
RESEARCH Open Access

Summarizing large text collection using
topic modeling and clustering based on
MapReduce framework
N K Nagwani

Correspondence:
nknagwani.cs@nitrr.ac.in
Department of Computer Science
and Engineering, National Institute
of Technology Raipur, Raipur
492010, India

Abstract

Document summarization provides an instrument for faster understanding the collection
of text documents and has a number of real life applications. Semantic similarity and
clustering can be utilized efficiently for generating effective summary of large text
collections. Summarizing large volume of text is a challenging and time consuming
problem particularly while considering the semantic similarity computation in
summarization process. Summarization of text collection involves intensive text
processing and computations to generate the summary. MapReduce is proven
state of art technology for handling Big Data. In this paper, a novel framework based on
MapReduce technology is proposed for summarizing large text collection. The proposed
technique is designed using semantic similarity based clustering and topic
modeling using Latent Dirichlet Allocation (LDA) for summarizing the large text
collection over MapReduce framework. The summarization task is performed in
four stages and provides a modular implementation of multiple documents
summarization. The presented technique is evaluated in terms of scalability and
various text summarization parameters namely, compression ratio, retention ratio,
ROUGE and Pyramid score are also measured. The advantages of MapReduce
framework are clearly visible from the experiments and it is also demonstrated
that MapReduce provides a faster implementation of summarizing large text
collections and is a powerful tool in Big Text Data analysis.

Keywords: Summarizing large text; Semantic similarity; Text clustering; Clustering
based summarization; Big Text Data analysis

Introduction

Text summarization is one of the important and challenging problems in text mining.

It provides a number of benefits to users and a number of fruitful real life applications

can be developed using text summarization. In text summarization a large collections

of text documents are transformed to a reduced and compact text document, which

represents the digest of the original text collections. A summarized document helps in

understanding the gist of the large text collections quickly and also save a lot of time

by avoiding reading of each individual document in a large text collection. Mathemat-

ically, text summarization is a function of converting large text information to small

text information in such a manner that the small text information carries the overall

picture of the large text collection as given in equation (1), where D represents the

© 2015 Nagwani. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly credited.

Nagwani Journal of Big Data (2015) 2:6

DOI 10.1186/s40537-015-0020-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-015-0020-5&domain=pdf
http://orcid.org/0000-0001-5306-5818
mailto:nknagwani.cs@nitrr.ac.in
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/licenses/by/2.0

large text collection and d represents the summarized text document and the size of

large text collection D is larger than the size of summarized document d.

f : D→d Dj j≪ dj jj ð1Þ

The algorithm performs the task of text summarization is called as text summarizer. The

text summarizers are broadly categorized in two categories which are single-document

summarizer and multi-document summarizers. In single-document summarizers, a single

large text document is summarized to another single document summary, whereas in

multi-document summarization, a set of text documents (multi documents) are summa-

rized to a single document summary which represents the overall glimpse of the multiple

documents.

Multi-document summarization is a technique used to summarize multiple text doc-

uments and is used for understanding large text document collections. Multi-document

summarization generates a compact summary by extracting the relevant sentences

from a collection of documents on the basis of document topics. In the recent years re-

searchers have given much attention towards developing document summarization

techniques. A number of summarization techniques are proposed to generate summar-

ies by extracting the important sentences from the given collection of documents.

Multi-document summarization is used for understanding and analysis of large docu-

ment collections, the major source of these collections are news archives, blogs, tweets,

web pages, research papers, web search results and technical reports available over the

internet and other places. Some examples of the applications of the Multi-document

summarization are analyzing the web search results for assisting users in further brows-

ing [1], and generating summaries for news articles [2]. Document processing and sum-

mary generation in a large text document collection is computationally complex task

and in the era of Big Data analytics where size of data collections is high there is need of

algorithms for summarizing the large text collections rapidly. In this paper, a MapReduce

framework based summarization method is proposed to generate the summaries from

large text collections. Experimental results on UCI machine learning repository data sets

reveal that the computational time for summarizing large text collections is drastically

reduced using the MapReduce framework and MapReduce provides scalability for accom-

modating large text collections for summarizing. Performance measurement metric of

summarization ROUGE and Pyramid scores are also gives acceptable values in summariz-

ing the large text collections.

Single-document summarization is easy to handle since only one text document needs

to be analyzed for summarization, whereas handling multi-document summarization is a

complex and difficult task. It requires a number of (multiple) text documents to be ana-

lyzed for generating a compact and informative (meaningful) summary. As the number of

documents increases in multi-document summarization, the summarizer gets more diffi-

culties in performing the summarization. A summarizer is said to be good, if it contains

more fruitful and relevant compact representation of large text collections. Considering

semantic similar terms provide benefits in terms of generating more relevant summary

but it is more compute intensive, since semantic terms will be generated and considered

for creating summary from a large text collection. In this work the problems with multi-

document text summarization are addressed with the help of latest technologies in text

analytics. A multi-document summarizer is presented in this work with the help of

Nagwani Journal of Big Data (2015) 2:6 Page 2 of 18

semantic similarity based clustering over the popular distributed computing framework

MapReduce.

MapReduce [3, 4] is a programming model for implementation of distributed computa-

tions of high volume or big data and an execution framework for large-scale data process-

ing on clusters of servers. One of the MapReduce open-source implementation is Hadoop

[5] by Apache Foundation Projects. The mappers and reducers are mathematically pre-

sented in the equation (2) and equation (3) respectively. The (k1, v1), (k2, v2) and (k3, v3)

represents the key-value pairs for map and reduce functions.

map : k1; v1ð Þ→ k2; v2ð Þ½ � ð2Þ

reduce : k2; v2½ �ð Þ→ k3; v3ð Þ½ � ð3Þ

The mapper is applied to each input key-value pair to generate an arbitrary number

of intermediate key-value pairs. The reducer is applied to all values associated with the

same intermediate key to generate output key-value pairs. Mappers and reducers are

objects that implement the Map and Reduce methods, respectively.

Background and literature review

MapReduce is a popular programming model for processing large data sets. It offers a

number of benefits in handling large data sets such as scalability, flexibility, fault toler-

ance and numerous other advantages. In recent years a number of works are presented

by researchers in field of Big Data analytics and large data sets processing. The chal-

lenges, opportunities, growth and advantages of MapReduce framework in handling the

Big Data is presented in a number of studies [6–12]. MapReduce framework is widely

used for processing and managing large data sets in a distributed cluster, which has

been used for numerous applications such as, document clustering, access log analysis,

generating search indexes and various other data analytical operations. A host of literature

is present in recent years for performing Big Data clustering using MapReduce framework

[3, 4, 13–16]. A modified K-means clustering algorithm based on MapReduce framework

is proposed by Li et al. [17] to perform clustering on large data sets.

For analyzing large data and mining Big Data MapReduce framework is used in a

number of works. Some of the work presented in this direction is web log analysis [18],

matching for social media [19], design and implementation of Genetic Algorithms on

Hadoop [20], social data analysis [21, 22], fuzzy rule based classification system [23],

log joining [24], online feature selection [25], frequent item sets mining algorithm [26]

and compressing semantic web statements [27].

Handling large text is a very difficult task particularly in knowledge discovery process.

MapReduce framework is successfully utilized for a numbers of text processing tasks

such as stemming [28], distribute the storage and computation loads in a cluster [29],

text clustering [30], information extraction [31], storing and fetching unstructured data

[32], document similarity algorithm [33], natural language processing [34] and pair-

wise document similarity [35]. Summarizing large text collection is an interesting and

challenging problem in text analytics. A numbers of approaches are suggested for hand-

ling large text for automatic text summarization [36, 37]. A MapReduce based distributed

and parallel framework for summarizing large text is also presented by Hu and Zou [38].

Nagwani Journal of Big Data (2015) 2:6 Page 3 of 18

A technique is proposed by Lai and Renals [39], for meeting summarization using

prosodic features and augment lexical features. Features related to dialogue acts are dis-

covered and utilized for meeting summarization. An unsupervised method for the auto-

matic summarization of source code text is proposed by Fowkes et al. [40]. The

proposed technique is utilized for code folding, which allows one to selectively hide

blocks of code. A multi-sentence compression technique is proposed by Tzouridis et al.

[41]. A parametric shortest path algorithm using word graphs is presented for multi-

sentence compressions. A parametric way of edge weights is used for generating the desired

summary. Parallel implementation of Latent Dirichlet Allocation namely, PLDA is proposed

by Wang et al. [42]. The implementation is carried using MPI and MapReduce framework.

It is demonstrated that PLDA can be applied to large, real-world applications and also

achieves good scalability.

Methodology

The process of proposed multi-document summarization is shown in the Fig. 1 and

Fig. 2. The summarization is performed in four major stages. The first stage is the

document clustering stage where text clustering technique is applied on the multi

document text collection to create the text document clusters. The purpose of this

stage is to group the similar text document for making it ready for summarization and

ensures that all the similar set of documents participates as a group in summarization

process.

In the second stage Latent Dirichlet Allocation (LDA) topic modeling technique is

applied on each individual text document cluster to generate the cluster topics and

terms belonging to each cluster topic. In the third stage, global frequent terms are

Fig. 1 Methodology of multi document summarization

Nagwani Journal of Big Data (2015) 2:6 Page 4 of 18

generated from the collection of multiple text documents. The process of frequent

terms generation from the multiple text documents is shown in the Fig. 3. The topic

terms generated for text clusters are taken as input to the summarizer which are shuf-

fled and broadcasted to the mappers in Map-Reduce framework. The frequency of

these topic terms is calculated and frequent terms are selected and semantic similar

terms for these selected terms are computed using WordNet application programming

interface (API) [43] which are collectively computed and taken as input to the next

stage. WordNet is a popular API which provides an excellent way for generating se-

mantic similar terms for a given term. In the last stage, sentence filtering is performed

from each individual input text document on the basis of frequent and semantic similar

Fig. 2 Stages in MapReduce framework for multi document summarization

Fig. 3 Frequent terms counting from text collection using MapReduce framework

Nagwani Journal of Big Data (2015) 2:6 Page 5 of 18

terms generated from previous stage. For each document the sentences which are con-

taining the frequent terms and semantic similar terms to the frequent terms are se-

lected for participation in the summary document. Finally the approximate duplicate

sentences are identified and removed from the summary report and final summary

document is generated.

Figure 4 illustrates the hypothetical process that is modeled for generating summary

from the multiple text documents using clustering technique. In order to perform cluster-

ing of the text documents all the documents Di are brought together into one data set, D.

Then the K-Means clustering algorithm is applied to perform the clustering of on the

whole document set. K-Clusters are generated. The set of clusters C = {C1,C2,…,CK}

where Ck(k = 1, 2,…, K) are consisting of group of similar documents belonging to a

particular cluster Ci. Clustering ensures that similar set of text documents are group

together and logically represents a theme (summarization unit) for effective

summarization. The impact of clustering for summarization of large text collection is

also demonstrated in this work. It is shown that summarization with clustering gives

better summarization performance as compared to the summarization without

clustering.

Latent dirichlet allocation

Latent Dirichlet Allocation (LDA) [44] is a popular topic modeling technique which

models text documents as mixtures of latent topics, which are key concepts presented

in the text. A topic model is a probability distribution technique over the collection of

text documents, where each document is modeled as a combination of topics, which

represents groups of words that tend to occur together. Each topic is modeled as a

probability distribution φk over lexical terms. Each topic is presented as a vector of

terms with the probability between 0 and 1. A document is modeled as a probability

distribution over topics In LDA, the topic mixture is drawn from a conjugate Dirichlet

prior that is the same for all documents. The topic modeling for text collection

using LDA is performed in four steps. In the first step a multinomial θt distribu-

tion for each topic t is selected from a Dirichlet distribution with parameter β. In

second step for each document d, a multinomial distribution θb is selected from a

Dirichlet distribution with parameter α. In third step for each word w in document

s a topic t from θb is selected. And finally in fourth step a word w from θt is

Fig. 4 Document clustering using clustering algorithm

Nagwani Journal of Big Data (2015) 2:6 Page 6 of 18

selected to represent the topic for the text document. The probability of generating

a corpus is given by the equation (4) [44].

∬
Y

K

t¼1

Pðθt βj Þ
Y

N

b¼1

Pðθb αj Þ

�

Y

Nb

t¼1

X

K

b¼1

Pðti θj ÞPðwi t;∅j Þ

�

dθd∅ ð4Þ

LDA estimates the topic-term distribution and the document topic distribution from

an unlabelled collection of documents using Dirichlet priors for the distributions over a

fixed number of topics. Graphical representation of LDA topic modeling technique is

presented in the Fig. 5.

K-means clustering algorithm

Clustering is a process of creating groups of similar objects. Clustering algorithms are

categorized into five major categories namely, Partitioning techniques, Hierarchical

techniques, Density Based techniques, Grid Based techniques and Model based tech-

niques. Partitioning techniques are the simplest techniques which creates K number of

disjoint partitions to create K number of clusters. These partitions are created using

certain statistical measures like mean, median etc. K-means is a classical unsupervised

learning algorithms used for clustering. It is a simple, low complexity and a very popu-

lar clustering algorithm.

The k-means algorithm [45] is a partitioning based clustering algorithm. It takes an

input parameter, k i.e. the number of clusters to be formed, which partitions a set of n

objects to generate the k clusters. The algorithm works in three steps. In the first step,

k number of the objects is selected randomly, each of which represents the initial mean

or center of the cluster. In the second step, the remaining objects are assigned to the

cluster with minimum distance from cluster center or mean. In the third step, the new

mean for each cluster is computed and the process iterates until the criterion function

converges. The algorithm is presented in the Fig. 6 and the performance of k-means is

measured using the square-error function defined in the equation (5).

E ¼
X

k

i¼1

X

p∈Ci

p−mi
2
�

�

�

� ð5Þ

Where E is the sum of the square error, p is the point in space representing a given

object and mi is the mean of cluster Ci. This criterion tries to make the resulting k clus-

ters as compact and as separate as possible. The algorithm is consisting of five major

steps which are summarizes as given below.

Fig. 5 Graphical representation of LDA process

Nagwani Journal of Big Data (2015) 2:6 Page 7 of 18

The algorithm

Based on the methodology discussed in the previous section the algorithm for proposed

multi document summarization using semantic similarity based clustering technique is

presented in this section. The algorithm is logically divided in four major stages; the al-

gorithm for each stage is explained in this section. In the first stage of document

summarization, the document clustering is performed using K-means clustering algo-

rithm on MapReduce framework. Mapper is responsible for part of documents and part

of k centers. For each document, it finds closest of known centers and produces the

output key as point, value identifies center and distance. Reducer takes minimum dis-

tance center and produces output key identifies center, value is document. A successive

phase averages points in each center. The mapper and reducer for K-means algorithm

is presented in the Fig. 7.

After creating the text document clustering, the document belonging to clusters are

retrieved and text information present is each document is collected in aggregate. The

topic modeling technique is then applied on collective information to generate the

topics from each text document clusters. LDA (Latent Dirichlet Allocation) technique

is used in this work for generating topics from each document cluster. The mapper and

reducer for topic terms generation from document clusters is shown in the Fig. 8.

In the third stage, semantic similar terms are computed for each topic term generated

in previous stage. WordNet Java API [43] is used to generate the list of semantic similar

terms. The semantic similar terms are generated over the MapReduce framework and

the generated semantic terms are added to the vector. Semantic similar term finding is

an intensive computing operation. It requires going through with the vocabulary and

Fig. 6 K-Means clustering algorithm

Fig. 7 Mapper and reducer for document clustering

Nagwani Journal of Big Data (2015) 2:6 Page 8 of 18

synonyms data for the given term in the hierarchy of semantic relationship. MapReduce

framework is utilized efficiently for handling this operation. The Mapper computes the

semantic similar terms for each topic term generated by the document cluster and re-

ducer aggregate these terms and counts the frequencies of these terms (topic terms and

semantic similar terms of topic terms) aggregately. The mapper and reducer for seman-

tic terms generation from cluster topic terms is presented in the Fig. 9.

Then the terms are arranged in the descending order of frequency and top N topic

terms (including the semantic similar terms) are selected. These filtered terms are

called as semantic similar frequent terms available in the document collection using the

method ComputeSemanticSimilar(Ti) . The algorithm counts the number of occurrences

of every word in a text collection. Input key-values pairs take the form of (document id,

doc) pairs stored on the distributed file system. The key parameter is a unique identifier

for the document, and the value parameter is the text of the document itself. The Mapper

takes key-value pair as input, generates tokens from the document, and emits an inter-

mediate key-value pair for every word. The MapReduce execution makes sure that all

values associated with the same key are brought together in the reducer. The final output

of the algorithm is written to the distributed file system, one file per reducer.

Fig. 8 Mapper and reducer for LDA topic generation from document cluster

Fig. 9 Mapper and reducer for semantic terms generation from cluster topic terms

Nagwani Journal of Big Data (2015) 2:6 Page 9 of 18

In the last stage, the original text document collection is distributed over the Mappers

and using parsing techniques, sentences are extracted from individual document by the

Mappers. The sentences which are consisting of the frequent terms and its semantic simi-

lar terms are filtered from the original text collection and added to the summary docu-

ment (in other words the filtered terms participates in the summary document). The final

summary is generated after traversing all the documents in the document collections. The

mapper and reducer for document filtering is presented in the Fig. 10. The performance

parameters for summarization process are then evaluated to measure the performance of

proposed summarizer.

Experiments and result analysis

The implementation is carried using the Java based open source technologies. The LDA

implementation is performed using MALLET API [46], and the MapReduce implementa-

tion is performed using Hadoop API [5]. A textual corpus of around 4000 legal cases for

automatic summarization is selected for performing the experiments, the dataset is avail-

able on UCI machine learning repositoryA. The dataset contains Australian legal cases

from the Federal Court of Australia (FCA) all files from the year 2006, 2007, 2008 and

2009. The dataset is earlier used in the work of Galgani et al. [47, 48]. The experiments

are performed over the dual core processor based systems with CPU speed 2.33 GHz,

2 GB of RAM (Random Access Memory), and 1.333 GHz bus clock in Windows XP oper-

ating system. The systems (up to four nodes) are interconnected over a 100 Mbps LAN

(Local Area Network).

Summarization techniques are categorized into two major categories extractive or

abstractive. Extractive summarization assigns a filter and extracts the sentences with

highest matching criteria to form the summaries. Abstractive summarization, on the

other hand, uses certain degree of understanding of the content expressed in the original

documents and creates the summaries based on information fusion. Like most researchers

in this field, the extractive summarization framework in used in this work.
Ahttps://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports

Zipf ’s power distribution law [49, 50] states that most of users use limited number of

words (terms) frequently in the documents. The existing studies also shows that less

number of dominating terms participates more in knowledge discovery tasks [45]. In

this work 15 frequent terms from topic terms of document clusters are selected and its

semantic similar terms are considered for document summarization task. As per the

Fig. 10 Mapper and reducer for document filtering

Nagwani Journal of Big Data (2015) 2:6 Page 10 of 18

https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports

text mining best practices, more than 15 terms will minimally improve the performance

of summarizer and less than 15 terms will drastically reduce the performance of the

summarizer.

Three major requirements for multi-document summarization [51] are clustering,

coverage and anti-redundancy. Clustering is the ability to cluster similar documents

and passages to find related information, coverage is the ability to find and extract the

main points across documents and anti-redundancy is the ability to minimize redun-

dancy between passages in the summary. Clustering requirement is achieved with the

help of K-Means algorithm to group the similar documents with the common themes

and also is the part of proposed technique. Coverage and anti-redundancy is achieved

with the help of sentence filtering while generating the final summary.

Summarization evaluation

Text summarization process is majorly evaluated using performance parameters

namely, Compression Ratio (CR), Retention Ratio (RR), ROUGE score and Pyramid

score.

Compression and retention ratio

The Compression Ratio (CR) is the ratio of size of the summarized text document to

the total size of the original text documents. Retention Ratio (RR) is the ratio of the in-

formation available in the summarized document to the information available in the

original text collections. The expression of calculating the CR and RR are given in the

equation (6) and equation (7) respectively.

CR ¼
dj j

Dj j
ð6Þ

RR ¼
Info dð Þ

Info Dð Þ
ð7Þ

Where |d| represents the size of the summarized text is document and |D| is the

total size of the original text collection. Info(d) represents the information available in

the summarized text document and Info(D) is the information present in the original

text collection.

Rouge and pyramid score

Rouge score or rouge-N score [52] and pyramid score [53, 54] are the two major pa-

rameters used for evaluating the summarization tasks and are used in a number of

studies. Qazvinian and Radev [55] have used these parameters in summarizing scientific

papers using citation summary networks. Galgani et al. [48] used these parameters

while building an incremental summarizer.

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation, it includes

several measures to quantitatively compare system-generated to human-generated sum-

maries, counting the number of overlapping n-grams of various lengths, word pairs

and word sequences between the summaries. A standard ROUGE evaluation would

compare the whole block of catchphrases to the whole block of extracted sentences.

ROUGE-N is an n-gram recall between a candidate summary and a set of reference sum-

maries. ROUGE measure includes several automatic evaluations such as ROUGE-N,

Nagwani Journal of Big Data (2015) 2:6 Page 11 of 18

ROUGE-L, ROUGE-W and ROUGE-SU. ROUGE-N is an n-gram recall computed as

given in the Eq. (8).

ROUGE−N ¼

X

Se ReferenceSummariesf g

X

gramneS

Countmatch gramnð Þ

X

Se ReferenceSummariesf g

X

gramneS

Count gramnð Þ
ð8Þ

where n represents the length of the n-gram, and ref represents the reference summar-

ies. Countmatch(gramn) represents the number of n-grams co-occurring in a candidate

and the reference summaries, and Count (gramn) represents the number of n-grams in

the reference summaries. ROUGE-L measure uses the longest common subsequence

(LCS), ROUGE-W measure is derived using weighted LCS and ROUGE-SU measure

uses skip-bigram plus unigram for measuring the generated summaries [56]. In this

work the average precision, recall and F-measure scores generated by ROUGE-1,

ROUGE-2, and ROUGE-L are used to measure the performance of the summaries and

to compare the presented algorithm over the MapReduce framework.

The Pyramid evaluation combines both a precision measure (as the score is a func-

tion of the size of the summary) and of a recall measure (as the score is also a function

of the weights of the optimal SCUs or Summarization Content Units). The score given

by the pyramid method for a summary is a ratio of the sum of the weights of its facts

to the sum of the weights of an optimal summary. The pyramid score ranges from 0 to

1, and high scores show the summary content contain more heavily weighted facts. The

n tiers pyramid refers to “pyramid of order n”. Given a pyramid of order n, the optimal

summary content can be predicted which contain all the SCUs from the top tier and

then from the next tier and so on. In other words an SCU from tier (n − 1) should not

be expressed until the SCUs in tier n have been expressed. The score assigned is a ratio

of the sum of the weights of its SCUs to the sum of the weights of the optimal summary

with the same number of SCUs. It ranges from 0 to 1, with higher scores indicating that

relatively more of the content is as highly weighted as possible [53, 54].

The exact formula we use is computed as follows [53, 54]. Suppose the pyramid has

n tiers, Ti, with tier Tn on top and T1 on the bottom. The weights of SCUs in tier Ti

will be i. Let |Ti| denote the number of SCUs in the tier Ti. Let Di be the number of

SCUs in the summary that appear in Ti. SCUs in a summary that do not appear in a

pyramid are assigned weight zero. The total SCU weight D is D ¼
X

n

1

i�Di .The optimal

content score for a summary with X SCUs is:

Max ¼
X

n

i¼jþ1

i� T ij j þ j� X−
X

n

i¼jþ1

T ij j

 !

Where j ¼ maxi
X

n

t¼i

T tj j≥X

 !

(9)

In the equation above, j is equal to the index of the lowest tier an optimally inform-

ative summary will draw from. This tier is the first one top down such that the sum of

its cardinality and the cardinalities of tiers above it is greater than or equal to X (sum-

mary size in SCUs). For example, if X is less than the cardinality of the most highly

weighted tier, then j = n and Max is simply Xxn (the product of X and the highest

weighting factor). Then the pyramid score Ρ is the ratio of D to Max. Because P com-

pares the actual distribution of SCUs to an empirically determined weighting, it

Nagwani Journal of Big Data (2015) 2:6 Page 12 of 18

provides a direct correlate of the way human summarizers select information from

source texts.

Result analysis

The scalability of the proposed work in MapReduce framework up to four nodes is

shown in the Fig. 11. The scalability is calculated using different nodes and different

numbers of text document reports for generating the summary using the proposed

MapReducer based summarizer. Scalability tends to increase in proportion to the number

of text documents with maximum numbers of nodes. The scalability of the proposed work

is also supported by the Amdahl’s law. As per the Amdahl’s law [57], the optimal speedup

possible for a computation is limited by its sequential components. If f is the fraction of

the computational task then the theoretically maximum possible speedup for N parallel

resources is SN ¼ 1

fþ1−f
Nð Þ
.

The time required for generating summary from the text collection of different size

and for different nodes in MapReduce framework is also shown in the Fig. 12. Time to

compute the summary tends to decrease with increase in number of nodes. As the

nodes increases the computation time tends to linear and up to four nodes it becomes

just linear in proportionate to the number of text documents participating in summary.

When the number of nodes are changed from one to two the computational time

downfall in exponential manners and when the nodes reaches up to four the computa-

tional time becomes linear with proportionate to the number of text document

collection.

The performance parameters of proposed summarizers i.e. compression ratio, reten-

tion ratio, ROUGE and Pyramid scores are evaluated for three different scenarios. The

summarizers are evaluated for the following three cases:

� Case 1: Summarization without performing clustering and semantic similarity.

� Case 2: Summarization with clustering but without considering semantic similarity.

Fig. 11 Scalability of MapReducer based summarizer

Nagwani Journal of Big Data (2015) 2:6 Page 13 of 18

� Case 3: Summarization by considering both clustering and semantic similarity.

The compression ratio for different number of nodes for the three different scenarios

is shown in the Fig. 13. Similarly, the retention for the possible three cases is presented

in the Fig. 14. It is apparent from the graphs that considering the semantic similarity

(Case 3) will definitely give better results for generating effective and meaningful summary

of text document collections. These results clearly indicates that semantic similarity along

with the clustering gives better summarization results as compared to the summarization

without semantic similarity and clustering. Semantic similarity provides meaningful

grouping of similar text segments as summarization content units for generating summary

of the text collections. Semantic similarity ensures better chunking of meaningful text

groups as compared to the plain clustering of text documents (Case 2). Semantic

similarity along with clustering provides a mechanism of participation of the different

summarization content units from the different groups of text documents.

The rouge and pyramid scores of the presented summarization approaches are tabu-

lated for the three different cases in the Table 1. ROUGE unigram and bigram scores

are calculated for the presented work. ROUGE unigram gives better results for

Fig. 12 Time in ms for summarizing the text reports

Fig. 13 Compression ratio for different cases

Nagwani Journal of Big Data (2015) 2:6 Page 14 of 18

summarization as compared to the ROUGE bigram approach. The pyramid score gives

a normalized score in the range of 0 to 1 in order to evaluate the summary.

As expected from the results the ROUGE and Pyramid scores are found higher for

the case III than the other two cases. Case III consider both the textual similarity (using

clustering) and semantic similarity which makes sure that best summarization content

units participate in the summary generation. Case II gives better results than the Case I

results, in other words summarization using clustering gives better summarization re-

sults as compared to the summarization performed without performing clustering. It

indicates that summarization performed on the clustered text documents is more ac-

curate since similar text information is grouped within the same clusters.

Higher pyramid scores indicating that relatively more of the content is as highly

weighted as possible. High pyramid score reflects the greater likelihood that more

SCUs (Summarization Content Units) in the summary appear in the pyramid [53].

Just like the ROUGE score, maximum pyramid score is achieved for the case III,

where both semantic and textual similarity (clustering) is considered for summarizing

the text collections. It is also shown that clustering (grouping the similar text seg-

ments) provides better summarization in context to the summarization performed

with non-clustered text collections. Clustering provides better summarization units

(text segments) for summarizing the text collections. It is also clear that clustering

along with the semantic similarity provides better summarization content units for

generating summary from the text collections. To better demonstrate the results of

the different cases, Fig. 15 visually illustrate the comparison. Figure 15 demonstrates

spider chart showing the comparisons of the three different cases, it is clearly visible

from the chart that the values of performance parameters for case-III (considering

both the clustering with semantic similarity) gives better results as compared to the

rest of the two cases.

Fig. 14 Retention ratio for different cases

Table 1 ROUGE and pyramid scores for the three different cases

ROUGE −1 ROUGE −2 ROUGE –L

Precision Recall F Precision Recall F Precision Recall F Pyramid score

Case – I 0.488 0.566 0.276 0.438 0.487 0.213 0.473 0.508 0.244 0.528

Case – II 0.637 0.616 0.392 0.434 0.332 0.144 0.590 0.610 0.360 0.634

Case – III 0.710 0. 620 0.440 0.685 0.536 0.367 0.691 0.622 0.428 0.780

Nagwani Journal of Big Data (2015) 2:6 Page 15 of 18

Conclusions and future enhancements

A multi-document text summarizer based on MapReduce framework is presented in

this work. Experiments are carried using up to four nodes in MapReduce framework

for a large text collection and the summarization performance parameters compression

ratio, retention ratio and computation timings are evaluated for a large text collection.

It is also shown experimentally that MapReduce framework provides better scalability

and reduced time complexity while considering large number of text documents for

summarization. Three possible cases of summarizing the multiple documents are also

studied comparatively. It is shown that effective summarization is performed when both

clustering and semantic similarity are considered. Considering semantic similarity gives

better retention ratio, ROUGE and pyramid scores for summary. Future work in this

direction can be providing the support for multi lingual text summarization over the

MapReduce framework in order to facilitate the summary generation from the text

document collections available in different languages.

Competing interests

The author declares that he has no competing interests.

Authors’ contribution

NKN is the sole author of this manuscript. NKN developed the analytical model presented in this work and created
figure of methodology of the paper. NKN implemented the proposed model and prepared the graphs for indicating
the results. NKN wrote the text of the paper, read and approved the final manuscript.

Authors’ information

Naresh Kumar Nagwani, Ph.D.,
Assistant Professor,
Computer Science & Engineering,
National Institute of Technology Raipur, India.
Email:- nknagwani.cs@nitrr.ac.in

Acknowledgments

The authors want to thank National Institute of Technology Raipur, India for providing infrastructure and facilities to
carry out this research work.

Received: 2 April 2015 Accepted: 17 June 2015

References

1. Turpin A, Tsegay Y, Hawking D, Williams H (2007) Fast generation of result snippets in web search. Proceedings of
the 30th annual international ACM SIGIR conference on Research and development in information retrieval, Amsterdam,
Canada, pp 127–134

Fig. 15 Comparison of ROUGE and pyramid scores

Nagwani Journal of Big Data (2015) 2:6 Page 16 of 18

2. Sampath G, Martinovic M (2002) Proceedings of the 6th International Conference on Applications of Natural Language
to Information Systems, NLDB 2002, 2002nd edn. Proceedings of the 6th International Conference on Applications of
Natural Language to Information Systems, Stockholm, Sweden, pp 208–212

3. Dean J, Ghemawat S (2004) MapReduce: Simplified data processing on large clusters. Proc. of the 6th Symposium
on Operating System Design and Implementation (OSDI 2004). San Francisco, California, pp 137–150

4. Dean J, Ghemawat S (2010) MapReduce: A flexible data processing tool. Commun ACM 53(1):72–77
5. Borthakur, D. (2007) The hadoop distributed file system: Architecture and design. Hadoop Project Website

(Available online at - https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf). p 1–14 Accessed 15 April 2014
6. Steve L (2012) The Age of Big Data. Big Data’s Impact in the World, New York, USA, pp 1–5
7. Russom P (2011) Big Data Analytics. TDWI Research Report, US, pp 1–38
8. McAfee A, Brynjolfsson E (2012) Big Data: The Management Revolution. Harv Bus Rev 90(10):60–68
9. Li F, Ooi BC, Özsu MT, Wu S (2013) Distributed Data Management Using MapReduce. ACM Computing Surveys 46:1–41
10. Shim K (2013) MapReduce Algorithms for Big Data Analysis. Databases in Networked Information Systems,

Springer, Berlin, Heidelberg, Germany, pp 44–48
11. Shim K (2012) MapReduce Algorithms for Big Data Analysis, Framework. Proceedings of the VLDB Endowment

5(12):2016–2017
12. Lee K-H, Lee Y-J, Choi H, Chung YD, Moon B (2011) Parallel Data Processing with MapReduce: A Survey. ACM SIGMOD

Record 40(4):11–20
13. Yang J, Li X (2013) MapReduce Based Method for Big Data Semantic Clustering. In Systems, Man, and Cybernetics

(SMC), 2013 IEEE International Conference. Manchester, England, pp 2814–2819
14. Ene A, Im S, Moseley B (2011) Fast Clustering using MapReduce. Proc. of the 17th ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, New York, USA, pp 681–689
15. Kolb L, Thor A, Rahm E (2013) Don’t Match Twice: Redundancy-free Similarity Computation with MapReduce. Proc.

of the Second Workshop on Data Analytics in the Cloud, ACM, New York, USA, pp 1–5
16. Esteves RM, Rong C (2011) Using Mahout for clustering Wikipedia’s latest articles: a comparison between K-means

and fuzzy C-means in the cloud. In Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third International
Conference. Athens, Greece, pp 565–569

17. Li HG, Wu GQ, Hu XG, Zhang J, Li L, Wu X (2011) K-means clustering with bagging and mapreduce. Proc. 2011
44th Hawaii International Conference on IEEE System Sciences (HICSS). Kauai/Hawaii, US, pp 1–8

18. Zhang G, Zhang M (2013) The Algorithm of Data Preprocessing in Web Log Mining Based on Cloud Computing.
In 2012 International Conference on Information Technology and Management Science (ICITMS 2012)
Proceedings Springer. Berlin, Heidelberg, Germany, pp 467–474

19. Morales GDF, Gionis A, Sozio M (2011) Social content matching in mapreduce. Proceedings of the VLDB
Endowment 4(7):460–469

20. Verma A, Llora X, Goldberg DE, Campbell RH (2009) Scaling Genetic algorithms using MapReduce. Intelligent
Systems Design and Application(ISDA). Ninth International Conference, Pisa, Italy, pp 13–18

21. Cambria E, Rajagopal D, Olsher D, Das D (2013) Big Social Data Analysis. Big Data Computing Chapter 13:401–414
22. Lieberman M (2014) Visualizing Big Data: Social Network Analysis. Digital Research Conference, San Antonio,

Texas, pp 1–23
23. López V, Río SD, Benítez JM, Herrera F (2014) Cost-sensitive linguistic fuzzy rule based classification systems under

the MapReduce framework for imbalanced big data. Fuzzy Sets Syst 1:1–34
24. Blanas S, Patel JM, Ercegovac V, Rao J, Shekita EJ, Tian Y (2010) A Comparison of Join Algorithms for Log

Processing in MapReduce. Proc. of the 2010 ACM SIGMOD International Conference on Management of data.
New York, USA, pp 975–986

25. Hoi SCH, Wang J, Zhao P, Jin R (2012) Online Feature Selection for Mining Big Data. Proc. of the 1st International
Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms. Systems, Programming Models
and Applications, ACM, New York, USA, pp 93–100

26. Chen S-Y, Li J-H, Lin K-C, Chen H-M, Chen T-S (2013) Using MapReduce Framework for Mining Association Rules.
In Information Technology Convergence Springer, Netherlands, pp 723–731

27. Urbani J, Maassen J, Bal H (2010) Massive Semantic Web data compression with MapReduce. Proc. of the 19th
ACM International Symposium on High Performance Distributed Computing. New York, USA, pp 795–802

28. Rajdho A, Biba M (2013) Plugging Text Processing and Mining in a Cloud Computing Framework. In Internet of
Things and Inter-cooperative Computational Technologies for Collective Intelligence Springer, Berlin, Heidelberg,
Germany, pp 369–390

29. Balkir AS, Foster I, Rzhetsky A (2011) A Distributed Look-up Architecture for Text Mining Applications using MapReduce.
High Performance Computing, Networking, Storage and Analysis (SC), 2011 International Conference. Seattle, US, pp 1–11

30. Zongzhen H, Weina Z, Xiaojuan D (2013) A fuzzy approach to clustering of text documents based on MapReduce.
In Computational and Information Sciences (ICCIS), 2013 Fifth International Conference on IEEE. Shiyang, China,
pp 666–669

31. Chen F, Hsu M (2013) A Performance Comparison of Parallel DBMSs and MapReduce on Large-Scale Text Analytics.
Proc. of the 16th International Conference on Extending Database Technology ACM. New York, USA, pp 613–624

32. Das TK, Kumar PM (2013) BIG Data Analytics: A Framework for Unstructured Data Analysis. International Journal of
Engineering and Technology (IJET) 5(1):153–156

33. Momtaz A, Amreen S (2012) Detecting Document Similarity in Large Document Collection using MapReduce and
the Hadoop Framework . BS Thesis. BRAC University, Dhaka, Bangladesh, pp 1–54

34. Lin J, Dyer C (2010) Data-Intensive Text Processing with MapReduce. Morgan & Claypool Publishers 3(1):1–177
35. Elsayed T, Lin J, Oard DW (2008) Pairwise Document Similarity in Large Collections with MapReduce. Proc. of the

46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies.
Stroudsburg, US, pp 265–268

36. Galgani F, Compton P, Hoffmann A (2012) Citation based summarisation of legal texts. Proc. of 12th Pacific Rim
International Conference on Artificial Intelligence. Kuching, Malaysia, pp 40–52

Nagwani Journal of Big Data (2015) 2:6 Page 17 of 18

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf

37. Hassel M (2004) Evaluation of Automatic Text Summarization. Licentiate Thesis, Stockholm, Sweden, pp 1–75
38. Hu Q, Zou X (2011) Design and implementation of multi-document automatic summarization using MapReduce.

Computer Engineering and Applications 47(35):67–70
39. Lai C, Renals S (2014) Incorporating Lexical and Prosodic Information at Different Levels for Meeting Summarization,

Proceedings of the 15th Annual Conference of the International Speech Communication Association, INTERSPEECH
2014. ISCA, Singapore, pp 1875–1879

40. Fowkes J, Ranca R, Allamanis M, Lapata M, Sutton C (2014) Autofolding for Source Code Summarization. Computing
Research Repository 1403(4503):1–12

41. Tzouridis E, Nasir JA, Lahore LUMS, Brefeld U (2014) Learning to Summarise Related Sentences. The 25th
International Conference on Computational Linguistics (COLING’14), Dublin, Ireland, pp 1–12, ACL

42. Wang Y, Bai H, Stanton M, Chen WY, Chang EY (2009) Plda: Parallel latent dirichlet allocation for large-scale
applications. 5th International Conference, AAIM (Algorithmic Aspects in Information and Management),
San Francisco, CA, USA, pp 309–322

43. Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38(11):39–41
44. Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet Allocation. The Journal of Machine Learning Research 3:993–1022
45. Feldman R, Sanger J (2007) The Text Mining Handbook - Advanced Approaches In Analyzing Unstructured Data.

Press, Cambridge University. ISBN 978-0-521-83657-9
46. McCallum A K (2002) Mallet: A machine learning for language toolkit. http://mallet.cs.umass.edu/. Accessed 10 May 2014
47. Galgani F, Compton P, Hoffmann A (2012) Combining Different Summarization Techniques for Legal Text. Proc. of

the Workshop on Innovative Hybrid Approaches to the Processing of Textual Data. Association for Computational
Linguistics, Avignon, France, pp 115–123

48. Galgani F, Compton P, Hoffmann A (2014) HAUSS: Incrementally building a summarizer combining multiple
techniques, Int. J. Human-Computer Studies 72:584–605

49. Li W (1992) Random Texts Exhibit Zipf’s-Law-Like Word Frequency Distribution. IEEE Trans Inf Theory 38(6):1842–1845
50. Reed WJ (2001) The Pareto, Zipf and other power laws. Econ Lett 74(1):15–19
51. Goldstein J, Mittal V, Carbonell JG, Kantrowitz M (2000) Multi-Document Summarization By Sentence Extraction.

School of Computer Science, Carnegie Mellon University, Research Showcase, pp 40–48
52. Lin CY (2004) Rouge: a package for automatic evaluation of summaries. In: Out TSB (ed) Proceedings of the ACL-04

Workshop. Association for Computational Linguistics, Barcelona, Spain, pp 74–81
53. Nenkova A, Passonneau R (2004) Evaluating Content Selection in Summarization: The Pyramid Method. Proc.

Human Language Technology Conf. North Am. Chapter of the Assoc. for Computational Linguistics (HLT-NAACL),
Boston, Massachusetts, pp 145–152

54. Harnly A, Nenkova A, Passonneau R, Rambow O (2005) Automation of Summary Evaluation by the Pyramid
Method, In Recent Advances in Natural Language Processing (RANLP). Borovets, Bulgaria, pp 226–232

55. Qazvinian V, Radev DR (2008) Scientific Paper Summarization Using Citation Summary Networks. Proceedings of
the 22nd International Conference on Computational Linguistics-Volume 1, Stroudsburg, PA, pp 689–696

56. Wang D, Li T (2012) Weighted Consensus Multi-document Summarization. Inf Process Manag 48:513–523
57. Amdahl GM (1967) Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities.

Proceedings of the April 18–20, 1967, spring joint computer conference. Atlantic City, New Jersey, USA, pp 483–485

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Nagwani Journal of Big Data (2015) 2:6 Page 18 of 18

http://mallet.cs.umass.edu/

	Abstract
	Introduction
	Background and literature review
	Methodology
	Latent dirichlet allocation
	 K-means clustering algorithm

	The algorithm
	Experiments and result analysis
	Summarization evaluation
	Compression and retention ratio
	Rouge and pyramid score

	Result analysis
	Conclusions and future enhancements
	Competing interests
	Authors’ contribution
	Authors’ information
	Acknowledgments
	References

