance
for precision performance. The Content performance
also decreases as b decreases. Above this threshold,
the average summary length does not increase while the
ROUGE-1 and Content performance begins to degrade
slightly. While the particular threshold may vary
for different sizes of testing data, we can generalize
that the weighting parameter b affects the resulting
length and performance of the algorithm. However,
beyond a certain threshold, the performance of the PR
algorithm is relatively stable. In Figure 2, the label “PR
Phrase (NULL)” indicates the absence of the weighting
parameter altogether. In these cases, we simply use a
node’s count as its weight

8.4. Performance of the Hybrid TF-IDF Algo-

rithm

In Figure 5, we present the results of the Hybrid TF-
IDF algorithm for the ROUGE-1 metric in relation to
all of our previous results. The TF-IDF results are
denoted as ”TF-IDF Sentence (11)” to distinguish the
fact that the TF-IDF algorithm produces one sentence
instead of a phrase for summaries and that a threshold
of 11 words for the normalization factor is used. The
TF-IDF algorithm produces an average recall of 0.31, an
average precision of 0.34, and a combined F1-Measure
of 0.33. These values are very close to the performance
levels of our manual summaries of 0.34. Furthermore,
they are better than our Phrase Reinforcement results.
We evaluate the automated summaries against the

manual summaries using the Content metric in order
to understand whether or not we are truly achieving
human-comparable summaries. The results of the
Content evaluation are in Figure 6. Remarkably, the
TF-IDF algorithm’s Content performance of 4.1 is also
very similar to the manual summaries’ performance of
4.2. This score is also higher than the average Content
score of the Phrase Reinforcement algorithm which was
3.66.
Figure 7 displays the average length of the TF-

IDF summaries. Interestingly, the TF-IDF summaries
are one word shorter on average than the manual
summaries with an average length of 9 words. In fact,

The Computer Journal, Vol. ??, No. ??, ????

Summarization of Twitter Microblogs 13

FIGURE 3: Average summary lengths for different weightings of the Phrase Reinforcement algorithm.

FIGURE 4: Content performance for different weightings of the Phrase Reinforcement algorithm.

this is the exact average length of the second set of
manual summaries.

Finally, we present a selection of summaries for the
TF-IDF algorithm from our testing topics in Table 6.

8.4.1. Normalization
In Section 6.2, we noted that the TF-IDF equation is
sensitive to a document’s length, and so we decided it
was necessary to normalize the length of the sentence.
Prior to normalizing the length of a sentence, our
average sentence length of a summary using TF-IDF
was 20 words, much greater than our average manual
sentence length of 10 words. We normalize the length of
a sentence rather than normalizing the term weights for
two reasons: (1) the sentence length had a much greater

influence than the over-estimation of term weights and
(2) we use a hybrid definition of a document which
may or may not have been relevant to the standard
normalization techniques.

After many experiments, we settled on our normal-
ization factor: the maximum of a minimum threshold
and the number of words in the sentence. The mini-
mum threshold is simply an integral number of words
and approximately represents the desired average sum-
mary length. Given this definition, the normalization
factor is then used as a divisor into the sentence weight.
By choosing the maximum of either a threshold or the
sentence length, we are able to control the average sum-
mary length. In fact, we can produce a spectrum of
average summary lengths simply by using a range of

The Computer Journal, Vol. ??, No. ??, ????

14 B. Sharifi

TABLE 5: Summaries produced by the Phrase Reinforcement algorithm

Topic PR Phrase (log 100)

#BeatCancer For every tweet tagged with #BeatCancer, eBay & Miller/Coors will donate $.01 to cancer.

A-Rod A-Rod homers in third straight game

National League Phillies defeat Dodgers to take the National League Championship Series.

Angels #Dodgers lost 11-0, #Angels lost 10-1.

Russian Roulette listening to rihanna’s new song russian roulette

Dodgers Phillies dump Dodgers for World Series return

Glee Thong song on Glee!

Apple Fires Back Apple Fires Back at Windows 7 in New Ads - Apple’s “I’m a PC” and “I’m a Mac” dynamic ad duo
are at it again i...

Balloon Boy Balloon Boy Mom Admits to Hoax : According to court records made public today, Mayumi Heene,
Ball..

FIGURE 5: ROUGE-1 performance for Hybrid TF-IDF
algorithm.

minimum thresholds.
We next compute the average ROUGE-1 and Content

performance levels for different minimum thresholds in
order to determine an optimal threshold for our testing
data. Since ROUGE-1 measures unigram overlap
between the manual and automated summaries, our
initial guess of an optimal threshold is one that produces
an average summary length equal to the average manual
summary length of 10 words. Exhaustive experiments
show 11 to be the ideal length for our purpose.

As seen in Figures 8 and 9, by varying the
normalization threshold, we are able to control the
average summary length and resulting ROUGE-1
metrics. Furthermore, there appears to be an inflection
point at a threshold of 12 words where the precision and
recall performance levels cross. This inflection point is
where the average TF-IDF summary length is equal to
the average manual summary length. Therefore, we can
use the threshold to control whether we desire better
precision, recall, or a balance of these two values for
the produced TF-IDF summaries. More interestingly,

FIGURE 6: Content performance for the Hybrid TF-
IDF algorithm.

TABLE 6: Summaries produced by the Hybrid TF-IDF
algorithm

Topic TF-IDF Sentence (11)

#musicmonday #musicmonday damn have you guys
heard the new gaga song?

#BeatCancer Every tweet that includes #beatcancer
raises money for cancer research.

Paranormal Activity Paranormal Activity iz a scary
movie!

#clubrules #clubrules ladies don’t wear smudgy
make-up.

Balloon Boy Balloon Boy’s Mom Admitted Hoax to
the Cops!

we do not necessarily need to compromise on Content
performance while varying the summary length as seen
in Figure 10.

9. ALGORITHMS FOR MULTI-

DOCUMENT SUMMARIZATION

Having produced single-document summaries using sev-
eral algorithms and having analyzed them exhaustively,
we now want to consider producing summaries contain-
ing multiple documents, which we call multi-document

The Computer Journal, Vol. ??, No. ??, ????

Summarization of Twitter Microblogs 15

FIGURE 7: Average summary length for Hybrid TF-
IDF algorithm.

FIGURE 8: Rouge-1 performance vs. threshold for
Hybrid TF-IDF algorithm

summaries. As discussed in the beginning of this paper,
the set of documents returned by a Twitter API search
for a certain topic may actually represent several sub-
topics or themes. Thus, instead of producing single-
document summaries, it may be more appropriate to
produce several summaries corresponding to the multi-
ple themes present within a set of posts. Therefore, we
extend our algorithms for single-document summaries
to produce multi-document summaries. We compare
the performance of our multi-document summarization
algorithms with several baselines as well as other well-
known state-of-the-art multi-document summarization
algorithms.

10. PRIMARY ALGORITHMS FOR MULTI-

DOCUMENT SUMMARIZATION

We develop and explore two primary algorithms for
producing summaries containing multiple documents in
this paper. The first method clusters documents into k

FIGURE 9: Average Length Vs. Weight for Hybrid
TFIDF algorithm for various normalization thresholds

FIGURE 10: Content performance vs. threshold for
Hybrid TF-IDF algorithm

clusters and then summarizes each cluster individually.
The second method computes the Hybrid TF-IDF
weights of documents and selects the top k documents
filtered by a similarity threshold so that the documents
in the summary are not too similar. We perform
preliminary testing of microblog document clustering
to select the best clustering method for the cluster
summarizer.

10.1. Cluster Summarizer

10.1.1. Clustering Algorithms
The standard centroid based k-means algorithm is the
foundation of all the clustering algorithms tested in
this paper. Because the standard k-means algorithm
generally performs well and is easy to implement [39],
it was tested first. The bisecting k-means algorithm
was tested next because it may perform better than
the direct k-means algorithm as suggested in [39, 61].
The k-means++ algorithm, which is a new variation
of k-means algorithm proposed and initially tested

The Computer Journal, Vol. ??, No. ??, ????

16 B. Sharifi

by [62], was then tested. Finally, an algorithm that
combines the k-means++ algorithm with the bisecting
algorithm was tested hoping to combine the benefits of
the k-means++ algorithm and the bisecting k-means
algorithm.

The primary measure of similarity used is the cosine
similarity measure:

sim(si, sj) = cos(vi, vj) =
vtivj

kvikkvjk
. (12)

The centroid ci 2 C is defined as

ci =

P

v2Vi
v

ni

(13)

in which ni is the number of posts and Vi is the set
of feature vectors in ith cluster. The steps of each
clustering algorithm are outlined as follows.

1. Standard k-means algorithm

(a) Randomly choose k initial centroids ci 2 V

from the computed feature vectors vi 2 V .
(b) Assign each document pi to the centroid that

is most similar to its corresponding feature
vector vi.

(c) Compute the centroid of each cluster.
(d) Repeat steps 1b and 1c until no documents

are reassigned.

2. Bisecting k-means algorithm

(a) Bisect the set of documents P into 2 clusters
using the standard k-means algorithm (k0 =
2) defined by algorithm 1 above.

(b) Choose the largest already formed cluster to
bisect.

(c) Repeat steps 2a and 2b until the kth cluster
has been formed.

3. k-means++ algorithm

(a0) Choose initial centroids based on probability.

i. Choose an initial centroid c1 uniformly at
random from V .

ii. Choose the next center ci, selecting ci =

v0 2 V with the probability D(v0)2
P

v2V
D(v)2

where D(v) is the shortest Euclidean
distance from v to the closest center
which is already known.

iii. Repeat step 3a0ii until k initial centroids
have been chosen.

(b-d) Continue with steps 1b-1d of algorithm 1.

4. Bisecting k-means++ algorithm

(a) Follow step 2a of the bisecting algorithm
above except use the k-means++ algorithm
instead of using the standard k-means
algorithm.

(b-c) Continue with the bisecting k-means cluster-
ing algorithm defined in steps 2b-2c.

10.1.2. Cluster Summarizer Used
We decided to use the bisecting k-means++ algorithm
since it seems to provide the best results for our
purposes. The results of comparing various clustering
algorithms with Twitter documents are discussed
in Section 12.2.2. Thus, our first multi-document
summarizer is a cluster summarizer that clusters the
input documents based on the bisecting k-means++
algorithm. Then, it summarizes each cluster with the
original Hybrid TF-IDF algorithm.

10.2. Hybrid TF-IDF with Similarity Thresh-

old

The single-document Hybrid TF-IDF algorithm devel-
oped has been discussed in Section 6.2. It weights all
the sentences based on the Hybrid TF-IDF weighting
of sentences explained. Originally, the algorithm only
selected the best summarizing topic sentence, but we
modified it to select the top k most weighted documents
that do not have a similarity above a given threshold
t because the top most weighted sentences of the mod-
ified Hybrid TF-IDF summarizer may be very similar
or discuss the same subtopic. This similarity threshold
filters out a possible summary post s0i if it satisfies the
following condition:

sim(s0i, sj) > t

8sj 2 R where R is the set of posts already chosen
for the final summary and t is the similarity threshold.
Using the cosine similarity measure defined in section
10.1.1, the threshold was varied from 0 to 0.99 in
increments of 0.01 for a total of 100 tests to find the
best threshold to use.

11. ADDITIONAL SUMMARIZATION AL-

GORITHMS TO COMPARE RESULTS

We compare the results of summarization of the two
newly introduced algorithms with baseline algorithms
and well-known multi-document summarization algo-
rithms. The baseline algorithms include a Random
summarizer and a Most Recent summarizer. The other
algorithms we compare our results with are SumBasic,
MEAD, LexRank and TextRank.

11.1. Random Summarizer

This summarizer randomly chooses k posts for each
topic as a summary. This method was chosen in order
to provide worst case performance and set the lower
bound of performance.

11.2. Most Recent Summarizer

This summarizer chooses the most recent k documents
from the selection pool as a summary. It is analogous to
choosing the first part of a news article as summary. It
was implemented because often intelligent summarizers

The Computer Journal, Vol. ??, No. ??, ????

Summarization of Twitter Microblogs 17

cannot perform better than simple summarizers that
just use the first part of the document as summary.

11.3. SumBasic

SumBasic [11] uses simple word probabilities with an
update function to compute the best k posts. It was
chosen because it depends solely on the frequency of
words in the original text and is conceptually very
simple.

11.4. MEAD

This summarizer8 [40] is a well-known flexible and
extensible multi-document summarization system and
was chosen to provide a comparison between the more
structured document domain—in which MEAD works
fairly well—and the domain of Twitter posts being
studied. In addition, the default MEAD program is
a cluster based summarizer so it will provide some
comparison to our cluster summarizer.

11.5. LexRank

This summarizer [14] uses a graph-based method that
computes pairwise similarity between two sentences—
in our case two documents—and makes the similarity
score the weight of the edge between the two sentences.
The final score of a sentence is computed based on
the weights of the edges that are connected to it.
This summarizer was chosen to provide a baseline for
graph based summarization instead of direct frequency
summarization. Though it does depend on frequency,
this system uses the relationships among sentences to
add more information and is therefore a more complex
algorithm than the frequency-based ones.

11.6. TextRank

This summarizer [15] is another graph-based method
that uses the PageRank [16] algorithm. This provided
another graph-based summarizer that incorporates
potentially more information than LexRank since
it recursively changes the weights of documents.
Therefore, the final score of each document is not
only dependent on how it is related to immediately
connected documents but also how those documents
are related to other posts. TextRank incorporates the
whole complexity of the graph rather than just pairwise
similarities.

12. EXPERIMENTAL SETUP FOR MULTI-

DOCUMENT SUMMARIZATION

12.1. Manual Summarization

12.1.1. Choice of k
An initial question that we must answer before using
any multi-document extractive summarizer on a set

8http://www.summarization.com/mead/

of Twitter documents is the question of how many
documents are appropriate in a summary. Though it
is possible to choose k automatically for clustering [63],
we decided to focus our experiments on summaries
with a predefined value of k for several reasons.
First, we wanted to explore other summarization
algorithms for which automatically choosing k is not
as straightforward as in the cluster summarization
algorithm. For example, the SumBasic summarization
does not have any mechanism for choosing the right
number of documents in the summary. Second, we
thought it would be difficult to perform evaluation
where the manual summaries were two or three
documents in length and the automatic summaries were
five or six documents in length—or vice versa—because
the ROUGE evaluation metric is sensitive to length
even with some normalization.
To get a subjective idea of what people thought about

the value of k = 4 after being immersed in manual
clustering for a while, we took a survey of the volunteers
after they performed clustering of 50 topics—2 people
for each of the 25 topics—with 100 documents in each
topic. We asked them “How many clusters do you
think this should have had?” with the choices “3
(Less)”, “4 (About Right)” or “5 (More)”. The results
of our volunteer survey for this question are given in
Figure 11. This survey is probably biased towards “4
(About Right)” because the question does not allow for
numbers other than 3, 4 or 5. Therefore, these results
must be taken tentatively but they at least suggest that
there is some significant variability about the best value
for k. Our bias is also based on the fact that our initial
1500 Twitter posts on each topic were obtained within
a small interval of 15 minutes so we thought a small
number would be good.

13

28

9

0

5

10

15

20

25

30

3 (Less) 4 (About Right) 5 (More)

FIGURE 11: Volunteers’ answers to question about
whether the specified number of clusters (k = 4) was
right after they had clustered the documents for the
given topic.

The Computer Journal, Vol. ??, No. ??, ????

18 B. Sharifi

Since the volunteers had already clustered the
documents into four clusters, the manual summaries
were four documents long as well. This kept the already
onerous manual summary creation process somewhat
simple. However, this also means that being dependent
on a single length for the summaries may impact our
evaluation process described next in an unknown way.

12.1.2. Manual Summarization Method
Our manual multi-document summaries were created
by volunteers who were undergraduates from around
the US gathered together in an NSF-supported REU
program. Each of the first 25 topics was manually
summarized by two different volunteers9 by performing
steps parallel to the steps of the cluster summarizer.
First, the volunteers clustered the documents into
4 clusters (k = 4). Second, they chose the most
representative document from each cluster. And finally,
they ordered the representative documents in a way
that they thought was most logical or coherent. These
steps were chosen because it was initially thought that
a clustering based solution would be the best way
to summarize the Twitter documents and it seemed
simpler for the volunteers to cluster first rather than
simply looking at all the documents at once. These
procedures probably biased the manual summaries—
and consequently the results—towards clustering based
solutions but since the cluster summarizer itself did not
perform particularly well in the evaluations, it seems
that this bias was not particularly strong.

12.2. Summarization Tests Setup

Because the manual summaries were 4 documents
in length, the automated summaries were restricted
to producing 4-document summaries as well because
the ROUGE metric is sensitive to summary length.
For the summarizers that involve random seeding
(e.g., random summarizer and cluster summarizer),
100 summaries were produced for each topic to avoid
the effects of random seeding. For MEAD, each
document was formatted to be one document with
a single sentence inside of it. For LexRank—which
is implemented in the standard MEAD distribution—
the documents for each topic were added to one
document as separate sentences. Because the exact
implementation of TextRank was unavailable, the
TextRank summarizer was implemented internally
using the formulas described in [15].

For the Hybrid TF-IDF summarizer, in order to keep
the documents from being too similar in content, a
preliminary test to determine the best cosine similarity
threshold was conducted. The F-measure scores when
varying the similarity threshold t of the Hybrid TF-
IDF summarizer from 0 to 0.99 are shown in Figure

9A total of 16 volunteers produced manual summaries in such
a combination that no volunteer would be compared against
another specified volunteer more than once.

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0

0
.0
4

0
.0
8

0
.1
2

0
.1
6

0
.2

0
.2
4

0
.2
8

0
.3
2

0
.3
6

0
.4

0
.4
4

0
.4
8

0
.5
2

0
.5
6

0
.6

0
.6
4

0
.6
8

0
.7
2

0
.7
6

0
.8

0
.8
4

0
.8
8

0
.9
2

0
.9
6

Similarity Threshold

FIGURE 12: F-measures of Hybrid TF-IDF algorithm
over different thresholds.

12. The best performing threshold of t = 0.77 seems
to be reasonable because it allows for some similarity
between final summary posts but does not allow them
to be nearly identical. We believe that the algorithm
would have worked with other choices of thresholds near
0.77.
Because some of the volunteers suggested that some

topics had significant noise or miscellaneous posts, the
cluster summarizer test varied the value of k for k-way
clustering from 4 to 10 (4  k0  10) in order to see
if changing the number of clusters affected the results
of the cluster summarizer. The largest k clusters out
of the k0 clusters were then chosen, and each of these
k clusters was summarized with the Hybrid TF-IDF
algorithm like in the original cluster summarizer.

12.2.1. Evaluating Clustering Algorithms
Entropy and purity as explained in [61] were the metrics
used for testing the competing clustering algorithms,
and they are defined as follows: given a particular
clusterXi of size nr, the entropy of the cluster is defined
as

E(Xr) = �
1

log q

q
X

i=1

log
ni
r

nr

, (14)

where q is the number of classes in the pre-classified
posts and ni

r is the number of posts of the ith class that
were assigned to the rth cluster. The total entropy of
the clustering solution is

E(X) =

k
X

r=1

nr

n
E(Xr). (15)

In general, the smaller the entropy values, the better the
clustering solution. Similarly, the purity of a particular
cluster is defined as

P (Xr) =
1

nr

max(ni
r), (16)

The Computer Journal, Vol. ??, No. ??, ????

Summarization of Twitter Microblogs 19

TABLE 7: Average Entropies and Purities

Avg. Entropy Avg. Purity

k-means 0.732 0.499

k-means++ 0.724 0.508

Bisecting k-means 0.720 0.514

Bisecting k-means++ 0.709 0.525

which represents the fraction of the cluster that is made
up of the largest class of documents. The total purity
of the clustering solution is

P (X) =
k

X

r=1

nr

n
P (Xr). (17)

In general, the larger the purity values, the better the
clustering solution.

For the clustering tests, the 50 sets of posts based
on specified topics were split into 10 test data sets of 5
topics each.

12.2.2. Preliminary Clustering Results and Analysis
In order to avoid the sensitivity of random seeding, 100
k-way clustering solutions were computed for each of
the 10 different data sets for a total of 1000 iterations
per clustering algorithm. The average purities and
entropies of the clustering algorithms are given in Table
7.

The bisecting k-means++ algorithm seemed to
perform the best by producing approximately 4%
better entropy and 7% better purity than the base k-
means algorithm. The bisecting k-means++ algorithm
performed the best most likely because it combines
the strengths of both the k-means++ algorithm and
the bisecting k-means algorithm. As suggested by
[39,61], the bisecting k-means algorithm did work better
than the standard k-means algorithm. Similarly, as
suggested by [62], the k-means++ algorithm performed
better than the standard k-means algorithm.

Thus, although there was not a single winner by
far among the clustering algorithms, the bisecting k-
means++ algorithm performs the best, and hence we
decided to use the bisecting k-means++ algorithm for
our cluster summarizer.

13. RESULTS AND ANALYSIS OF MULTI-

DOCUMENT SUMMARIZATION

As discussed in section 7.3, we use ROUGE-1 as
the main evaluation measure for our summaries. In
addition, since we want certainty that ROUGE-1
correlates with a human evaluation, we implemented
a human evaluation using Amazon Mechanical Turk10,
a paid system that pays human workers small amounts
of money for completing a short Human Intelligence

10http://www.mturk.com

TABLE 8: Evaluation Numbers for ROUGE and
MTurk Evaluations.

Number of summaries Randomly
seeded*

Others

Number of topics 25 25

Summaries per topic 100 1

Total summaries computed 2500 25

ROUGE evaluation

ROUGE scores computed 2500 25

MTurk evaluation

Number of summaries evaluated 25+ 25

Number of manual summaries
per topic

2 2

Evaluators per manual summary 2 2

Total MTurk evaluations 100 100

* The randomly seeded summaries were the Random
Summarizer and the Cluster Summarizer.
+An average scoring post based on the F-measure for
each topic was chosen for the MTurk evaluations because
evaluating 2500 summaries would have been impractical.

Task, or HIT. The HITs used for summary evaluation
displayed the summaries to be compared side by side
with the topic specified. Then, we asked the user,
“The auto-generated summary expresses of the
meaning of the human produced summary.” The
possible answers were “All,” “Most,” “Some,” “Hardly
Any” and “None” which correspond to a score of 5
through 1, respectively.

13.1. Summarization Results and Analysis

For the summarizers that involve random seeding
(e.g., random summarizer and cluster summarizer), 100
summaries were produced for each topic to avoid the
effects of random seeding. These numbers can be seen
more clearly in Table 8. Also, because we realized
that the overlap of the topic keywords in the summary
is trivial since every post contains the keywords, we
ignored keyword overlap in our ROUGE calculations.
For the human evaluations using Amazon Mechanical

Turk, each automatic summary was compared to both
manual summaries by two different evaluators. This
leads to 100 evaluations per summarizer as can be seen
in Table 8. The manual summaries were evaluated
against each other by pretending that one of them was
the automatic summary.
The reported average F-measure of all the iterations

was computed as the simple average

Favg =
1

Fn

X

f2F

f,

where F is the set of all F-measures and Fn is the
number of F-measures being averaged.

The Computer Journal, Vol. ??, No. ??, ????

20 B. Sharifi

TABLE 9: Average values of F-measure, recall and
precision ordered by F-measure.

F-measure Recall Precision

LexRank 0.2027 0.1894 0.2333

Random 0.2071 0.2283 0.1967

Mead 0.2204 0.3050 0.1771

Manual 0.2252 0.2320 0.2320

Cluster 0.2310 0.2554 0.2180

TextRank 0.2328 0.3053 0.1954

MostRecent 0.2329 0.2463 0.2253

Hybrid TF-IDF 0.2524 0.2666 0.2499

SumBasic 0.2544 0.3274 0.2127

Our experiments evaluated eight different summariz-
ers: random, most recent, MEAD, TextRank, LexRank,
cluster, Hybrid TF-IDF and SumBasic. Both the au-
tomatic ROUGE-based evaluation and the MTurk hu-
man evaluation are reported for all eight summarizers in
Figures 13 and 14, respectively. The values of average
F-measure, recall and precision can be seen in Table 9.
The values of average MTurk scores can be seen at the
top of Table 11.

13.2. Analysis of Results

13.2.1. General Observations
We performed a paired two-sided T-test for each
summarizer compared to each other summarizer for
both the ROUGE scores and the human evaluation
scores. For the ROUGE scores, the twenty five average
F-measure scores corresponding to each topic were used
for the paired T-test. For the human evaluation, all
hundred evaluation scores were used for the paired T-
test. The pairwise matrix of p-values for these tests as
well as the average score for each summarizer can be
seen in Tables 10 and 11. The bolded p-values indicate
that the summarizers are statistically different at the
95% confidence level.

Since the number of unigrams in the automated
summary could significantly affect the ROUGE scores,
the average number of characters for each summarizer
is shown in Figure 15. The high average number of
characters for the MEAD, TextRank and SumBasic
summarizers—approximately 50% higher than the
manual summaries—explains why the recall values
of the MEAD, TextRank and SumBasic summarizers
are particularly high. In addition, the results help
explain why the recall of every summarizer except
the LexRank summarizer is not higher than their
corresponding precision measures since the average
number of characters for all the other summarizers is
greater than the average number of characters for the
manual summaries.

Overall, it seems from these results that the simple
frequency based summarizers, namely SumBasic and
Hybrid TF-IDF, perform better than summarizers that
incorporated more information or more complexity

such as LexRank, TextRank or MEAD. This probably
has much to do with the special nature of Twitter
documents in which documents often have very
little structure and have so few words that forming
relationships between pairs of documents is not
particularly helpful. In addition, since each document is
mostly uncorrelated with any other document—except
for replies and retweets—, thematic or progressive
development of a topic is rare, and therefore, more
complex relational models will probably not capture
more topical information than frequency models. More
specific analysis on each of the summarizers is described
in the following sections.

13.2.2. Manual Summaries
Though the manual to manual F-measure scores seem
low at 0.3291, this may be explained by several
factors. First, the instructions given to the volunteers
for summarizing did not give any guidelines on how
to cluster the documents except whatever themes
or subtopics the volunteers thought could be good
clusters. Therefore, the clusters for a topic may have
been significantly different from one person to another
depending on how they wanted to differentiate the
posts. Second, some topics only had thematic overlap
rather than unigram overlap. For example, the topic
“#MM” was a topic that stood for “Music Mondays”
and the tweets would simply have names of songs or
names of artists. Obviously, the names of songs or
artists do not tend to overlap naturally. In addition,
these results seem to agree with the fairly low F-
measure scores computed for one sentence summaries
in [43, 47–49].
It may seem odd that the manual to manual scores

are actually lower than some of the other summarizers’
scores. However, this is possible with the F-measure
scores because if the summarizer produced a summary
that was very similar to one of the manual summaries,
it would score a very high F-measure compared to the
first manual summary. Then, when compared to the
second summary, it could also be decently similar since
it is not exactly like the other manual summary. In this
way, F-measure scores could be higher than the manual
to manual F-measure scores. In a similar manner, the
human evaluation scores that are higher on average
than manual could mean that the generated summaries
captured some of the good ideas from both manual
summaries better than each manual summary captured
the ideas of the other manual summary.

13.2.3. Random and Most Recent Summarizer
The seemingly high F-measure and human score
of the random summarizer may be explained by a
few characteristics of microblog documents. First,
microblog documents on a given topic tend to use
similar words so a fair amount of incidental word and
theme overlap seems reasonable. Second, a particularly

The Computer Journal, Vol. ??, No. ??, ????

Summarization of Twitter Microblogs 21

FIGURE 13: Average F-measure, precision and recall ordered by F-measure.

FIGURE 14: Average scores for human evaluation using Amazon Mechanical Turk ordered by average score.

interesting document on a given topic can often be
quoted verbatim by many other microblog users so the
random summarizer has a better chance of selecting
one of these informative retweeted documents. Third,
the preprocessing of the documents helped reduce
the original set of documents to a set of less noisy
documents.

13.2.4. Most Recent Summarizer
Because the test documents were collected by getting
documents for trending topics—very active topics—,
most of the documents for each topic were generated
within fifteen minutes of each other or even less.
Therefore, it seemed unlikely that the most recent
documents would be particularly more relevant than
random documents. The p-values for the F-measure
scores seem to agree with only a p-value of 0.162 when
comparing the Random summarizer to the most recent

summarizer. However, the human scores showed that
maybe the most recent summarizer was better than
random. One possible reason for the most recent
summarizer doing better than expected is that the
manual summaries may be biased towards the more
recent documents because these were displayed to the
volunteers first and may have biased their judgments of
the best documents to use for the summary.

Initially, the first set of human scores for evaluating
the most recent summarizer—the results marked
“MostRecent”—was surprisingly higher than expected
outperforming SumBasic and Hybrid TF-IDF even
though its F-measure scores were significantly lower
than SumBasic or Hybrid TF-IDF. Because of this, we
considered that maybe the results were skewed by one
or two Mechanical Turk workers who rated a few of the
documents significantly higher than most people would.

Therefore, we decided to retrieve a second set of

The Computer Journal, Vol. ??, No. ??, ????

22 B. Sharifi

TABLE 10: P-values for two-sided paired T-test for F-measures in the experiments.

Avg. F-meas. 0.187 0.207 0.220 0.225 0.232 0.233 0.233 0.252 0.254

LR Rand. Mead Man. Clust. TR MR Hyb. SB

LexRank 0.102 0.040 0.140 0.004 0.010 0.043 0.003 0.001

Random 0.102 0.226 0.318 0.014 0.021 0.162 0.011 0.002

Mead 0.040 0.226 0.789 0.364 0.408 0.554 0.109 0.027

Manual 0.140 0.318 0.789 0.714 0.644 0.783 0.229 0.141

Cluster 0.004 0.014 0.364 0.714 0.946 0.963 0.095 0.069

TextRank 0.010 0.021 0.408 0.644 0.946 0.995 0.329 0.098

MostRecent 0.043 0.162 0.554 0.783 0.963 0.995 0.429 0.333

HybridTFIDF 0.003 0.011 0.109 0.229 0.095 0.329 0.429 0.920

SumBasic 0.001 0.002 0.027 0.141 0.069 0.098 0.333 0.920

TABLE 11: P-values for two-sided paired T-test for human evaluation for the experiments.

Avg. Score 2.91 2.94 2.94 3.00 3.01 3.09 3.15 3.15 3.16 3.24

Rand. MR2 TR Mead Clus. LR Man. SB Hyb. MR

Random 0.801 0.765 0.331 0.305 0.049 0.019 0.011 0.007 0.000

MostRecent2* 0.801 1.000 0.615 0.531 0.156 0.058 0.077 0.072 0.011

TextRank 0.765 1.000 0.534 0.461 0.116 0.042 0.048 0.030 0.005

Mead 0.331 0.615 0.534 0.919 0.314 0.108 0.096 0.103 0.012

Cluster 0.305 0.531 0.461 0.919 0.407 0.167 0.123 0.092 0.021

LexRank 0.049 0.156 0.116 0.314 0.407 0.463 0.488 0.461 0.104

Manual 0.019 0.058 0.042 0.108 0.167 0.463 1.000 0.921 0.358

SumBasic 0.011 0.077 0.048 0.096 0.123 0.488 1.000 0.910 0.307

HybridTFIDF 0.007 0.072 0.030 0.103 0.092 0.461 0.921 0.910 0.304

MostRecent* 0.000 0.011 0.005 0.012 0.021 0.104 0.358 0.307 0.304

* Please see Section 13.2.4 for an explanation of the two different results for the Most Recent summarizer.

one hundred evaluations with essentially the same
procedure—the results marked “MostRecent2”—and
got significantly lower scores than the previous time.
In fact, the p-value for comparing the two sets of
results is 0.011. Therefore, it seems that we may have
been correct that the first set of results was skewed.
Even if both results are valid, the average of both
result sets would be 3.09, which is a little lower than
the manual scores. Therefore, in general, it seems
that the most recent summarizer does not perform
better than the random summarizer. This would agree
with our original idea that the most recent documents
should not be inherently more relevant than random
documents because of the nature of Twitter documents
being generated generally haphazardly without order or
specific thematic development.

13.2.5. Frequency Based Summarizers (SumBasic and
Hybrid TF-IDF)

The simple frequency based summarizers seemed to
outperform all other algorithms both in F-measure
scores and human evaluation scores. For the F-
measure scores, both are significantly different from
the LexRank and Random summarizers, and SumBasic
is significantly different than the MEAD summarizer.
For the human evaluation scores, both are significantly
different from Random and TextRank.

The Hybrid TF-IDF summarizer can be seen as
adding a little complexity to the simple SumBasic
algorithm by including information regarding the IDF
component of the term frequency calculation. From
the results, it seems that this added complexity is not
particularly helpful in computing summaries. However,
it should be noted that the Hybrid TF-IDF has a
closer balance between precision and recall whereas
the SumBasic algorithm has a higher recall than
precision. This suggests that the SumBasic algorithm
may be biased towards longer summaries but does not
necessarily affect its performance or overall usefulness.
Both algorithms employ a redundancy reduction

method in order to avoid summaries that have very
similar documents in them. In addition, both use
a greedy approach to this reduction by selecting the
next best document—either the best weighted non-
redundant document in the case of Hybrid TF-IDF or
the best weighted document after weight recalculation
in SumBasic. Therefore, it seems that simple word
frequency calculations and redundancy reduction are
particularly important for summarizing Twitter topics.

13.2.6. Cluster Based Summarizers (MEAD and
Cluster)

The two cluster based summarizers—the MEAD
summarizer and our implementation of a cluster

The Computer Journal, Vol. ??, No. ??, ????

Summarization of Twitter Microblogs 23

0

100

200

300

400

500

600

FIGURE 15: Average number of characters for each summarizer.

summarizer—did not do as well as expected. They
performed significantly better than the Random
summarizer in the F-measure scores but did not perform
significantly better in the human evaluation. Like
with the frequency summarizers, these summarizers
attempted to reduce redundancy but did so by
clustering the documents first and then summarizing
based on these clusters. However, clustering did not
seem to increase performance. This could be true
because of the short, unstructured and informal nature
of Twitter documents that does not correlate with
the expectations of more traditional techniques for
summarizing that use clustering. Also, the documents
may be particularly difficult to cluster unlike more
structured or longer document collections because they
have so few non-zero features. Since the default MEAD
summarizer has much better recall than precision, it
may be improved upon by normalizing the weights of
sentences more strongly than the default.

13.2.7. Graph Based Summarizers (LexRank and
TextRank)

The results of the two graph based summarizers—
LexRank and TextRank—were intriguing. In the
F-measure scores, LexRank did worse than random
but TextRank did decently well by at least being
significantly different than random. However, in
the human scores, TextRank did not even perform
significantly better than random whereas LexRank
performed significantly better than random. One
interesting aspect that may explain some of this is that
LexRank was the only algorithm that had a better
precision than recall. This may suggest that LexRank
in general chose shorter more concise documents for its

summaries. TextRank was the opposite by having a
much higher recall than precision. Because the human
evaluation scores suggest that LexRank performed
better than TextRank, these algorithms may suggest
that the F-measure score is biased towards longer
summaries.
In general, however, since the frequency based sum-

marizers did better—and in a several cases significantly
better—than the graph based summarizers, it seems
that the added complexity of interrelationships did not
help in summarizing Twitter posts.

14. CONCLUSION

In the first part of this paper, we presented two
algorithms for microblog summarization. The Phrase
Reinforcement algorithm we develop provides very good
summaries by creating two partial summary graphs on
both sides of the topic phrase by picking out the most
frequently used words, indexed by position away from
the center phrase, on the two sides. However, we find,
after exhaustive experimentation, that an adaptation of
the TF-IDF algorithm produces as good summaries as
the PR algorithm or even better.
Encouraged by the results in the first part of

the paper, we extended our goal to produce a
multiple post summary of a given topic in order to
understand better the information that microblogs
provide. For multiple post summaries, the Hybrid TF-
IDF summarizer with a similarity threshold of 0.77
produced significantly better results than the random
summarizer and seems to be competitive with manually
generated summaries. In addition, it outperforms
several of the leading summarization systems MEAD,

The Computer Journal, Vol. ??, No. ??, ????

24 B. Sharifi

LexRank and TextRank. This suggests that microblog
posts cannot be treated as traditional documents. A
simple extension of the work reported in this paper may
be to attempt to penalize longer posts especially for the
MEAD and TextRank summarizers to see if it improves
their F-measures.

This project could be further extended in many
ways. First, alternative IR-ranking algorithms such
as BM25 and its variations [53, 64, 65] should be
considered. BM25 term weighting has been used
widely and successfully across a range of collections
for search tasks. Second, methods for dynamically
discovering a good value for k of given topic could
be researched. Third, from the clustering results, it
seems that clustering microblog posts is not as simple or
clean as clustering normal structured documents, and
therefore, some new ways of clustering or computing
feature vectors could be explored. For better clustering
tests, the manually produced clusters from the manual
summarization task could be used as predefined classes
instead of using classes defined by a topic phrase.
Fourth, if a list of the most significant current topics
could be computed (e.g., see [66]), a summary of all the
most significant topics could be generated in real time.
It may also be possible to produce a topic browsing
and summarization tool that will help people have a
more comprehensive idea about real time microblog
information. Fifth, the coherence of the multiple post
summary could be researched in depth. Sophisticated
methods for ordering standard documents have been
explored by [67,68], and these advanced methods could
be applied to microblog summary cohesion. Also,
other coherence issues such as pronoun resolution and
fragmented arguments are issues that all summarization
techniques need to consider [51]. Finally, it would be
interesting to evaluate the usefulness of the Twitter
summaries in the context of a question-answering
system, in the spirit of [69–71], where a user asks a
question and the answering system analyzes the corpus
of tweets and summarizes them to produce a relevant
and useful answer.

ACKNOWLEDGMENT

The work reported in this paper has been partially
supported by NSF grant ARRA: 0851783. David Inouye
was an undergraduate researcher supported by this NSF
Research Experience for Undergraduates (REU) Grant
during the summer of 2010.

REFERENCES

[1] Radev, D., Hovy, E., and McKeown, K. (2002)
Introduction to the Special Issue on Summarization.
Computational Linguistics, 28, 408.

[2] Jones, K. S. (2007) Automatic Summarising: The State
of the Art. Information Processing & Management, 43,
1449–1481.

[3] Lin, J., Ozsu, M., and Liu, L. (2009) Summarization.

Encyclopedia of Database Systems. Springer.

[4] Luhn, H. P. (1958) The Automatic Creation of
Literature Abstracts. IBM Journal of Research and
Development, 2, 159–165.

[5] Edmundson, H. P. (1969) New Methods in Automatic
Extracting. Journal of the Association for Computing
Machinery, 16, 264–285.

[6] DeJong, G. (1982) An Overview of the FRUMP
System. Strategies for Natural Language Processing.
Lawrence Erlbaum Associates, Mahwah, NJ, USA.

[7] Reimer, U. and Hahn, U. (1988) Text Condensation as
Knowledge Base Abstraction. Fourth IEEE Conference
on AI Applications, pp. 338–344, . San Diego, CA, USA.

[8] Rau, L., Jacobs, P., and Zernik, U. (1989) Information
Eextraction and Text Summarization using Linguistic
Knowledge Acquisition. Information Processing &
Management, 25, 419–428.

[9] Kupiec, J., Pedersen, J., and Chen, F. (1995) A
trainable document summarizer. Proceedings of the
18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
Seattle, WA, USA, pp. 68–73.

[10] Yeh, J., Ke, H., Yang, W., Meng, I., et al. (2005)
Text Summarization Using a Trainable Summarizer
and Latent Semantic Analysis. Information Processing
& Management, 41, 75–95.

[11] Vanderwende, L., Suzuki, H., Brockett, C., and
Nenkova, A. (2007) Beyond SumBasic: Task-focused
Summarization with Sentence Simplification and
Lexical Expansion. Information Processing &
Management, 43, 1606–1618.

[12] Radev, D., Blair-Goldensohn, S., and Zhang, Z. (2001)
Experiments in Single and Multi-document Summa-
rization using MEAD. Document Understanding Con-
ference, DUC-01, New Orleans, LA, USA.

[13] Althaus, E., Karamanis, N., and Koller, A. (2004)
Computing Locally Coherent Discourses. Proceedings
of the 42nd Annual Meeting on Association for
Computational Linguistics, Barcelona, Spain.

[14] Erkan, G. and Radev, D. (2004) LexRank: Graph-
based Centrality as Salience in Text Summarization.
Journal of Artificial Intelligence Research, 22, 457–480.

[15] Mihalcea, R. and Tarau, P. (2004) TextRank: Bringing
Order into Texts. Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pp.
404–411. Barcelona, Spain.

[16] Brin, S. and Page, L. (1998) The Anatomy of a Large-
scale Hypertextual Web Search Engine. Computer
Networks and ISDN Systems, 30, 107–117.

[17] Barzilay, R. and Lapata, M. (2008) Modeling Local
Coherence: An Entity-based Approach. Computational
Linguistics, 34, 1–34.

[18] Kolcz, A., Prabakarmurthi, V., and Kalita, J. (2001)
Summarization as Feature Selection for Text Catego-
rization. Proceedings of the Tenth International Con-
ference on Information and Knowledge Management,
Atlanta, GA, USA, pp. 365–370.

[19] Ganti, V., Gehrke, J., and Ramakrishnan, R.
(1999) CACTUS—Clustering Categorical Data Using
Summaries. KDD ’99: Proceedings of the Fifth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 73–83.

The Computer Journal, Vol. ??, No. ??, ????

Summarization of Twitter Microblogs 25

[20] Kalita, J., Colbourn, M., and McCalla, G. (1984)
A Response to the Need for Summary Responses.
Proceedings of the 10th International Conference on
Computational Linguistics and 22nd Annual Meeting
of the Association for Computational Linguistics,
Stanford, CA, USA, pp. 432–436.

[21] Kalita, J., Jones, M., and McCalla, G. (1986)
Summarizing Natural Language Database Responses.
Computational Linguistics, 12, 107–124.

[22] Mahesh, K. (1997) Hypertext Summary Extraction for
Fast Document Browsing. Proceedings of the AAAI
Spring Symposium on Natural Language Processing for
the World Wide Web, Stanford, CA, USA, pp. 95–103.

[23] Berger, A. and Mittal, V. (2000) OCELOT: A System
for Summarizing Web Pages. Proceedings of the
23rd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
Athens, Greece, pp. 144–151.

[24] Buyukkokten, O., Garcia-Molina, H., and Paepcke, A.
(2001) Seeing the Whole in Parts: Text Summarization
for Web Browsing on Handheld Devices. Proceedings of
the 10th International Conference on World Wide Web,
Hong Kong, China, pp. 652–662.

[25] Sun, J., Shen, D., Zeng, H., Yang, Q., Lu, Y., and Chen,
Z. (2005) Web-page Summarization Using Clickthrough
Data. Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development
in Information Retrieval, Salvador, Brazil, pp. 194–201.

[26] Tigelaar, A., op den Akker, R., and Hiemstra, D. (2010)
Automatic Summarisation of Diiscussion Fora. Natural
Language Engineering, 16, 161–192.

[27] Zhou, L. and Hovy, E. (2006) On the Summarization
of Dynamically Introduced Information: Online
Discussions and Blogs. Proceedings of AAAI-2006
Spring Symposium on Computational Approaches to
Analyzing Weblogs, Stanford, CA, USA, pp. 237–242.

[28] Ku, L., Liang, Y., and Chen, H. (2006) Opinion
Extraction, Summarization and Tracking in News and
Blog Corpora. Proceedings of AAAI-2006 Spring
Symposium on Computational Approaches to Analyzing
Weblogs, Stanford, CA, USA, pp. 100–107.

[29] Hu, M., Sun, A., and Lim, E. (2007) Comments-
oriented Blog Summarization by Sentence Extraction.
Proceedings of the Sixteenth ACM Conference on
Information and Knowledge Management, Lisbon,
Portugal, pp. 901–904.

[30] Mani, I. and Bloedorn, E. (1997) Multi-document Sum-
marization by Graph Search and Matching. Proceed-
ings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Conference on Innovative Appli-
cations of Artificial Intelligence, Providence, RI, USA,
pp. 622–628.

[31] Carbonell, J. and Goldstein, J. (1998) The Use
of MMR, Diversity-based Reranking for Reordering
Documents and Producing Summaries. Proceedings of
the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,
Melbourne, Australia, pp. 335–336.

[32] Barzilay, R., McKeown, K., and Elhadad, M.
(1999) Information Fusion in the Context of Multi-
document Summarization. Proceedings of the 37th
Annual Meeting of the Association for Computational
Linguistics, College Park, MD, USA, pp. 550–557.

[33] Goldstein, J., Mittal, V., Carbonell, J., and
Kantrowitz, M. (2000) Multi-document Summarization
by Sentence Extraction. NAACL-ANLP 2000
Workshop on Automatic Summarization, Seattle, WA,
USA, pp. 40–48.

[34] Lin, C. and Hovy, E. (2002) From Single to Multi-
document Summarization: A Prototype System and
its evaluation. Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics,
Philadelphia, PA, USA, pp. 457–464.

[35] Radev, D., Jing, H., Sty, M., and Tam, D. (2004)
Centroid-based Summarization of Multiple Documents.
Information Processing & Management, 40, 919–938.

[36] Madnani, N., Zajic, D., Dorr, B., Ayan, N., and Lin,
J. (2007) Multiple Alternative Sentence Compressions
for Automatic Text Summarization. Proceedings of
the 2007 Document Understanding Conference (DUC-
2007) at NLT/NAACL, Rochester, NY, USA.

[37] Jurafsky, D. and Martin, J. H. (2009) Speech and
Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics and
Speech Recognition. Prentice Hall, Upper Saddle River,
NJ, USA.

[38] Manning, C. D. and Schuetze, H. (2002) Foundations
of Statistical Natural Language Processing. The MIT
Press, Cambridge, MA, USA.

[39] Dunham, M. H. (2003) Data Mining: Introductory and
Advanced Topics. Prentice Hall, Upper Saddle River,
NJ, USA.

[40] Radev, D., Allison, T., Blair-Goldensohn, S., Blitzer,
J., Çelebi, A., Dimitrov, S., Drabek, E., Hakim, A.,
Lam, W., Liu, D., Otterbacher, J., Qi, H., Saggion,
H., Teufel, S., Topper, M., Winkel, A., and Zhang,
Z. (2004) MEAD—A Platform for Multidocument
Multilingual Text Summarization. The International
Conference on Language Resources and Evaluation
(LREC) 2004, Lisbon, Portugal.

[41] Harabagiu, S. and Hickl, A. (2011) Relevance Modeling
for Microblog Summarization. Proceedings of the Fifth
International Conference on Weblogs and Social Media
(ICWSM), Barcelona, Spain, pp. 514–517.

[42] Takamura, H., Yokono, H., and Okumura, M. (2011)
Summarizing a Document Stream. Advances in
Information Retrieval, pp. 177–188. Springer, New
York, NY, USA.

[43] Sharifi, B., Hutton, M.-A., and Kalita, J. K. (2010)
Summarizing Microblogs Automatically. Annual Con-
ference of the National Association for Advancement of
Computational Intelligence-Human Language Technol-
ogy (NAACL-HLT), Los Angeles, CA, USA, pp. 685–
688.

[44] Huang, Y. and Mitchell, T. M. (2006) Text Clustering
with Extended User Feedback. Proceedings of the
29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
Seattle, WA, USA, pp. 413–420.

[45] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977)
Maximum Likelihood from Incomplete Data via the EM
Algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39, 1–38.

The Computer Journal, Vol. ??, No. ??, ????

26 B. Sharifi

[46] Cohen, W. W. and Singer, Y. (1996) Context-
sensitive Learning Methods for Text Categorization.
Proceedings of the 19th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, Zurich, Switzerland, pp. 307–
315.

[47] Sharifi, B. (2010) Automatic Microblog Classification
and Summarization. Master’s thesis. M.S. Thesis,
Department of Computer Science, University of
Colorado, Colorado Springs, CO, USA.

[48] Sharifi, B., Hutton, M.-A., and Kalita, J. K. (2010)
Experiments in Microblog Summarization. Second
IEEE International Conference on Social Computing
(SocialCom 2010), Minneapolis, MN, USA, pp. 49–56.

[49] Sharifi, B., Hutton, M., and Kalita, J. (2010)
Automatic Summarization of Twitter Topics. National
Workshop on Design and Analysis of Algorithm,
Tezpur, Assam, India, pp. 121–128.

[50] Inouye, D. and Kalita, J. K. (2011) Comparing
Twitter Summarization Algorithms for Multiple Post
Summaries. Privacy, Security, Risk and Trust
(PASSAT), 2011 IEEE Third International Conference
on Social Computing (SocialCom), Boston, MA, pp.
298–306.

[51] Hahn, U. and Mani, I. (2000) The Challenges of
Automatic Summarization. IEEE Computer, 33, 29–
36.

[52] Salton, G. (1989) Automatic Text Processing: The
Transformation, Analysis, and Retrieval of Information
by Computer. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

[53] Manning, C., Raghavan, P., and Schütze, H. (2008)
An Introduction to Information Retrieval. Cambridge
University Press, Cambridge, MA, USA.

[54] Seki, Y. (2002) Sentence Extraction by TF/IDF and
Position Weighting from Newspaper Articles. Proceed-
ings of the 3rd National Institute of Informatics Test
Collection Information Retrieval (NTCIR) Workshop,
Tokyo, Japan.

[55] Singhal, A., Buckley, C., and Mitra, M. (1996)
Pivoted Document Length Normalization. SIGIR ’96:
Proceedings of the 19th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, Zurich, Switzerland, pp. 21–29.

[56] Lin, C.-Y. and Hovy, E. (2003) Automatic Evaluation
of Summaries Using N-gram Co-occurrence Statistics.
NAACL ’03: Proceedings of the 2003 Conference
of the North American Chapter of the Association
for Computational Linguistics on Human Language
Technology, Edmonton, Alberta, Canada, pp. 71–78.

[57] Saggion, H., Torres-Moreno, J.-M., Cunha, I. d.,
and SanJuan, E. (2010) Multilingual Summarization
Evaluation Without Human Models. Proceedings of
the 23rd International Conference on Computational
Linguistics, Beijing, China, pp. 1059–1067.

[58] Liu, F. and Liu, Y. (2008) Correlation between
ROUGE and Human Evaluation of Extractive Meeting
Summaries. Proceedings of the 46th Annual Meeting
of the Association for Computational Linguistics on

Human Language Technologies, Columbus, OH, USA,
pp. 201–204.

[59] Liu, F. and Liu, Y. (2010) Exploring Correlation
between ROUGE and Human Evaluation on Meeting
Summaries. IEEE Transactions on Audio, Speech, and
Language Processing, 18, 187–196.

[60] Louis, A. and Nenkova, A. (2009) Automatically Eval-
uating Content Selection in Summarization without
Human Models. Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing,
Singapore, pp. 306–314.

[61] Zhao, Y. and Karypis, G. (2001) Criterion Functions
for Document Clustering: Experiments and Analysis.
Technical report. Department of Computer Science,
University of Minnesota, Minneapolis, MN, USA.

[62] Arthur, D. and Vassilvitskii, S. (2007). SODA
’07: Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, New Orleans, LA,
USA, pp. 1027–1035.

[63] Tibshirani, R., Walther, G., and Hastie, T. (2001)
Estimating the Number of Clusters in a Data Set via the
Gap Statistic. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 63, 411–423.

[64] Robertson, S., Zaragoza, H., and Taylor, M. (2004)
Simple BM25 Extension to Multiple Weighted Fields.
Proceedings of the Thirteenth ACM International Con-
ference on Information and Knowledge Management,
Washington DC, USA, pp. 42–49.

[65] Pérez-Iglesias, J., Pérez-Agüera, J. R., Fresno, V., and
Feinstein, Y. Z. (2009) Integrating the Probabilistic
Models BM25/BM25F into Lucene. arXiv preprint
arXiv:0911.5046.

[66] Benhardus, J. and Kalita, J. (2013) Streaming Trend
Detection in Twitter. International Journal of Web
Based Communities, 9, 122–139.

[67] Barzilay, R., Elhadad, N., and McKeown, K. (2001)
Sentence Ordering in Multidocument Summarization.
Proceedings of the First International Conference on
Human Language Technology Research, San Diego, CA,
USA, pp. 1–7.

[68] Lapata, M. (2003) Probabilistic Text Structuring: Ex-
periments with Sentence Ordering. Proceedings of the
annual meeting of the Association for Computational
Linguistics, Edmonton, Alberta, Canada, pp. 545–552.

[69] Melli, G., Wang, Y., Liu, Y., Kashani, M. M., Shi,
Z., Gu, B., Sarkar, A., and Popowich, F. (2005)
Description of SQUASH, the SFU question answering
summary handler for the DUC-2005 summarization
task. Document Understanding Conference 2005,
Vancouver, BC, Canada.

[70] Moreno, J. M. T., St-Onge, P.-L., Gagnon, M.,
El-Bèze, M., and Bellot, P. (2009) Automatic
summarization system coupled with a question-
answering system (qaas). Computing Research
Repository, http://arxiv.org/abs/0905.29900.

[71] Biryukov, M., Angheluta, R., and Moens, M.-F. (2005)
Multidocument question answering text summarization
using topic signatures. Journal of Digital Information
Management, 3, 27–33.

The Computer Journal, Vol. ??, No. ??, ????

