
Summarization via Pattern Utility and Ranking: A Novel
Framework for Social Media Data Analytics

Xintian Yang
Google Inc.

xyang@google.com

Yiye Ruan, Srinivasan Parthasarathy
Dept. of Computer Science and Engineering

The Ohio State University
{ruan,srini}@cse.ohio-state.edu

Amol Ghoting
IBM T. J. Watson
Research Center

aghoting@us.ibm.com

Abstract

The firehose of data generated by users on social networking and microblogging sites such as Face-
book and Twitter is enormous. The data can be classified into two categories: the textual content
written by the users and the topological structure of the connections among users. Real-time analyt-
ics on such data is challenging with most current efforts largely focusing on the efficient querying
and retrieval of data produced recently. In this article, we present a dynamic pattern driven ap-
proach to summarize social network content and topology. The resulting family of algorithms relies
on the common principles of summarization via pattern utilities and ranking (SPUR). SPUR and its
dynamic variant (D-SPUR) relies on an in-memory summary while retaining sufficient information
to facilitate a range of user-specific and topic-specific temporal analytics. We then follow up by de-
scribing variants that take the implicit graph of connections into account to realize the Graph-based
SPUR variant (G-SPUR). Finally we describe scalable algorithms for implementing these ideas on
a commercial GPU-based systems. We examine the effectiveness of the summarization approaches
along the axes of storage cost, query accuracy, and efficiency using real data from Twitter.

1 Introduction
Social networking and microblogging sites are ubiquitous nowadays, and an increasing number of organi-
zations and agencies are turning to extract and analyze useful nuggets of information from such services to
aid in various functions. However, a fundamental challenge for effectively analyzing social network data is
its sheer scale. Twitter, for instance, has over 200 million users and several hundred million tweets per day.
Supporting interactive querying and analytics requires novel approaches for summarizing and storing such
data.

The data generated by social networking services can be classified into two categories: the textual
content written by the users (e.g. tweets in Twitter) and the link structure of user connections (e.g. follower
– followee relationship in Twitter). The textual content carries the information that people want to share with
their friends. It is large-scale and streaming in nature. The link structure captures how the textual content
will spread through the social network of users. While user connections are relatively stable compared with
the high speed content stream, it is also large-scale because of the enormous size of user base.

Copyright 2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

67

We recently proposed the SPUR (Summarization via Pattern Utility and Ranking) family of algorithms
to build a queryable summary of social network content stream [10]. Here we briefly overview some of the
main features of SPUR and its variant Dynamic-SPUR (D-SPUR) and show how the summarization created
by these algorithms can fit in a limited memory budget, and can help answer complex queries. In this work
we describe extensions to SPUR wherein effective compression and efficient querying on the link structure
of social network can also be supported called Graph-based SPUR (or G-SPUR). Furthermore, with the
advent of general-purpose computing using Graphical Processing Units (GPUs) , we discuss strategies for
leveraging such technology in the context of the SPUR family of algorithms.

We begin by briefly describing SPUR and D-SPUR as preliminaries in Section 2. Then we present G-
SPUR (including GPU speed-up) in Section 3. In Section 4, we discuss how D-SPUR is adapted to work
with G-SPUR for supporting content and time aware network queries Two particular query tasks, PageRank
and clustering, will be described. Finally, we present experiment results in Section 5 and conclude.

2 SPUR: Summarization via Pattern Utility and Ranking
In our previous work [10], we described a method of summarizing the user generated content from a social
network. The network content is in the form of a high speed message stream fluxing into the data pro-
cessing system. We propose a novel stream processing framework to summarize the input stream with effi-
cient, incremental summary construction and budgeted memory footprint. Given the input message stream
with proper word stemming and stop-word removal performed, we divide it into approximately equal-sized
batches, e.g. one hour per batch (the first arrow in Figure 1).

Message

Stream
1 hr 1 hr 1 hr M M M

Compress

Summary Stream

Figure 1: Division and compression of message stream

To compress each batch of messages into a summary object which can fit in a constant memory budget M
(the second arrow in Figure 1), we replace individual words with frequently used phrases that can cover the
original content of incoming messages (Figure 2(a)). Our approach represents each message as a transaction
of words and a batch as a set of transactions. Therefore the challenge of finding frequent phrases becomes
a frequent itemset mining problem. The utility of each pattern is represented by the reduction of storage
cost if it would have been used. We also take into account the impact of using one pattern on other patterns,
and perform dynamic ranking adjustment to reflect such changes. Patterns are selected in a greedy fashion,
based on their utility values, until the size after compression satisfies the memory budget.

To guarantee the summary size grows logarithmically with time instead of linearly, we enhance and
modify the pyramidal time window suggested by Aggarwal et al. [1] for clustering in data streams. The key
operations of the system, D(ynamic)-SPUR, are merging two time windows, and managing time information.
When merging time windows, patterns from both time windows are ranked together by their utility values,
and ones with lower values are dropped until the merged summary can fit in the memory budget. The purpose
of maintaining time information for the transactions in a summary is to be able to effectively answer a query
about an arbitrary time interval. To this end, we store distinct transactions in the summary and associate a
count with each transaction to indicate how many times a transaction appeared in a batch. When merging
two time windows, if two transactions contain the same set of patterns, they must be from two different
batches, because within a batch, we only keep distinct transactions. Instead of summing the count of these
two transactions, we could concatenate their counts in time order and form a time series with two points.
As D-SPUR combines more summaries, we concatenate more points to each transaction. A time series that
spans batches (i.e. the red dashed line in Figure 2(b)) is therefore formed for each transaction, enabling

68

i1 i2 i3 i4 i5 i6 i7

T1

T2

T3

T4

T5

T6

T7

Total Word Count = 24

Patterns: Word Count = 7

P1 = {i1, i2, i3, i4}

P2 = {i5, i6, i7}

Transactions: Word Count = 7

T1 = {P1} T2 = {P1}

T3 = {P1} T4 = {P2}

T5 = {P2} T6 = {P2}

T7 = {P2}

Total Word Count = 14

(a) A batch of messages compressed to a summary

Time

T
r
a
n

s
a
c
ti

o
n

 C
o

u
n

t

(b) An example of the time series of a transaction

Figure 2: Illustration of message compression and time information management

reconstruction of the exact count in any time interval.

3 Compression of Network Topology with G-SPUR
While SPUR and D-SPUR algorithms are designed to compress social content streams, we are also interested
in compressing the link structure of social networks themselves. We assume that the network topology is
relative stable, and can therefore take snapshots of it at different times. The complete topological information
of a social network snapshot can be modeled as a directed graph G = (V,E), where each node v ∈ V
represents a user and a directed edge (v, u) ∈ E indicates user u is a follower of v in the social network (i.e.
the direction reflects the information flow). The storage space of such a graph is proportional to the number
of edges, and can easily become overwhelming for large networks. To serve real-time queries related to user
link structures, it is desirable to have an in-memory compact summary of them.

Our solution to this problem is to represent the adjacency list of a user as a transaction of items, where
each item is a follower of this user. Then the entire social graph G can be seen as a batch of user-follower
transactions. We would like to apply our SPUR algorithm to a batch of such transactions and compress its
storage space. However, the SPUR algorithm is not directly applicable to the graph summarization problem
for two reasons. First, SPUR produces a lossy compression by dropping infrequent items (that are, edges in
the graph data), which can possibly disconnect a graph and introduce errors to various mining algorithms.
Second, the frequent itemset mining stage of SPUR would not be scalable to graphs with hundreds of
millions of nodes and billions of edges, if the whole graph would to be processed at once.

To address those issues, we propose the G-SPUR algorithm with two modifications of SPUR to enable
lossless and fast summarization of large-scale graph data. A graph G is represented by a database of transac-
tions, where each transaction is the adjacency list of a vertex and items in the transaction are the neighbors
connected to the vertex. G-SPUR drop nodes whose numbers of adjacent edges are below a support thresh-
old σ, and use a separate graph Ginfreq to preserve those infrequent edges. The frequent edges will be stored
in another graph Gfreq for further processing. If G, Ginfreq and Gfreq are represented as adjacency matri-
ces, we can see the above process decomposes G as the sum of Ginfreq and Gfreq (Equation 2). Because

69

Ginfreq only contains the edges connected to vertex with in-degree below the support threshold, we directly
store it as a sparse matrix.

G = Ginfreq +Gfreq (2)

= Ginfreq + T × P (3)

After the above separation of infrequent and frequent edges, we run SPUR on Gfreq without loss of
information because all edges in Gfreq are frequent. The SPUR algorithm will compress Gfreq to a pattern
set P and a transaction set T . Each pattern p ∈ P contains a set of vertices from Gfreq. Each transaction
t ∈ T contains a set of patterns from P , corresponding to the compressed representation for the original
adjacency list. To reconstruct the adjacency list of a vertex from Gfreq, we can take the union of patterns
in a transaction. In a binary sparse matrices representation of the pattern set P and transaction set T , the
SPUR algorithm essentially decomposes the frequent graph Gfreq to the product of transaction set T and
pattern set P (shown in Equation 3). By using Ginfreq, T and P , we are able to store the original graph G
with smaller storage size and reconstruct G without information loss.

Note that Gfreq contains most of the edges in the original graph G. Therefore, the input to the SPUR
algorithm will be as large as hundreds millions of transactions and billions of items. To maintain a scalable
solution, we use minwise independent hashing [3] to partition the data into small samples. The SPUR
algorithm will operate on each partition independently and produce a summary for each partition. We
can generate the final solution by merging the pattern sets and transaction sets from the partitions. This
method has been used by Buehrer et al. [4] to improve the scalability of large-scale web graph compression
problems.

3.1 Speeding up PageRank with G-SPUR
The PageRank algorithm models the link structure of web graphs by the random walk behavior of a random
surfer [2,6]. The web graph can be represented by a directed graph G = (V,E), and its adjacency matrix A
is defined as A(u, v) = 1 if edge (u, v) ∈ E; otherwise, A(u, v) = 0. Matrix W denotes the row normalized
matrix of A. The PageRank vector p is computed iteratively using the following equation until convergence:

p(k+1) = cW T p(k) + (1− c)p(0) (4)

where c is a damping factor (set to 0.85 in our experiment), and p(0) is initialized as a n by 1 vector with
all elements set to 1/n. The major computational cost of Equation 4 is to compute the product of sparse
matrix W T and vector p(k). Previous work [5] shows that graph mining algorithms such as PageRank and
SALSA can be directly computed from compressed graphs and the performance can be improved because
the total number of computations can be reduced due to compression. From Equation 4, we can see that the
PageRank algorithm can be implemented by iteratively calling the sparse matrix and vector multiplication
(SPMV) kernel on a graph G. Since G-SPUR decomposes a graph G into Ginfreq, T , and P , all of which
can be stored as sparse matrices, we can directly implement the PageRank algorithm as iterative SPMV on
Ginfreq + T × P .

4 Content and Time Aware Network Topology Queries
In the previous sections, we introduce methods to create summarization of social network content stream and
link structure. Besides those topics, another important analytical task is to investigate the network topology
of the users who have written or read messages about a topic. Given a topic or keyword, example queries can
be as simple as finding users who wrote or read this topic. More insights into the network topology can be
obtained if we can find the social connections among these users. Furthermore, with these user connections,
we can find which users are influential writers about this topic, whether there is any community structures
among the users.

70

We can use the compact storage of the network content (SPUR, D-SPUR) and topology (G-SPUR) to
answer the above queries in two major steps. In the first step, given a query keyword and time interval, we
extract a subgraph of the entire network topology which contains all the users who either wrote or read a
message about this keyword during the query time interval. In the second step, we run various graph mining
algorithms on the extracted subgraphs to find influential users, and community structures in the network
topology.

4.1 Content and Time Aware Subgraph Construction
First, we present our method of constructing a user subgraph given a query keyword and time interval. We
achieve this by querying on the summaries built by the D-SPUR and G-SPUR algorithms.

Time

T
ra

n
s

a
c

ti
o

n
 C

o
u

n
t

{id1, id2, ...}

(a) Modification to the D-SPUR algorithm

G

+=

G_infreq

X

T

P

(b) Extract subgraph with G-SPUR

Figure 3: Construction of Content and Time Aware Subgraph

4.1.1 Incorporate Author Information into D-SPUR

Given a content keyword, we first find the list of users who have written messages about this keyword during
the query time interval. We can slightly modify our D-SPUR algorithm to fulfill this query requirement
as follow. First, we query the summary objects within the query time interval from the pyramidal time
window; Second, in each summary object, we retrieve the patterns that contain the query keyword, and the
transactions that include these patterns. These transactions represent all the messages containing the query
keyword in the query time interval. Third, we need to find the writers of these messages. These users
are who have written messages about the query keyword during the query time interval. Here we need to
slightly change the D-SPUR algorithm to retrieve these users. In the original D-SPUR algorithm, IDs of
users in each transaction is dropped. To preserve user information, we modify it by adding the list of user
IDs at each point in the time series. Figure 3(a) illustrates this modification. Therefore, at a given time and
a specific transaction, we can know which users wrote the transaction. With the above steps, we can extract
the complete list of the writers of messages with a query keyword during a query time interval.

4.1.2 Extract Subgraph from Compressed Social Network

With the list of users U who have written messages about a query keyword during the query time interval,
we then find their social connections by extracting a subgraph of them and their followers from the network
topology. We will use the compressed network topology built by G-SPUR to find these social connections.

71

Suppose a graph G represents the original network topology which contains the social connections
among all users. Equations 2 and 3 in Section 3 show that our G-SPUR algorithm decomposes the adjacency
matrix of G into the adjacency matrix of a graph Ginfreq and the product of a transaction-pattern matrix T
and a pattern-item matrix P . In the original graph G, this subgraph of users U corresponds to a subset of
the rows G(U, :) in the adjacency matrix of G, where each row represents the followers of a user in U . For
example, the three highlighted rows in the matrix G in Figure 3(b) contains the social connections of three
users and their followers. Because of the G-SPUR decomposition G = Ginfreq + T × P , we can extract a
subset of the rows G(U, :) as G(U, :) = Ginfreq(U, :) + T (U, :) × P . This means we can get the rows of
users in U from matrices Ginfreq and T first, then use the rows from T to multiply with the pattern matrix P
and then add to the rows from Ginfreq. For instance, to get the three highlighted rows from G in Figure 3(b),
we first get three rows from Ginfreq and T respectively, then multiply the three rows from T with P , and
then add the result to the three rows from Ginfreq, the final results will be equivalent to the three highlighted
rows in the original G. Therefore, we can efficiently extract a subgraph of the network topology from the
D-SPUR and G-SPUR summaries by querying a content keyword and a time interval.

4.2 Mining Algorithms on Subgraphs of Network Topology
With a subgraph of a network topology conditioned on a query keyword in a query time interval, we can
perform static analysis such as finding relevant users or communities of users on a topic during the query
time interval. Here, we introduce two example mining queries to perform these tasks under our proposed
framework.

4.2.1 Content and Time Aware PageRank

To rank users’ importance regarding a topic keyword w during a time interval t, we can extract the subgraph
G(w, t) from G. This directed subgraph captures the social connections among all users who wrote mes-
sages about w during t. We then iteratively run PageRank (Equation 4) on the adjacency matrix of G(w, t).
The computation can be accelerated by the GPU based high performance computing platform introduced in
Section 3.1.

4.2.2 Clustering

Given a subgraph G(w, t) of the entire network topology G, we would like to find communities in such
subgraphs to capture the topological relationships among the users who write or read the content keyword
w in time interval t. This is meaningful because users have different interests in different topics and form
different community structures. In this section, we introduce a new type of complex query to find such
communities. Given a content keyword w and a time interval t, the query will return a clustering result C
of the active users who write or read messages about the keyword w during time interval t in the social
network. The general idea of answering such query is to first extract the subgraph G(w, t), then apply graph
clustering algorithms on the subgraph to find user communities. However, there are several challenges to
execute the above process:

• Scalability: The scale of the subgraph G(w, t) varies, and can become very large if a popular keyword,
a long query time interval or a high-degree user is involved. A scalable clustering algorithm is thus
needed to answer large number of queries efficiently.

• Noise: Previous work [9] has shown that there are two types of users in modern social network such
as Twitter: a small fraction of influential users (e.g. celebrities, organizations), and a large number
of auxiliary users (mostly followers of the influential ones). While community kernels [9] formed
by influential users are more related to the network content, auxiliary users also form clusters and
create noise in finding community kernels. The presence of auxiliary users also slow down the graph
clustering algorithms.

72

• Connectivity: The influential users usually have a lot of followers but they rarely follow back. The
connections among the influential users are weak as they rarely follow back, and it becomes hard to
find dense communities if not including the auxiliary users. The auxiliary users who follow different
influential users are essential to improve the connectivity of our subgraph G(w, t).

• Directionality: The follower relationships among users are directed, so is the subgraph G(w, t). Sat-
uluri et al [8] show that it is non-trivial to cluster directed graphs by using graph clustering algorithms
designed for undirected graphs.

To overcome the above challenges, we use a simple but effective preprocessing approach to symmetrize
the directed graph G(w, t) and adjust the edge weight to improve connectivity among influential users and
reduce the noise from auxiliary users.

1. Symmetrization: We use the bibliometric symmetrization [8] method to transform our asymmet-
ric subgraph G(w, t) to a symmetric graph SG(w, t). Given the adjacency matrix A(w, t) of G(w, t),
bibliometric symmetrization essentially calculates the adjacency matrix of SG(w, t) as A(w, t)A(w, t)T +
A(w, t)TA(w, t). This transformation not only removes the directionality of edges in G(w, t) but also adds
edges to vertices sharing similar set of in- or out- links. In SG(w, t), edges can exist between two influential
users who are not directly connected, but share common followers. This improves the connectivity among
influential users.

2. Edge Re-weight: Edge weights in SG(w, t) are only based on the topological information. We
would like to incorporate the network content information to down-weigh the connections among auxiliary
users who rarely contribute content to the network, and to reduce the noise. Given the keyword w and a
node i, we calculate the weight W (i) for node i by counting the number of times user i mentioned the
keyword w in the time interval t. Suppose we have an edge from node i to node j, and the edge weight
in the symmetrized graph SG(w, t) is SGw,t[i][j]. We adjust the weight of edge < i, j > by multiplying
SGw,t[i][j] with the sum of W (i) and W (j). In this way, we can construct a new weighted symmetric graph
WSG(w, t) with edge weight WSGw,t[i][j] = SGw,t[i][j] × (W (i) + W (j)). The intuition of this edge
re-weight method is that the node weight W (i) captures how much interest user i has on the keyword w.
Therefore, we want to boost up the weight of edges connected to nodes with strong interest on the query
keyword w, especially for the edges that both the follower and the followee express strong interests.

After the above preprocessing on our subgraph G(w, t), we have a weighted undirected graph WSG(w, t)
where the nodes of similar influential users are connected together and the links to noisy auxiliary nodes are
down-weighted. We then run scalable graph clustering algorithms such as MLR-MCL [7] to efficiently find
dense communities of influential users.

5 Experimental Results
In this section, we present results for an extensive set of experiments we conducted to evaluate the G-SPUR
algorithm. We discuss the compression performance of several large web graphs and the follower-followee
graph of twitter. To show the benefits of graph compression in speeding up graph mining kernels, we also
implement the PageRank algorithm using the summarized graph with CPUs and GPUs.

We gathered 2100 hours of Twitter message streams from June to September in 2010 1, and crawled the
follower lists of all the users in the above message stream 2. We construct the follower-followee graph of
Twitter from this dataset. There are about 131 million vertices and 3.8 billion directed edges. We also use
four other web graphs, shown in Table 9. All algorithms were implemented in C++.

1As provided by Twitter, it is a 15% random sample of all messages.
2Some of the users’ follower information is not available because of their privacy settings

73

Graph Nodes Edges Edges/Node Density Power-law?
it-2004 41,291,594 1,150,725,436 27.9 6.75×10−7 Yes
sk-2005 50,636,154 1,949,412,601 38.5 7.60×10−7 Yes
uk-union 133,633,040 5,507,679,822 41.2 3.08×10−7 Yes
web-2001 118,142,155 1,019,903,190 8.6 7.31×10−8 Yes

Table 9: Web Graph Datasets

5.1 Graph Compression with G-SPUR
We use min-wise hashing to cluster the graph into partitions with partition size less than 1000 and we ran
G-SPUR algorithm on each partition with absolute support value at 5. Figure 4(a) shows the compression
ratio of the G-SPUR algorithm on these graphs. We can see that the G-SPUR algorithm can compress the
storage size of large-scale web graphs to as low as 4 times smaller than the original graphs. In the Twitter
follower-followee graph, our G-SPUR algorithm can still reduce the storage size by half.

5.2 Graph Mining Speed-up on CPU and GPU
Next, we present some experimental results of speeding up the PageRank algorithm with G-SPUR. On
CPU, we store the three sparse matrices Ginfreq, T and P in CSR format and perform matrix and vector
multiplication. Figure 4(b) plots the speed-up numbers of compressed graph over uncompressed on the four
large web graphs and the twitter social graph. We can achieve from 1.4x to 2.6x speed-ups on these dataset.
On GPU, we store the three sparse matrices in our optimized composite storage format. To compare with
the performance of our multi-GPU SPMV kernel, we distribute matrices Ginfreq and T to multiple GPUs,
and each GPU will keep a copy of P because it is needed by all nodes of the GPU cluster. Figure 4(c)
plots the speed-up numbers of the five datasets on GPUs. The PageRank algorithm can achieve from 1.1x
to 2.2x speed-ups on the compressed graph over the original graphs. The major computational cost of the
PageRank algorithm is the iterative SPMV kernel whose running time is proportional to the storage size of
the graph. Our G-SPUR algorithm can effectively compress the size of the graph by decomposing it into
three smaller matrices. Therefore, we can conclude that the speed-ups of the PageRank algorithm come
from the compression of the graphs by the G-SPUR algorithm.

(a) Compression ratio of graphs (b) CPU speed-up of PageRank

(c) GPU speed-up of PageRank

Figure 4: Compression ratio and speed-up of G-SPUR

74

Rank Screen Name Truncated Account Profile Description
1 Lonely Planet Tweeting (& retweeting) the best in travel
2 GWPStudio Photography, Socialmedia & sharing ... Love to travel & connect with people
3 American Airlines The official channel of American Airlines
4 Sean Gardner Digital Media Consultant
5 Gary Arndt Traveler, blogger and photographer. A one man National Geographic. Been to over 100 countries . . .
6 Tavelzoo Travelzoo deal experts research and evaluate thousands of deals each week, selecting only the best . . .
7 SmarterTravel SmarterTravel.com is the largest online travel resource for unbiased travel news, deals, and timely . . .
8 WhereIveBeen Travel industry’s leading social networking travel platform
9 TravelDeals Use Twitter to save on travel in popular locations. Get a customized feed of travel deals near you
10 USATodayTravel USA TODAY Travel offers the latest travel news, deals and consumer features about flights, hotels, . . .
11 Andreas Susana A guy from Austria, who writes about his trips and his website concerning books, castles, . . .
12 Melvin Love to travel, to discover the world, to travel free & untroubled & still be informed like an insider! . . .
13 JD Andrews World Traveler, Dad, 3xEmmy winner, Video, Adventure, Photographer, love dogs, Sharing & Caring . . .
14 British Airways Official British Airways global account
15 Get a Travel Deal I find the best travel deals so you don’t have to. Life’s Short Travel Often!
16 Eagles Nest Wine San Diego’s Medal winning-ist Boutique Winery! Share an Authentic Wine Lifestyle with us! . . .
17 Chicago Events Real-time local buzz for live music, parties, shows and more local events happening right now in Chicago!
18 travelblggr TV Host. Writer. Videographer. Travelista.
19 TravelGreen Tips for sustainable travel and green living. Exploring the world, trying new foods & being green.
20 Tourism Malaysia The official Tourism Malaysia Twitter account.

Table 10: Top 20 ranked users about the keyword “travel”

5.3 PageRank on Subgraph
Next, we show experimental results of content aware PageRank queries on the Twitter social network data
we crawled from June 2010 to September 2010. We extracted the subgraph of users who mentioned the
Twitter hashtag “#travel”. We run the PageRank algorithm on this subgraph and rank accounts by their
PageRank value from high to low. Table 10 lists the top 20 accounts, which can be classified into the
following categories:

• Free information sources that people follow to find and share travel information, such as #1 Lonely
Planet, #8 WhereIveBeen, #10 USATodayTravel and #19 TravelGreen.

• Travel deal websites, including #6 Travelzoo, #7 SmarterTravel, #9 TravelDeals and #15 Get a Travel
Deal. These results are from a subgraph queried during the time of summer 2010. We know that peo-
ple often have their vacation trips in summer and they want to reduce their travel expenses. Therefore,
it is expected that those travel deal websites are active and popular on Twitter during the summer.

• Airline companies such as #3 American Airlines and #14 British Airways, because information of air
transportation is a huge factor for travelers to plan their itinerary.

• Interesting travel destinations including #16 Eagles Nest Winery, #17 Chicago Events and #20 Tourism
Malaysia to promote their travel packages. Since our dataset is only a random sample from all tweets,
we did not find any tweets written by accounts representing famous places of interest in our dataset.

• Famous individual bloggers to share their experiences. This category includes #2 GWPStudio, #4
Sean Gardner, #5 Gary Arndt, #11 Andreas Susana, #12 Melvin and #13 JD Andrews. Some com-
monalities among these accounts are that they have large number of followers, they almost always
follow back to their followers, they also write a lot of tweets and post photos to share their own
traveling experiences.

From the above example, we can see that by running the PageRank algorithm on the subgraphs of a social
network, we can find popular and influential account representing organizations, companies or individuals
related to a content keyword in a time interval.

75

Cluster 1 Cluster 2
PrizeDrawsUK PiggyCodeUK coupons2grab CouponsInfo SavvyPCDeals internetshopper

Deals4UK CodesUK slickwallet CouponNet Spaffin_ebay CouponCodeFeed
TopUKDeals CouponSpy Deals_Vista DirectCoupons redtagdeals

Table 11: Clustering results for the keyword “coupons”

5.4 Clustering on Subgraph
Here, we present experimental results on graph clustering queries. Table 11 shows the influential users
from two clusters we obtained when querying the subgraph for the keyword “coupons” in the time interval
from July 1st, 2010 to July 31st 2010. We can see from the screen names of these users that they are all
related to coupons and deals in online shopping. Furthermore, we can see that the user names listed in
cluster 1 are the Twitter accounts for online shopping websites in UK whereas the user names in cluster 2
are mostly in US with some global online shopping websites. Both cluster 1 and cluster 2 can be considered
as community kernels because the user accounts have a lot of followers who are their customers. Also
this cluster arrangement is reasonable because the accounts in different clusters have different follower
populations. The followers of cluster 1 are mostly customers from UK whereas the followers of cluster 2 are
mostly in US. Such clustering analysis is useful for online marketing with a targeted customer population.
6 Conclusions
We proposed G-SPUR, a novel algorithm to compress social network topology with low compression ratio,
high quality and fast running time. The compressed link structures require less storage space, and can be
directly used to speed up a series of graph mining kernels. It can also be used together with compressed
social content stream to answer content and time aware network queries.

References
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data streams.

VLDB 2003.
[2] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Comput. Netw.

ISDN Syst., 30(1-7):107–117, 1998.
[3] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent permutations.

Journal of Computer and System Sciences, 60(3):630–659, 2000.
[4] G. Buehrer and K. Chellapilla. A scalable pattern mining approach to web graph compression with

communities. WSDM 2008.
[5] C. Karande, K. Chellapilla, and R. Andersen. Speeding up algorithms on compressed web graphs.

WSDM 2009.
[6] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the

web. Technical report, 1999.
[7] V. Satuluri and S. Parthasarathy. Scalable graph clustering using stochastic flows: applications to

community discovery. KDD 2009.
[8] V. Satuluri and S. Parthasarathy. Symmetrizations for clustering directed graphs. EDBT 2011.
[9] L. Wang, T. Lou, J. Tang, and J. E. Hopcroft. Detecting community kernels in large social networks.

ICDM 2011.
[10] X. Yang, A. Ghoting, Y. Ruan, and S. Parthasarathy. A framework for summarizing and analyzing

twitter feeds. In SIGKDD 2012. ACM.

76

