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ABSTRACT

We present a method for visual summary of bilateral conflict struc-
tures embodied in event data. Such data consists of actors linked by
time-stamped events, and may be extracted from various sources
such as news reports and dossiers. When analyzing political events,
it is of particular importance to be able to recognize conflicts and
actors involved in them. By projecting actors into a conflict space,
we are able to highlight the main opponents in a series of tens of
thousands of events, and provide a graphic overview of the conflict
structure. Moreover, our method allows for smooth animation of
the dynamics of a conflict.

Keywords: information visualization, text mining, event analysis,
time-dependent visualization

A preliminary version of this paper has been published in [5].

1 INTRODUCTION

Event data are among the most widely used indicators in quanti-
tative international relations research. While such data can be ex-
tracted efficiently from news reports and dossiers, it has to be pre-
sented to the analyst in such a way that the contained information
can be captured without too much effort. Even when aggregating
actors (like different people representing the same organization)
and focusing on specific global regions (like the Balkans or the
Persian Gulf) and periods of time (like 10 or 20 years) there are
typically several hundreds of actors engaged in tens of thousands of
events.

Of special interest in social and political event analysis is the
identification of conflicts and the division of parties engaged into
opposing sides. While the ultimate goal is conflict prediction, a first
step consists in the detection and analysis of historical or ongoing
conflicts. This is particularly difficult if the parties involved are not,
or only partially, known to the analyst.

Previous work. There is much work on analyzing and sum-
marizing (streams of) news reports. Goals include the automatic
generation of warnings about political crisises, topic detection and
tracking, and the identification of frequent patterns in the devel-
opment of conflicts [20, 2, 1, 11, 3]. However, most of the pro-
posed methods are restricted to the computation of certain statistics,
whereas visual support to the analyst is either absent or bounded to
plotting the timeseries of these statistics. Exceptions include the
following two: Best et al. [3] used a geographic information sys-
tem to generate maps that highlight countries having the most co-
occurrences with certain keywords. Wong et al. [19] proposed a
method to generate animated scatterplots from data streams like,
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e. g., sequences of news articles. (Scatterplots are widely used in
statistical graphics, see, e. g., [7, 8].) However, the scatterplots
in [19] show similarities between documents and not hostile re-
lationships between political actors as will be done in this paper.
Moreover, most previous work (except, e. g., [18]), is limited to
analyze individual dyads of actors separately. In contrast, we will
exploit the macroscopic network structure of bilateral events.

Contributions. We present a method that, given a list of
events, constructs a sequence of networks which in turn is con-
verted into an animated scatterplot. The resulting video summa-
rizes graphically the dynamics of major conflicts over a potentially
long period of time. From this video, an analyst can recognize or
discover the major actors engaged in conflict during certain periods
of time. The observer is also enabled to detect time-points where
the conflict structure changes significantly. Since our animation
is smooth by design, it can be recognized easily which actors en-
ter or leave a conflict during transitions. After recognizing impor-
tant (groups of) actors and time points, the analyst can explore the
conflict network surrounding these actors, thus obtaining additional
structural information about how they are linked together. Further-
more, the lists of events associated to selected dyads of actors can
be printed and news reports associated to crucial events can be di-
rectly shown.

The gain from the proposed method is threefold. Firstly, effi-
ciency of data analysis is augmented by enabling visual mining of
huge sets of event data supported by a sophisticated preprocessing.
Secondly, the presented partial networks give additional informa-
tion about indirect ties (e. g. enemies of enemies) and about den-
sity, complexity, and structure of the actors’ environments. Last
but not least, the analyst can present his/her insights much more
conveniently to others by showing (parts of) the video or printed
still images than by large statistical tables. Thus, usage scenar-
ios for our method include the exploration of unfamiliar political
situations, identification of crucial turning points, and briefing of
decision makers.

An outstanding additional property of our method is that it allows
for a rigorous analysis of robustness to noise in the input data. High
stability gives the certainty that the derived representation is indeed
meaningful and not caused by errors. On the other hand, significant
drops in the stability indicator can draw attention to rapid changes
in the conflict structure as well as to inconsistencies in the input
data.

Outline of this paper. In Sect. 2 we provide background in-
formation on the type of data that is being analyzed. Our method
for visualizing the conflict structure embodied in a set of events is
introduced in Sect. 3 and extended to smooth animation of event
series in Sect. 4. Section 5 describes how an analyst can explore
the local conflict networks of prominent actors and trace back the
original events. In Sect. 6 we analyze the robustness of our visual-
ization technique. The utility of our method is illustrated on event
data from the Balkans and the Persian Gulf in Sect. 7. We conclude
with a discussion of open problems and future work.
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2 EVENT DATA

Our method is applicable to event data given as a series of pairwise
interactions. Although it is independent of the data format, we will
focus on a particular coding scheme to make the exposition more
concrete. The Kansas Event Data System (KEDS) [15] is a software
tool that automatically extracts events from text. In Sect. 7 we will
use KEDS data for the Persian Gulf and Balkans regions. Formally,
an event series is a sequence a1, . . . ,ak of tuples ai = (ti,si,oi,ci),
where

• ti is the time-stamp (date),

• si is the subject (source),

• oi is the object (target), and

• ci is the code (type)

of event ai. Dates are given by the day and actors may be ag-
gregated. We say that actors si and oi are involved in event ai.
Events are classified using to the World Event/Interaction Survey
(WEIS) codes [14]. Each event is assigned Goldstein weights [9]
−10≤ω(ai) = ω(ci)≤ 10, which are psychometrically determined
scores depending only on the type of event. A positive (negative)
weight indicates the degree of cooperation (hostility) of the corre-
sponding type of event.

The following excerpt indicates the coding of actors in the
Balkans data.

NATO_OFFICIAL [NAT]

NATO-LED_STABILIZATION_FORCE_IN_BOSNIA [NAT]

SERBS_IN_BOSNIA [BOSSER]

RATKO_MLADIC [BOSSER]

MILOSEVIC [SERGOV 890101-971230]

[FRYGOV 971231-001005]

[SERSM >001006]

Several tokens in the news may be interpreted as referring to
the same aggregated actor. In the above excerpt, NATO (NAT) is
represented by (among others) potentially unnamed officials and
SFOR1. Similarly, the actor BOSSER is represented by (among oth-
ers) the general term “Serbs in Bosnia”, as well by specific persons
like Mladić2. On the other hand, the same token may represent dif-
ferent actors at different times. For instance, Slobodan Milošević
represents the Serbian government until December 1997, the gov-
ernment of the Federal Republic of Yugoslavia until October 2000,
and after being replaced by opposition-list leader Vojislav Koštu-
nica only himself.

Given an actor coding, textual statements are parsed into events
like the following, dated July 1995.

950710 NAT BOSSER 173 (SPECIF THREAT)

POSSIBLE AIR STRIKES

950710 FRN MOS 054 (ASSURE)

CONDEMNED ATTACK ON MOSLEM

950710 UNO BOS 102 (URGE) MUST

950710 UNO BOSSER 160 (WARN) WARNED

950711 NAT BOSSER 223 (MIL ENGAGEMENT) WARPLANES STRUCK

The first event is an action initiated by the NATO (active) and di-
rected at the Serbs in Bosnia (passive). In addition to the event code
(173), a textual description of the type of event is given in parenthe-
ses. The rest of the line is the stemmed form of the text fragment
that has been turned by the KEDS parser to the corresponding event
(line breaks are added for space constraints). Often, this text gives

1The Stabilization Force (SFOR) was a NATO-led multinational force in

Bosnia and Herzegovina.
2Ratko Mladić was the leader of the Bosnian Serb Army.

valuable additional information, e. g. for the first event, information
about the nature of NATO’s threat.

Examples for Goldstein weights associated with event types are
the following.

072 EXTEND MIL AID 8.3

054 ASSURE 2.8

160 WARN -3.0

223 MIL ENGAGEMENT -10.0

Apparently, extending military aid is a highly cooperative action,
whereas warnings are mildly and military engagement is extremely
hostile. To analyze conflict, we will only make use of negatively
weighted events, i. e. hostile actions.

To detect emergent patterns and utilize indirect relations, we
transform the data into a network. Any set {a1, . . . ,ak} of events
gives rise to a directed interaction graph G = (V,E) in the follow-
ing way. Every actor involved in any event constitutes a vertex, i. e.

V =
⋃k

i=1{si,oi}. There is a directed edge e = (u,v) if there is an
event with source u and target v, and we assign a weight ω(e) that
is minus the sum of all negative weights on events initiated by u and
directed to v. Figure 1 shows an example of a conflict graph drawn
by standard force-directed layout techniques [12]. The complex-
ity of Fig. 1 already indicates the insufficiency of general-purpose
graph-drawing techniques and the need for other analysis and vi-
sualization methods that are more appropriate for this application.
In Sect. 3 we develop a new method of network analysis [4] that is
able to extract the dominant conflict structure, filters out minor ac-
tors, and produces a less complex image that is easy to understand.

Figure 1: Hostile interaction in the Balkans from 1991 until 1997
(edge directions are not shown). Saturation of the edges is propor-
tional to cumulative hostility weights.

It is unlikely that a focused data set yields an interaction graph
with more than one significant non-trivial connected component.
However, since components can be analyzed separately, we may
safely assume that our interaction graphs are connected, anyway.

3 VISUALIZING BILATERAL CONFLICTS

In this section we focus on extracting the structure of conflicts from
static event data, i. e. we ignore time-stamps and consider the data
to be given as a set (rather than a sequence). We will use the cor-
responding interaction graph to determine the main opposition of
actors, where the assumption is that conflicts are predominantly bi-
lateral. The static methods that are developed in this section will be
augmented to include dynamics in Sect. 4.

During the computation of the conflict network’s group structure
we will ignore edge directions. The rationale behind this is that if
there is a strong negative (hostile) edge between actors u and v, then



u and v should be in different groups—independent of whether the
edge is directed from u to v or vice versa. However, edge directions
will be taken into account when determining whether an actor is
more active or more passive (see Sect. 3.3) and highly asymmetric
edges will also be shown as such (see Sect. 5).

A straightforward attempt to determine the two opponent groups
of a bilateral conflict is to try to divide the actor set V into two
disjoint subsets U and W , such that for each edge e = (u,w), or
e = (w,u) we have u ∈U and w ∈W , i. e. conflicts are only between
and not within the two groups. See Fig. 2 for an example partition
of a small subset of actors in the Balkans and selected events among
them.

Figure 2: The subgraph of hostile interaction induced by selected
Balkan events constitutes a bipartite conflict structure.

The existence of a perfect partition into such sets corresponds to
the graph being bipartite and is thus easy to test for. However, larger
data sets will seldomly result in purely bipartite structures. In fact,
our experiments provide evidence that the interaction graphs are not
bipartite for almost all reasonable selections of actors and periods
of time. Thus, in order to make the idea applicable to empirical
data, the concept of a bipartition must be relaxed.

A possible relaxation is to determine a partition V = U ∪W such
that the sum of edge weights between the two sets is maximized (in
a perfect bipartition, this sum is over all edges). However, this is
the well-known MAXCUT problem, which is highly inappropriate
for our purposes: It is NP-hard, not robust to noise, requires actors
to be purely in one group or the other, and reveals no prominence
of actors. We make use of a different relaxation that poses no algo-
rithmic problems, is stable, can handle actors that are members of
both groups, and filters out unimportant actors on the fly.

3.1 Structural Projections

To arrive at a relaxed bipartition, we employ the recently introduced
concept of structural projections (and the closely related structural
similarities) [6], which have a sound theoretical basis and lead to an
efficient algorithm that is easy to implement. We first give an intu-
ition of structural projections, and then introduce them formally.

Instead of mapping actors to one class or the other, structural
projections yield real-valued degrees of membership in classes. For
a relaxed bipartition, actors are projected into a two-dimensional
conflict space such that actors mapped mostly into one dimension
have major conflicts with actors mapped mostly into the other di-
mension, but only minor conflicts with actors mapped into their
own dimension.

An example of such a real-valued projection is shown in Fig. 3.
The figure shows the conflict structure of all actors involved in the
Balkans. Note that the degree of membership assigned to actors
varies. E. g., Bosnia (BOS) is a much stronger member of the blue
group than, e. g., the Moslem ethnic group (MOS). On the other hand
UNO, though closer to the blue group, does not fit exactly into the
bipartite structure, because conflicts with other blue actors (e. g.,
with Bosnia) are reported. Many of the unimportant actors close to

the origin are filtered out because their level of hostility is not suffi-
cient to place them prominently in one group or the other. Thus, our
method not only determines a relaxed bipartition, but also indicates
which actors are most responsible for the division.

The method sketched above is a specific use of a more general
framework. We next introduce its essentials, and refer to [6] for
further details.

A weighted graph G = (V,E) is represented by its symmetric ad-
jacency matrix A = (auv)u,v∈V with rows and columns indexed by V

and entries auv = ω(u,v)+ ω(v,u) corresponding to the weight of
the two directed edges between the two endpoints (if an edge is not
present, the weight is simply equal to zero). The following defini-
tion specifies how vertices (i. e. actors) are projected continuously
to k classes, and thus generalizes k-partitions.

Definition 1 Let G be a graph with n vertices and adjacency matrix
A. A projection is a real k×n matrix P that has orthonormal rows.
The entry Piv is the degree of membership of actor v in class i. The
quotient of G modulo P is the graph that has the k different classes
as vertex set and whose adjacency matrix is B = PAPT.

Quotients model the relation between classes induced by P and G.
Two classes C1 and C2 are connected by an edge whose weight is
the average weight of the edges connecting actors in C1 to actors in
C2 (weighted by their respective degree of membership). In Fig. 2,
e. g., the quotient of the projection to the blue and red class is a
single edge connecting the two.

The next condition ensures that a projection is compatible with
the graph structure.

Definition 2 A projection P is called structural for G if PA = BP.

The above condition requires that equivalent actors must be equally
connected to equivalent actors. In Fig. 2, e. g., all blue actors have
ties to some (but not necessarily the same) red actors .

The following theorem is a characterization of all structural pro-
jections for a given quotient and hence essential for our purposes.
It shows how a projection can be chosen such that it yields a pre-
specified quotient.

Theorem 3 ([6]) Let G and R be two weighted graphs with adja-
cency matrices A and B. A projection P is structural for G with
quotient R, if and only if the row-space of P is generated by eigen-
vectors of A associated with all eigenvalues of B.

We will use this theorem in the next section to determine a struc-
tural projection into two-dimensional conflict space such that the
resulting quotients are “as bipartite as possible.”

3.2 Projecting into Conflict Space

Consider the parameterized graph in Fig. 4. It consists of two ver-

Figure 4: Quotient R representing the conflict space. Weights w and
c are average weights of edges between and within the two groups.

tices representing the opposition of two groups, an edge with large
weight w representing the hostility of events involving actors in op-
posite groups, and two edges with small weight c representing the
hostility of events involving actors within a group.



Figure 3: Structural projection of Balkan conflict 1989–2003. Dominant actors include those of Fig. 2. Actors are members of the first (second)
group to the extent that they are mapped in direction of the left (right) coordinate axis. Angle (left vs. right) and color (blue vs. red) encodes
the ratio between the two group membership values. Importance is proportional to the distance from the origin. The aspect ratio (shape) of
an actor encodes the ratio between activeness (height) and passiveness (width).

The single-edge quotient of a bipartite graph is augmented by
loops of weight c, because the interaction graph will almost never
be bipartite at any given point in time. For this quotient, we need to
find a (continuous) projection of actors onto these two classes, such
that w is as large as possible and c as small as possible.

The eigenvalues of the adjacency matrix B of the quotient shown
in Fig. 4 are

λ = w+ c and µ = −w+ c .

From a different perspective, parameters w and c are given by the
two eigenvalues λ and µ of B as

w =
λ −µ

2
and c =

λ + µ

2
.

By Theorem 3, a projection P onto the graph R is found by eigen-
vectors of A associated with λ and µ . Since our goal is to maximize
w, we choose λ as large and µ as small as possible, i. e. we take
eigenvectors of A associated with the largest and smallest eigen-
value λmax and λmin. We thus have the following result.

Theorem 4 The structural projection with quotient R from Fig. 4
that maximizes w is the orthogonal projection onto the two eigen-
vectors of A associated with the largest and smallest eigenvalue.

The above derivation also shows that c = 0 if and only if λmin =
−λmax, which is well-known to hold if and only if the graph is bi-
partite. Although this is almost never the case in empirical data, our
experiments provide evidence that often c is very small compared to
w. To assess the degree to which the data matrix A is bipartite, i. e.,
to which degree does the bilateral model fit the data, we introduce
the following index.

Definition 5 Let λmax and λmin be the largest and smallest eigen-
value of the adjacency matrix of a graph G. The bipartiteness of G

(or model fit of the projection) is defined as

β (G) =

∣

∣

∣

∣

λmin

λmax

∣

∣

∣

∣

.

Index β (G) is between zero and one. It is one if and only if the
graph is bipartite (i. e. if the model fits perfectly) and it is zero if
and only if c equals w, i. e. if there are as many edges within the
groups as there are in-between.

3.3 Graphing Conflict Space

Using the projection specified in Theorem 4, we obtain a repre-
sentation of the interaction graph in a two-dimensional conflict
space, i. e. a scatterplot of the vertices with coordinates given by
the eigenvectors of the adjacency matrix of the graph. So far, actors
are drawn without the connecting edges to avoid clutter (compare
Fig. 1).

The coordinates of the scatterplot are transformed to indicate the
degree of membership to each of the two classes. To do so, first
consider what happens when the ideal, single-edge, conflict graph
(i. e., the graph R in Fig. 4 with c = 0) is projected onto itself. The
normalized eigenvectors of a single edge are

x =
1√
2

(

1

1

)

and y =
1√
2

(

1

−1

)

,

so that
x+ y√

2
=

(

1

0

)

and
x− y√

2
=

(

0

1

)

.

If x,y are the first and last eigenvectors of an arbitrary input graph,
the lefthand side transformations thus yield real-valued degrees of
membership in the two conflict groups. To obtain a horizontal op-
position, we finally rotate the result by 45 degrees (compare e. g.,
Fig. 3). The rotated coordinate system prevents, in contrast to the
more usual one (one axis vertical and one horizontal), misguided



interpretation of superiority of one group over the other. The pro-
posed coordinate system differs from that of [5] which has two hor-
izontal, antiparallel axes. In the new coordinate system actors that
are logically between the two groups (i. e., those that have strong
membership to both groups) are also visually between those groups
(see, e. g., UNO in Fig. 15). This does not hold for the coordinate
system in [5].

Because of an intricate relation between structural similarities
and vertex centrality [6], the distance from the origin (i. e., the norm
of the actor’s column in P) is an indicator of the actor’s importance.
As is apparent in Fig. 3, our projections thus not only classify ac-
tors to one group or the other, but also distinguish between major
and minor members of each group. We draw circles around the
origin to facilitate the recognition of actors with the same level of
importance.

The graphical attributes of our visualization are determined as
follows. The actor’s position in the two-dimensional drawing indi-
cates its group membership and importance: Actors are members of
the first (second) group to the extent that they are mapped in direc-
tion of the left (right) coordinate axis. Importance is proportional
to the distance from the origin. Angle (left vs. right) and color
(blue vs. red) encodes the ratio between the two group membership
values. Importance is further emphasized by the saturation of the
actor’s color. Vertex shape and size are used to add information
about activeness of actors. Activeness is defined as the net weight
of the events in which an actor is involved as the subject initiating
the event. Symmetrically, passiveness adds weights of events re-
ceived. The ratio between activeness and passiveness determines
the aspect ratio of a vertex, so that aggressive actors that initiate
hostile interactions, but are not the subject of retaliation are high
and narrow. The size of a vertex is the sum of the two and thus
represents an actors involvement in a conflict structure. Finally, we
indicate the fit of the bipartite model using a bipartiteness gauge on
the righthand side of the frames.

We summarize the algorithm for scatterplots representing the
conflict structure of a graph G of hostile interactions with adjacency
matrix A:

1. Compute maximum and minimum eigenvalues λmax and λmin

of A together with associated normalized eigenvectors vmax

and vmin.

2. The projection is given by the 2×n matrix P with x = (vmax +

vmin)/
√

2 in the first and y = (vmax − vmin)/
√

2 in the second
row. Rotate coordinates by 45 degrees.

3. The bipartiteness is given by β = −λmin/λmax.

4. Draw each actor v as an ellipse with coordinates and color
values proportional to the two values in the v’th column of
P, height proportional to activeness and width proportional to
passiveness.

Any eigenvector algorithm for real symmetric matrices can be used
in Step 1 (see, e. g., [10]), and there are many readily available soft-
ware packages.

Figure 3 shows the projection into conflict space for events of the
Balkan Conflict from 1989 until 2003. The circles around the ori-
gin facilitate to recognize that the most important actor during the
whole period of time is Serbia (SER), closely followed by the Serbs
in Bosnia (BOSSER) and Bosnia (BOS). The bipartiteness of this pro-
jection is rather low (only around 0.42), indicating many conflicts
within the two groups. Despite of the low bipartiteness, our method
still yields two reasonable opponent groups: Serbia and the Serbs
in Bosnia opposed to Bosnia and Croatia (CRO). The NATO (NAT)
is opposed to SER and BOSSER, due to the massive air strikes in

1994 and 1995. Since NATO initiated more events than it receives,
it shows as a high and narrow actor.

Figure 5 shows the projection for the conflicts in the Persian Gulf
from 1979 until 1999. The two major opponents for the whole pe-
riod of time are clearly the Iran and Iraq, due to their war from 1980
to 1988. The bipartiteness is, although much higher than in Fig. 3,
considerably distant from one. The reason for this is that the USA
have strong negative ties to both Iran and Iraq, thus these three ac-
tors form a hostile triangle. The fact that the aggregated weight of
hostile events between the USA and Iraq (mostly following Iraq’s
invasion of Kuwait in 1990) is larger than the weight between the
USA and Iran, is the cause that USA is mapped farer from Iraq and
thus, necessarily, closer to Iran .

Figure 5: Gulf Conflict 1979–1999.

4 ANIMATING CONFLICT DYNAMICS

The images generated as described in Sect. 3 already reveal the ac-
tors and conflicts that are dominant over the whole period of time.
However, due to changing oppositions and alliances these images
might not well represent the structure at specific time-points. Like-
wise, conflicts of short duration might be filtered out. To obtain a
more detailed insight into the evolution of conflicts, we will intro-
duce a technique for smooth animation of the above type of scatter-
plots for limited periods of time.

The event graph G is used to generate a sequence of graphs Gt ,
each of which represents the view on the set of events at the specific
time t. A graph Gt yields one frame of the final video and this frame
shows a detailed image of the situation at time t. How the events are
viewed at a certain time-point is determined by a scaling function
η : R → R≥0, which models how events move into the data when
time increases and how they fade out. Examples of possible scaling
functions are triangular shaped scaling functions with time radius r

ηr(t) =







(t + r)/r if |t| ≤ r and t < 0
−(t − r)/r if |t| ≤ r and t ≥ 0

0 if |t| > r .
(1)

The function ηr does not consider events with a time-stamp more
then r away from the current time-point. Events move into Gt lin-
early until t is larger than their time-stamp. Then, they fade out
linearly until they have zero weight.

For a fixed η and t, the graph Gt = (V,E,ωt) is defined as fol-
lows. The actor set V and the edge (or event) set E are the same
as for the input graph G. The weight ωt(e) of an event e at time
t is defined to be ωt(e) = ω(e) ·η(te − t), that is, the weight of e
at time t is its absolute weight ω(e) times a scaling factor which is
dependent on the difference between the time-stamp te of the event
and the current time t. The graph Gt may be reduced by removing
events with zero weight, as well as isolated actors, since these do
not influence the analysis and would be invisible in the final video.



Given a graph G, representing a list of events, the movie is gen-
erated by the following steps.

1. Select a sequence of time-points t1 < · · · < tN in a given time
interval.

2. For each i from 1 to N

Compute the visualization of the graph Gti .

3. The images for all time-points yield the frames of the video.

In order to maintain the overall appearance of the frames one fur-
ther detail has to be taken into consideration. If v is an eigenvector
of A associated to eigenvalue λ , then so is −v. Thus the eigensolver
algorithm could return either v or −v as a solution to the eigenvalue
problem. To prevent that this assignment switches from one frame
to another (which would result in interchanging the axes of the co-
ordinate system from one frame to another) we have to ensure that
the eigenvectors we use point in a well-defined direction.

The canonical direction for the eigenvector vmax associated to
the largest eigenvalue is simply the direction in which each entry
of vmax is positive. (It is standard knowledge in algebraic graph
theory that all entries of this eigenvector have the same sign.) We
define the canonical direction for the eigenvector vmin for time-step
t recursively by the direction of this eigenvector for time-step t −1.
The direction of vmin is chosen such that the angle between vmin

at time t and vmin at time t − 1 is smaller than 90 degrees. Thus,
only the direction of vmin for the very first time-step is arbitrary.
This translates to the fact that there is no absolute meaning attached
to the two opponent groups. A second computation of the movie
could reverse the red and the blue groups, but then it has to reverse
the assignment for all actors and at all time points, which results in
the same opponents.

5 EXPLORING THE CONFLICT NETWORK

In summary, the visualization method described in Sects. 3 and 4
settles the important problem of identifying and displaying the most
important actors out of a large set of event data. Moreover, it shows
how these actors are grouped together, and how the group structure
changes over time. This information serves as the starting-point
to analyze visually and interactively the given event data. In this
section we describe how to augment our system by providing in-
teractive facilities to explore the conflict network around prominent
actors. We give first an overview about the interaction possibilities
and explain them in more detail in the remainder of this section.

The first (rather obvious) interaction possibility is the control of
the animation and selection of time points by the buttons in the
lower right corner or by clicking on a specific point in the time-
line. The other types of interaction enable exploration of the net-
work structure and tracing of events (also see Fig. 6): Focusing on a
small number of important actors, the analyst can explore the edge
structure (conflict structure) surrounding these actors. The events
that are associated to selected edges can be printed in textual form.
Finally, the original news reports are obtained by selecting crucial
(like military engagements) or unexpected (depending on the ana-
lyst’s previous knowledge) events. Thus, the analyst can trace back
the (reports of the) most serious political, military, or other activi-
ties, involving the chosen actors.

In our examples (see Sect. 7), printing of the events is performed
by a separate program and the presentation of news reports is not
included in our prototypical implementation. However, it should be
obvious that the realization of these functionalities is straightfor-
ward.

✦✦✦✦✦✦✦✦

❤❤❤❤❤❤❤❤

960924 KUR TUR (RIOT) KURDS CLASHED WITH OFFICIALS

960924 TUR KUR (RIOT) RIOT

960924 KUR TUR (ARREST PERSON) JAIL

960924 TUR KUR (NEUTRAL COMMENT) DIED TURKISH SAID

960925 TUR KUR (MIL ENGAGEMENT) KILLED

960925 TUR KUR (ARREST PERSON) CHARGED WITH

960927 TUR KUR (NEUTRAL COMMENT) SAID

961001 KUR TUR (MIL ENGAGEMENT) TURKISH WERE SHOT BY KURDISH

961006 TUR KUR (MIL ENGAGEMENT) KURDISH KILLED IN TURKISH

961007 TUR KUR (URGE) SAID SHOULD

961007 KUR TUR (NEUTRAL COMMENT) SAID

961008 TUR KUR (MIL ENGAGEMENT) KILLED

961008 TUR KUR (CRITICIZE) SAID KILLED

961009 TUR KUR (TURN DOWN) DISMISSED

961009 TUR KUR (CRITICIZE) ACCUSED

961011 TUR KUR (MIL ENGAGEMENT) KILLED

961015 TUR KUR (CRITICIZE) SAID KILLED

✦✦✦

❏
❏

❏❏

Report

Figure 6: Schematic illustration of exploration possibilities. Edges
of selected actors can be drawn. The event list of the selected edge
(TUR,KUR) is printed. The news report associated to a specified event
is presented.

Displaying selected network-structure. A scatterplot ob-
tained by the algorithm in Sect. 3 reveals the key actors and the
oppositions they form. However, it does not reveal the exact inter-
action structure. For instance, in Fig. 7, the analyst can clearly dis-
tinguish the prominent members of two opposing groups. However,
from this picture it does not become clear whether, e. g., Turkey
(TUR) has hostile interactions with the Kurds (KUR), the USA, or
with both.

Our system can show the edges incident to a selected subset of
actors. By clicking on an actor, all edges in which this actor is either
the source or the target are displayed with saturation proportional
to the edge weight. For instance, selecting the prominent actors in
Fig. 8 shows their local network structure. It can be seen that not
all edges between blue and red actors are present and not all edges
have the same weight.

Figure 7: Balkans in 1996. Two opposing groups become apparent -
but which actor is in conflict with whom?

Figure 8: Same situation as in Fig. 7 with edges of selected actors
shown. (Only edges with weight above 100 are included.)

The possibility to show and hide selected edges interactively is
much preferable to simply drawing all (strong) edges. For instance,



showing all edges whose weight is above 1000 in the scatterplot
for the complete Balkan conflict (Fig. 9), yields a rather confusing
image. By giving the analyst the possibility to select actors whose
edges are to be shown, our system can present a less complex but
complete visualization of a part of the conflict network. See Fig. 10
where only edges incident to BOSSER are shown.

Figure 9: Balkans conflict from 1989–2003 including all edges with
weight above 1000. The complexity of the edge-structure rather
hides than reveals information.

Figure 10: Same picture as Fig. 9 where only edges targeted to
or from the Serbs in Bosnia (BOSSER) are shown. BOSSER’s main
opponents become clearly visible. Edge coloring indicates the main
direction.

Asymmetry of edges is shown to the analyst by coloring the end
incident to the main initiator (source) in red and the end incident to
the main receiver (target) in grey. In Fig. 10, e. g., it can be observed
that BOSSER initiated many hostilities targeted to the Moslem ethnic
group (MOS), receives a lot from NATO (NAT), and is mostly on
equal terms with Bosniaks (BOS) and the UNO.

Showing crucial events. The exploration of the local net-
work around selected actors might draw the attention to strong, sig-
nificant, or unexpected edges. To go deeper into the meaning and
the origin of these edges, the analyst is enabled to print the hostile
events and the news reports that generated it.

By selecting a pair of actors (an edge) and a time-frame the an-
alyst can print all (or if too many, the strongest) hostile events in-
volving those two actors. Figure 11 shows hostile events between
Turkey and the Kurds (compare Fig. 8) from September 15’th until
October 15’th 1996. (Note that individual events might be coding-
errors. We will treat the issue of errors in Sect. 6.)

Finally, by selecting important or unexpected events from such
lists, the analyst can obtain those news reports that contain the orig-
inal text associated to the generated events.

The advantage of showing the events in their coded form be-
fore presenting the actual reports is that the analyst can get a rough

960924 KUR TUR (RIOT) KURDS CLASHED WITH OFFICIALS

960924 TUR KUR (RIOT) RIOT

960924 KUR TUR (ARREST PERSON) JAIL

960924 TUR KUR (NEUTRAL COMMENT) DIED TURKISH SAID

960925 TUR KUR (MIL ENGAGEMENT) KILLED

960925 TUR KUR (ARREST PERSON) CHARGED WITH

960927 TUR KUR (NEUTRAL COMMENT) SAID

961001 KUR TUR (MIL ENGAGEMENT) TURKISH WERE SHOT BY KURDISH

961006 TUR KUR (MIL ENGAGEMENT) KURDISH KILLED IN TURKISH

961007 TUR KUR (URGE) SAID SHOULD

961007 KUR TUR (NEUTRAL COMMENT) SAID

961008 TUR KUR (MIL ENGAGEMENT) KILLED

961008 TUR KUR (CRITICIZE) SAID KILLED

961009 TUR KUR (TURN DOWN) DISMISSED

961009 TUR KUR (CRITICIZE) ACCUSED

961011 TUR KUR (MIL ENGAGEMENT) KILLED

961015 TUR KUR (CRITICIZE) SAID KILLED

Figure 11: Hostile events between TUR and KUR from 09/15/96 to
10/15/96.

overview of the succession of events before starting the (time con-
suming) task of reading the news articles. For instance the above
17 events can be read “in a minute”, whereas even skipping through
several reports written on different days will take much longer. In
addition, by looking at the sequence of events, it might become
clear that some events are of minor importance and considering the
corresponding articles can be omitted or postponed.

6 ROBUSTNESS ON NOISY DATA

In this section we tackle the issue of stability of our method. Sta-
bility, i. e., robustness to errors in the input data, is one of the most
crucial properties of any method that analyzes and/or visualizes em-
pirical data, because the vast majority of application data does con-
tain errors.

Reasons for errors are manifold—we will exemplary mention
only two of them that are related to our data. First of all the news
reports that have been used as input to the KEDS parser cannot be
assumed to be objectively correct in all cases. Due to several rea-
sons, some events might be more intensively reported than others,
or journalists might not be aware of certain events. Secondly, the
automatic coding of natural language text is certainly not perfect.
According to the KEDS web-site, “machine-coded event data has a
15% to 20% coding error rate” 3. Thus, the list of events that forms
the input data of our system is only a perturbed coding of the “true”
relations between actors.

In the ideal case, our method would turn the perturbed input data
into an image that gives the same (or very similar) visual informa-
tion to the analyst, as if the input data contained no errors. One of
the most desirable features of our method is that we can provide
a quantitative indicator that tells to what extent this ideal case is
reached. It can be proved that, for a given value of this indicator,
errors up to a certain magnitude are harmless. The benefits of the
stability indicator are twofold. A high parameter gives the certainty
that the representation of the data is indeed meaningful, because it
is close to the representation of the unperturbed data. On the other
hand, a low parameter draws the attention to unstable states of the
conflict network which in turn might draw the attention to unstable
political situations, as well as to inconsistencies in the input data.
Furthermore, the magnitude of the stability parameter also provides
bounds on how much does the visualization change from one frame
to the next one, thus giving guarantees for the smoothness of the
animation.

The next subsection provides a more formal model for the sta-
bility analysis and introduces the notation used in the following.

3http://www.ku.edu/∼keds/data.dir/balk.html



6.1 Modeling Stability

We assume that the true conflict network is described by an n× n
matrix A. Given A, our method would compute an image whose
coordinates are the entries of the projection matrix P. However, A is
not known. Instead, the input data is a perturbed matrix A′ = A+E ,
where E is the error matrix. Given A′, our method computes an
image whose coordinates are the entries of the projection matrix P′.
The problem is to clarify how much does P′ differ from P.

A first solution to this problem is that we define in Sect. 6.2 the
absolute stability σ0 (dependent only on A′), such that the differ-
ence between P and P′ can be bounded in terms of σ0 and the norm
of E .

However, σ0 is not appropriate to compare the stability of net-
works with different number of actors and different average edge
weight. As a more useful indicator of stability, we define in
Sect. 6.3 the relative stability σ which builds on the assumption
that errors for individual edges are uncorrelated and do not exceed
a certain factor δ . (In the light of the stated 20% coding error in the
KEDS data, this would translate to the assumption that each ma-
trix entry is perturbed independently by up to 0.2 times the average
magnitude of all entries.) The parameter σ is only dependent on
A′ and δ . Given the independence assumption on E , the difference
between P and P′ can be bounded in terms of σ alone.

Since the true, unperturbed data is not known, the independence
assumption can never be proved. However, assuming independence
of errors is very common in statistical data analysis and is motivated
from the belief that errors are not distributed in a “worst case” man-
ner.

6.2 General Stability Results

We recall the definition of two matrix norms. The 2-norm ‖M‖2 of
a Matrix M is defined to be

‖M‖2 = max
‖x‖2=1

‖Mx‖2 ,

where ‖x‖2 denotes the 2-norm (Euclidean length) of the vector x.
The Frobenius norm ‖M‖F of a Matrix M is defined to be

‖M‖F =
√

∑
i, j

M2
i j .

As specified in Theorem 4, our method projects to the eigen-
vectors associated to the largest eigenvalue λmax and the smallest
eigenvalue λmin. The absolute stability is the smallest distance of
one of these two eigenvalues to any other eigenvalue of the adja-
cency matrix.

Definition 6 Let A′ be the adjacency matrix of the given conflict
network and let λ1 ≤ ·· · ≤ λn be the ordered sequence of its eigen-
values (in particular, λ1 = λmin and λn = λmax). The absolute sta-
bility σ0 of the projection P′ to conflict space is defined to be

σ0 = min{|λ1 −λ2|, |λn−1 −λn|} .

The inverse of σ0 measures to what extent errors in the data prop-
agate to errors in the visualization of the data:

Theorem 7 Let σ0 be the absolute stability of the projection to
conflict space, ε = ‖E ‖2 the norm of the error matrix, and let P
and P′ be the projections computed according to A and A′, respec-
tively. Set σ ′

0 = σ0 − ε . Then, if ε < σ ′
0/2, it is

‖P−P′‖F ≤ 2ε

σ ′
0

.

The proof of Theorem 7 follows in a straightforward manner
from Theorem V.3.4 of [17].

The parameter σ0 as defined in Def. 6 has the drawback that it
is not possible to compare values of σ0 across different networks,
as σ0 normally increases with increasing number of actors and with
increasing average edge weight. In the next section we define the
relative stability σ by a normalization of σ0.

6.3 Uncorrelated Errors

The appropriate normalization of the stability indicator can be de-
rived under the assumption that the errors of individual edges are
uncorrelated. We give a model for such a random error process in
the following definition.

Definition 8 Let avg(A′) denote the average of the entries of A′,
and let δ be a given parameter (0 < δ < 1). We say that E

satisfies the independence assumption with error rate δ if the en-
tries of E are uniformly and independently drawn from the interval
[−δ · avg(A′),δ · avg(A′)].

The 2-norm of random matrices with bounded variance can be
well estimated. The following theorem can be proved using results
from [13].

Theorem 9 Let E be a symmetric matrix whose entries are drawn
independently from a probability distribution with variance var and
mean zero. Then with high probability the 2-norm of E is bounded
by

‖E ‖2 ≤ 3
√

varn .

The term “with high probability” means: with probability that tends
to one as n increases.

Drawing numbers uniformly from an interval [−∆,∆] has mean

zero and variance ∆2/3. We conclude that if E satisfies the inde-
pendence assumption with error rate δ then with high probability
its 2-norm is bounded by

‖E ‖2 ≤ δavg(A′)
√

3n . (2)

The above bound, together with Theorem 7 motivates the definition
of the relative stability.

Definition 10 Let A be the true adjacency matrix of a conflict net-
work, A′ = A +E the noisy input matrix, σ0 the absolute stability,

and δ a given error rate. Further, let ε = δavg(A′)
√

3n be the up-
per bound for ‖E ‖2. The relative stability σ of the projection to
conflict space is defined to be

σ =
σ0 − ε

2ε
,

if σ0 > ε . (Otherwise σ is undefined.) We call σ−1 the volatility of
the projection, if σ is defined.

The key perturbation-theorem for the case of uncorrelated errors
follows from Theorem 7 and Eq. (2) .

Theorem 11 If E satisfies the independence assumption and if σ >
1.0, then with high probability ‖P−P′‖F ≤ σ−1.

Measuring P−P′ is done in the Frobenius norm since ‖P−P′‖F

is closely related to the difference between the unperturbed and per-

turbed drawing: If ∆(v) =
√

(P1v −P′
1v)

2 +(P2v −P′
2v)

2 denotes the

Euclidean distance between the positions of actor v in the two draw-
ings (where the unit length is determined as being the length of the
rows of P and P′), then

‖P−P′‖2
F = ∑

v∈V

∆(v)2



is the sum of the squared distances over all actors. Taking the
squared distances has the advantage of counting a few large de-
viations more heavily than many small deviations. Indeed, moving
one actor to a very distant place distorts the perceived information
more seriously than moving all actors only slightly.
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Figure 12: Volatility profile of the Balkan conflict.

As an example, Fig. 12 shows the volatility of the analysis of
the Balkan conflict computed with δ = 0.2. The volatility is well
below 0.1 for most time steps. It reaches the threshold 1.0 (where
Theorem 11 provides no bounds) only on a small number of days.
These peaks in the volatility curve are all mirrored in the video by
a sudden movement of the actors, resulting in a rapid change of the
dominant conflict structure.

We conclude that the stated 20% coding errors in the KEDS data
do only slightly affect the analysis for the majority of time-steps.

In the video we visualize a high volatility by changing the
background-color from green to red. Coding volatility (similar to
the model-fit) by a “volatility gauge” would not be appropriate due
to the very short peaks that could easily be overseen. In contrast, a
red background is easy to recognize and warns the analyst that the
representation is currently very sensitive to errors and that possibly
a major change in the conflict structure is going on.

7 APPLICATION EXAMPLES

We apply our method to visualize two selected data sets from the
Kansas Event Data System (KEDS) [15] in a prototypical imple-
mentation. We generate the graphs Gt with the triangular shaped
scaling function ηr which is defined in (1). For the two investigated
data sets we used for the time radius r a period of 90 days. This
simple but continuous scaling function already yields a smooth ani-
mation, since the coordinates depend continuously on the entries of
the input matrix (lest σ−1 becomes greater than one).

In the video, the current time is shown by a triangle on the hor-
izontal time-scale at the bottom. The current bipartiteness βt is
shown in a scale ranging from zero to one. This scale is green if βt

is close to one and red if it becomes low.

The animations4 are realized in SVG (Scalable Vector Graph-
ics, see W3C Recommendation5) format, thus they can be viewed
on any web browser with an appropriate plug-in. The file for the
Balkan region, e. g., covers about 5000 days using 1000 key frames
to ensure smooth animation.

4The animations referred to in this paper are available from

http://www.inf.uni-konstanz.de/algo/research/conflict/
5http://www.w3.org/TR/SVG/

7.1 Balkan

The KEDS Balkans data6 contains 78,668 events for the major ac-
tors (including ethnic groups) involved in the conflicts in the for-
mer Yugoslavia. Coverage is April 1989 through July 2003. The
varying degree of polarization can be inferred from the model fit
indicator curve in Fig. 13. Although there is great variation in the
magnitude of the model fit, it is often close to one and at all time
points considerably distant from zero. Thus, the simplistic assump-
tion of bipartite conflicts already fits the data sufficiently well. The
following figures show selected time-points of the Balkans conflict.
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Figure 13: Bipartiteness (model fit) profile of the Balkan Conflict.

Important changes in the conflict structure took place in 1995
and 1996. Figure 15 shows the war in Bosnia, where Serbia and
the Serbs in Bosnia (BOSSER) are opposed to Bosniaks and Croats.
The UNO, which is trying to install peace in Bosnia, has conflicts
of similar strength to all of them. This changes when troops of
the Bosnian Serbs captured weapons from UN peace keepers and
declined to return them (Fig. 16). After the Bosnian Serbs did not
respond to an ultimatum, the NATO started air strikes under the
order of the UN (Fig. 17). The opposing parties finally participated
in peace talks which took place in Dayton/Ohio and where signed
in December 1995 (Dayton Peace Agreement, Fig. 18). After this,
events in the Balkans calmed down and the media focused on the
conflict between Turkey and the Kurds (already shown in Figs. 7
and 8).

The conflict between Turkey and the Kurds also exemplifies a
problem with the data that we were not aware of before seeing the
animation. In July 1997, there is an abrupt change in media cover-
age in the sense that reports on hostilities between Turks and Kurds
are suddenly missing. Figures 19 and 20 show the conflict struc-
ture in the Balkans with only a few days in between. The change is
also visible in a significant drop in the bipartiteness curve (Fig. 13),
where the highly bipolar situation rapidly changes into a more com-
plex one and in a peak in the volatility curve (Fig. 12), which be-
comes visible to the analyst by the red background in Fig. 20.

That this change is indeed supported by the data can be veri-
fied by printing the events involving TUR and KUR. During the pe-
riod from May 10’th 1997 to June 10’th 1997 many hostile events
between these two actors are reported (see Fig. 14). In contrast,
from June 11’th 1997 until July 11’th 1997 there is no hostile
event reported between TUR and KUR. There are no prominent his-
toric events explaining this sudden “peace”. However, turning to
the data description gives the information that this is precisely the
time when KEDS sources change from Reuters North America to

6http://www.ku.edu/∼keds/data.dir/balk.html



970514 TUR KUR (MIL ENGAGEMENT) KILLED

970514 TUR KUR (MIL ENGAGEMENT) TROOPS CLASHED

970514 TUR KUR (MIL ENGAGEMENT) TURKISH PUSHED AGAINST KURDISH

970520 TUR KUR (MILITARY DEMO) HUNTING DOWN

970521 TUR KUR (MILITARY DEMO) BUILDING UP FORCES

970522 KUR TUR (MIL ENGAGEMENT) ATTACKED KILLING

970522 TUR KUR (MIL ENGAGEMENT) TURKISH PUSHED AGAINST KURDISH

970522 KUR TUR (NONMIL DEMO) STAGED PROTEST

970522 KUR TUR (DENIGRATE) CONDEMNATION

970524 KUR TUR (MIL ENGAGEMENT) ATTACKS ARMY

970526 TUR KUR (MIL ENGAGEMENT) TROOPS CLASHED

970527 TUR KUR (MIL ENGAGEMENT) BOMBED

970602 TUR KUR (MIL ENGAGEMENT) KURDISH KILLED IN TURKISH

970604 TUR KUR (MIL ENGAGEMENT) KURDISH KILLED IN TURKEY

970604 TUR KUR (ARREST PERSON) JAIL

970605 TUR KUR (MIL ENGAGEMENT) KILLED

970607 TUR KUR (DENY) DENIED

970609 TUR KUR (DENY) DENIED

970610 KUR TUR (DEMAND) DEMANDING

Figure 14: Hostile events between TUR and KUR from 05/10/97 to
06/10/97.

Reuters Business Briefing, with the latter apparently not covering
the conflict. (Or TUR and KUR being filtered out during preparation
of the data for the KEDS parser.) The different news sources are

01 Apr 1989 – 31 Dec 1990 Reuters Business Briefing
01 Jan 1991 – 10 Jun 1997 Reuters North America
11 Jun 1997 – 31 May 1999 Reuters Business Briefing
01 Jun 1999 – 31 Jul 2003 Agence France Press

Figure 15: War in Bosnia (only edges incident to UNO are shown).
Two opposing groups and UNO trying to mediate.

Figure 16: BOSSER’s troops in conflict with the UN. The heavy edge
pushes UNO to the red group.

Figure 17: NATO bombing in Bosnia. Note that BOSSER changed
from high and narrow (being the source of events) in Fig. 16 to broad
and flat (being a target).

Figure 18: Dayton peace talks.

Figure 19: Conflict between Turkey and the Kurds before the change
from Reuters North America to Reuters Business Briefing.

Figure 20: During the change: A red background indicates a highly
unstable projection. TUR and KUR are still visible to the left and to
the right of the origin and are rapidly moving towards it.
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Figure 21: Volatility profile of the Gulf Conflict.

Figure 22: Iraqi invasion of Iran.

7.2 Persian Gulf

The KEDS Gulf data set7 contains 57,000 events for the states of the
Gulf region and the Arabian peninsula for the period 15 April 1979
to 31 March 1999. The volatility plot, computed with δ = 0.2, is
shown in Fig. 21.

In September 1980, the Iraqi invasion of Iran (shown in Fig. 22)
took place. The projection shown in Fig. 22 remains almost un-
changed until 1987, although Iraq and Iran switch several times
from being the main source to being the main target of the hostili-
ties and back. The very flat line in the first half of the volatility plot
(Fig. 21) is a quantitative measure for the continuity or pervasive-
ness of this conflict.

Starting from the end of 1991 a repeated switch between the two
conflict pairs USA vs. Iraq on one hand and Israel vs. the Lebanon
on the other can be observed. This interchange of the dominant con-
flict structure is also reflected in the volatility plot (Fig. 21) which
shows many peaks. Figures 23 and 24 show one of these changes
which took place in 1996. This oscillation is not an artifact of our
method but can actually be found in the data. We calculated the ag-
gregated negative weights of the undirected edges (ISR,LEB) and
(IRQ,USA) and plotted them in Fig. 25. For example, the weight of
(ISR,LEB) is significantly higher than the weight of (IRQ,USA) at
the beginning of 1996. This priority becomes inverted in the sec-
ond half of 1996, which is the cause for the change from Fig. 23 to
Fig. 24.

8 DISCUSSION

We have presented a method for designing scatterplots that repre-
sent the conflict structure embodied in event data, and a method for

7http://www.ku.edu/∼keds/data.dir/gulf.html

Figure 23: Conflict pair Lebanon vs. Israel.

Figure 24: Conflict pair Iraq vs. USA.

smoothly animating these scatterplots to highlight conflict dynam-
ics. One of the main advantages of the proposed method is that it
allows for a rigorous stability analysis and—on the above example
data sets—actually proved to be stable. There are several interest-
ing avenues for extending and improving our visualizations which
will be addressed in further research.

A straightforward extension is secondary analysis of our dy-
namic projections. For instance, it might be interesting to focus on
particular actors and follow their trajectories in the animated scat-
terplot and relate it to their involvement profile. Sensitivity analy-
sis may point to crucial events or actors that trigger major changes
in the structure. Ultimately, combinations of these analyses could
serve as early warning indicators.

User feedback. Due to the prototypical nature of our imple-
mentation we have not yet been able to perform a systematic eval-
uation of what users perceive in and conclude from the animations.
However, we did discuss the animations with domain experts both
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Figure 25: Aggregated weight of edges (ISR,LEB) and (IRQ,USA).



in regional politics and communication science. According to their
feedback, the results of our analyses and the visualizations are in-
dicative of many facts they were aware of, and even of interesting
aspects that had escaped their attention up to then. Since all of them
had at least some training in network analysis, future testing should
include subjects who have no understanding of the inner workings
of our approach.

Beyond bipolar conflict structures. The assumption of one
dominant bilateral conflict is quite well satisfied in the example data
for most time steps. However, in some situations (especially when
generating the conflict networks for longer periods of time) this
could be violated in two directions: Firstly, there could be more
than two groups that are mutually in conflict (k-lateral conflicts).
For instance, the situation in the Persian Gulf for the period from
1979 to 1999 (shown in Fig. 5) is best described as a triangle formed
by the USA, Iraq, and Iran, since these actors have mutually strong
negative ties. Secondly, the conflict network might contain sev-
eral (mostly) independent major conflicts. An example is provided
by the two conflict pairs (ISR,LEB) and (IRQ,USA), which are al-
ternately visible in the Gulf video (see Figs. 23 and 24). (Note
however, that the media rarely covers both conflicts with the same
intensity, see Fig. 25. While it seems to be improbable that one pair
stopped fighting whenever the others increased their hostilities, this
is sometimes suggested by the media coverage.)

The analysis method based on structural similarities can be
extended to cope with both situations. However, to generalize
the complete visualization technique, several problems have to be
solved. To detect k-lateral conflicts, a k-clique has to be used as
quotient instead of the bipolar quotient, shown in Fig. 4. The
eigenvalues of this quotient determine, according to Theorem 3,
the eigenvectors to project on. Similarly, to handle independent bi-
lateral conflicts, the union of several copies of the graph in Fig. 4
has to be used as quotient. Combinations of both (i. e., multiple
k-lateral conflicts) are also possible.

The problems to be solved are the following. Firstly, one has
to decide on the model (quotient) for the conflict structure. More-
over, this decision has to be made dynamically as the conflict net-
work evolves. Secondly, the non-uniqueness of the direction of the
eigenvectors (compare Sect. 4) becomes harder to resolve. In the
bipolar case only one eigenvector (potentially) had to be reversed.
In the more general case the correct combination of reversions has
to be chosen. Finally, to visualize the projection matrix (which
in the general case is a k× n matrix) it has to be mapped to two-
dimensional space. Possibilities include parallel coordinates for
the different conflicts, or displaying several adjacent frames on one
screen. All three tasks require further work, to yield an applicable
method.

As a different generalization, we may extend our data basis by
also considering events with positive weights. Natural groups are
identified by clustering actors based on cooperation, and these can
be compared to or integrated with a partitioning based on hostility.
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