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ABSTRACT
The ICASSP 2022 Multi-channel Multi-party Meeting Tran-

scription Grand Challenge (M2MeT) focuses on one of the most
valuable and the most challenging scenarios of speech technologies.
The M2MeT challenge has particularly set up two tracks, speaker
diarization (track 1) and multi-speaker automatic speech recogni-
tion (ASR) (track 2). Along with the challenge, we released 120
hours of real-recorded Mandarin meeting speech data with manual
annotation, including far-field data collected by 8-channel micro-
phone array as well as near-field data collected by each participants’
headset microphone. We briefly describe the released dataset, track
setups, baselines and summarize the challenge results and major
techniques used in the submissions.

Index Terms— M2MeT, Alimeeting, Meeting Transcription,
Speaker Diarization, Multi-speaker ASR

1. INTRODUCTION
Who spoke what at when is the major aim of rich transcription

of real-world multi-speaker meetings. Despite years of research [1,
2, 3], meeting rich transcription is still considered as one of the most
challenging tasks in speech processing due to free speaking styles
and complex acoustic conditions, such as overlapping speech, un-
known number of speakers, far-field attenuated speech signals in
large conference rooms, noise, reverberation, etc. As a result, tack-
ling the problem requires a well-designed speech system with mul-
tiple related speech processing components, including but not lim-
ited to front-end signal processing, speaker identification, speaker
diarization and automatic speech recognition (ASR).

The recent advances of deep learning has boosted a new wave
of related research on meeting transcription, including speaker
darization [4, 5, 6], speech separation [7, 8, 9] and multi-speaker
ASR [10, 11, 12]. The ICASSP 2022 Multi-Channel Multi-Party
Meeting Transcription Challenge (M2MeT) 1 was designed with the
aim to provide a common evaluation platform and a sizable dataset
for Mandarin meeting transcription [13]. Along with the challenge,
we made available the AliMeeting dataset to the participants, which
contains 120 hours real meeting data recorded by 8-channel direc-
tional microphone array and headset microphone. Two tracks are

* Lei Xie is the corresponding author.
1Challenge website: https://www.alibabacloud.com/m2met-alimeeting

particularly designed. Track 1 is speaker diarization, in which par-
ticipants are tasked with addressing the “who spoke when” question
by logging speaker-specific speech events on multi-speaker audio
data. Track 2 focuses on transcribing multi-speaker speech that may
contain overlapped segments from multiple speakers.

This paper summarizes the challenge outcomes. Specifically,
we give a brief literature overview on speaker diarization and multi-
speaker ASR in Section 2. Section 3 reviews the released dataset
and the associated baselines. Sections 4 and 5 discuss the outcome
of the challenge with major techniques and tricks used in submitted
systems. Section 6 concludes the paper.

2. RELATED WORKS
Speaker diarization and multi-speaker ASR in meeting scenar-

ios have attracted increasing attention. For speaker diarization, con-
ventional clustering-based approaches usually contain a speaker em-
bedding extraction step and a clustering step where the input audio
stream is first converted into speaker-specific representation [14],
followed by a clustering process, such as Variational Bayesian HMM
clustering (VBx) [15], which aggregates the regions of each speaker
into separated clusters. The clustering based approach is ineffective
to recognize the overlapped speech without additional modules, be-
cause it assumes that each speech frame corresponds to only one of
the speakers. Therefore, resegmentation was used by [16] to han-
dle the overlap segments. However, overlapping speech detection
(OSD) [17] is also a challenging task itself in most situations. Com-
pared with majority studies that work on two-talker telephony con-
versations, there is a recent trend to handle more challenging speaker
dairzation scenarios in complicated talking and acoustic environ-
ments [18, 19, 20, 21]. For the multi-speaker meetings recorded with
a microphone array from distance, the scenario considered in this
challenge, speaker darization becomes more challenging as speaker
overlaps happen more frequently and sometimes several speakers
speak at the same time in a conference discussion.

The advances of deep learning have shed light on the prob-
lem. As a typical solution, recent end-to-end neural diarization
(EEND) [5] and its variants [6] have replaced the individual sub-
modules in traditional speaker diarization systems mentioned above
with one neural network that directly provides the overlap-aware
diarization results. More promisingly, thanks to the advances of
speaker embedding extraction [22, 14], target speaker vocie actvity
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detecion (TS-VAD) [23, 24] was proposed to judge target speaker’s
activeness for each speech frame, which can estimate multiple
speakers at the same time, leading to a promising solution to handle
overlapped speech.

With the development of deep learning, end-to-end neural ap-
proaches have rapidly gained prominence in the speech recognition
community [25]. However, ASR in complicated scenarios such
as meetings is still not a solved problem with challenges including
complex acoustic conditions, unknown number of speakers and over-
lapping speech. In other words, the challenges mentioned above in
speaker diarization also exist in multi-speaker ASR. Besides multi-
condition training and data augmentation, speech enhancement [26]
and separation [27, 28] are considered as remedy to the complex
acoustic conditions and multiple speakers. Speech enhancement
that explicitly addresses the background noise has been widely
studied [18, 29, 30], where multi-channel signals can be adopted
if microphone array is deployed for audio recording. Speech sep-
aration and joint-training with ASR under permutation invariant
training (PIT) scheme were studied to achieve a high-performance
ASR system for overlapped speech [31]. Designing an end-to-end
system that directly outputs multi-speaker transcriptions seems a
straightforward solution to multi-talker ASR, such as the multi-
channel input multi-speaker output (MIMO) approach [32, 33] and
the end-to-end unmixing, fixed-beamformer and extraction (E2E-
UFE) system [34]. Conditional chain [35] was also proposed to solve
the PIT problem of the number of speakers is unknown. However,
the above approaches rely on complicated joint training of front and
back-end models or re-designing a complicated neural architecture.
The SOT method [12] does not change the original ASR network
structure designed for single speaker. Instead, it only introduces a
special symbol to represent the speaker change. Moreover, speech
recognition and diarization for unsegmented multi-talker recordings
with speaker overlaps was discussed in the recent JSALT workshop
to further promote reproducible research in this field [36].

Different from relevant datasets that have been released be-
fore [18, 37, 38], AliMeeting released in this challenge and Aishell-
4 [39] are currently the only publicly available meeting datasets in
Mandarin. Specifically, AliMeeting has more speakers and meeting
venues, while particularly adding multi-speaker discussions with a
high speaker overlap ratio.

3. DATASETS, TRACKS AND BASELINES
As described in our challenge evaluation plan [13], AliMeet-

ing contains 118.75 hours 2 of speech data in total. The training
set (Train) and evaluation set (Eval) are first released to participants
for system development, with 104.75 and 4 hours of speech, respec-
tively, with manual transcription and timestamp. During the chal-
lenge ranking period, the 10 hours test set (Test) is released for scor-
ing. Specifically, the Train, Eval and Test sets contain 212, 8 and 20
meeting sessions respectively, and each session consists of a 15 to
30-minute discussion by 2-4 participants. To highlight speaker over-
lap, the sessions with 4 participants account for 59%, 50% and 57%
sessions in Train, Eval and Test, respectively. For Train and Eval
sets, we provide the 8-channel audio recorded from the microphone
array in far-field as well as the near-field audio from the participant’s
headset microphone, while the Test set only contains the 8-channel
far-field audio.

The challenge consists of two tracks, namely speaker diariza-
tion (track 1) and multi-speaker ASR (track 2), measured and ranked
on the Test set by Diarization Error Rate (DER) and Character Er-
ror Rate (CER) respectively. For both tracks, we also set up two

2Hours are calculated in single channel of audio.

sub-tracks. For the constrained data sub-track, system building for
both tracks are restricted to AliMeeting [13], Aishell-4 [39] and CN-
Celeb [40], while for the unconstrained data track, participants can
use any data set publicly available.

We release baseline systems along with the Train and Eval data
for quick start and reproducible research. For the 8-channel data of
AliMeeting recorded by microphone array, we select the first channel
to obtain Ali-far, and adopt CDDMA beamformer [41, 42] on 8-
channel data to generate Ali-far-bf. We use prefix Train-*, Eval-*
and Test-* to denote generated data associated with Train, Eval and
Test sets. For example, Test-Ali-far-bf means the beamformed data
for the Test set.

We adopt the Kaldi-based diarization system from the CHiME-6
challenge as the baseline system for track 1. The diarizaiton module
includes speaker embedding extractor and clustering. DER is scored
with collar size of 0 and 0.25 second, but the challenge ranking is
based on the 0.25 second collar size. The speaker diarization results
for the baseline system are shown in Table 1.

Table 1. Speaker diarization results on Eval and Test in DER (%).

Testing data Collar size = 0 Collar size = 0.25

Eval-Ali-far 24.52 15.24
Eval-Ali-far-bf 24.67 15.46
Test-Ali-far 24.95 15.60
Test-Ali-far-bf 25.16 15.79

We use a Conformer-based [43] ASR model as our single
speaker baseline (ConfomerA), which is trained by Train-Ali-
near set using ESPnet [44]. We adopt Serialized Output Training
(SOT) [12] to recognize speech from multiple speakers containing
overlapped speech, generating transcriptions of multiple speakers
one after another. The baseline results of multi-speaker ASR are
shown in Table 2. Note that here SOT and SOT bf are trained by
Train-Ali-near and Train-Ali-far respectively. Compared with the
single-speaker conformer model (ConfomerA), the two SOT multi-
speaker models have obtained significant improvement on the Eval
and Test sets, where SOT bf achieves superior performance.

More details on the data arrangements, tracks and baseline re-
sults can be referred to the challenge evaluation plan paper [13].

Table 2. Multi-speaker ASR results on Eval and Test in CER (%).

Testing data ConfomerA SOT SOT bf

Eval-Ali-far 49.0 30.8 34.3
Eval-Ali-far-bf 45.6 33.2 29.7
Test-Ali-far 50.4 32.4 35.9
Test-Ali-far-bf 46.3 33.9 30.9

4. SUMMARY ON TRACK 1 - SPEAKER DIARIZATION
Finally 14 teams submitted their results to track 1 and the DER

for the top 8 teams is summarized in Table 3. Observing the per-
formance by the number of speakers, we can see that in general,
the DER increases with the number of speakers in meeting sessions.
For most teams, there are clear performance gaps between 2- and 3-
speaker sessions and between 3- and 4-speaker sessions. The winner
goes to team A41 [45] which achieves the lowest DER of 2.98%,
surpassed the official baseline (15.60%) with a large margin. Inter-
estingly, their system works equally well on both 3- and 4-speaker
sessions. There are two key techniques ensuring their superior per-
formance: using TS-VAD [23] to find speaker overlap and employ-
ing cross-channel self-attention [46] to further improve performance.
Table 3 also summarizes the major techniques used by the top 8



Table 3. Top 8 ranking teams in terms of DER in track 1 and their major techniques.

Team Code

Main Approach Data Augmentation Front-End processing Post-Processing
DER (%)
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A41        0.15 5.19 4.37 2.98
V52          0.62 3.51 7.06 3.98
X22        0.44 3.67 7.28 4.05
C16        0.88 5.20 13.58 7.23
Q36           0.51 4.27 15.14 7.58
K56      2.30 9.11 16.35 9.73
S76        0.65 4.97 19.81 9.80
Q19       2.48 6.26 18.88 10.32

Baseline   3.00 6.36 30.59 15.60

teams, namely effective main approach, data augmentation strategy,
front-end processing as well as post-processing. We will highlight
these key techniques in the following.
4.1. Main Approach

With the assumption that each speech frame corresponds to only
one speaker, a clustering-based speaker diarization system is inca-
pable of handling overlapped speech without additional modules.
Since AliMeeting has a high ratio of speaker overlap, it is benefi-
cial to adopt effective methods to reduce the error brought by the
overlapped speech. The top three teams all employ TS-VAD to
find the overlap between speakers while end-to-end approach, e.g.,
EEND, is not considered. We believe that this is because the single-
speaker speech segments in meeting recordings can be effectively
used (through clustering) to obtain speaker embedding as the initial
input for the TS-VAD model that has been proven consistently ef-
fective for handling overlapped speech in the literature. Instead of
using the original TS-VAD that takes i-vector as target-speaker em-
bedding, the winner team A41 [45] uses the deep speaker embedding
extracted by ResNet [47] to detect the target-speaker. Moreover,
with the premise that different acoustic features are complementary,
the second-place team V52 [48] proposes a multi-level feature fusion
mechanism for TS-VAD, and the fusion between spatial-related and
speaker-related features leads to 2% absolute DER reduction on Eval
set. Some teams adopt approaches to improve the clustering-based
algorithm itself. For example, it is effective to use overlap speech
detection (OSD) to divide oracle VAD segments into single speaker
segments and overlapped speech segments. Moreover, estimating
the direction of arrival (DOA) to distinguish different speakers by the
corresponding spatial information is proven to be beneficial. Team
Q36 [49] demonstrates that re-assigning speaker labels to the over-
lapping segments by a speech seperation method can lead to 14.32%
relative DER reduction on Eval set (7.47% to 6.40%).
4.2. Data Augmentation

Since the size of the released training data is relatively small,
data augmentation is adopted by most teams. For example, noise
augmentation and reverberation simulation are generally used,
which improves the robustness of the model modestly. Simulated
room impulse response (RIR) is used to convolve with the original
speech to generate data with reverberation. To further augment the
training samples, Team A41, C16 and Q36 adopt the amplification
and tempo (change audio playback speed but do not change its pitch)
to audio signals. Moreover, as speaker overlap is salient in the data,
several teams create an extra simulated dataset based on Alimeeting
and CN-celeb. In detail, utterances from different speakers are ran-
domly selected from these data, and then combined with an overlap
ratio from 0 to 40%. It is also worth noticing that the winner team
A41 simulates data in an online manner in order to obtain more

diverse data and stronger model robustness.
4.3. Front-End Processing

Front-end processing approaches, such as dereverberation,
beamforming and speech enhancement, have proven to be effective
for downstream tasks dealing with far-field speech. In the chal-
lenge, team X22 [50], C16 and Q36 adopt the weighted prediction
error (WPE) based on long-term linear prediction for dereverbera-
tion, leading to an absolute 0.7% DER reduction on the Eval set.
Moreover, the relevant experiments from team X22 show that the
offline dereverberation mode is more effective than the online mode.
Interestingly, team Q36 found that using multi-channel WPE is
harmful to OSD while it is beneficial for speaker clustering and
speech separation. Effective adoption of spatial information, includ-
ing beamforming [51], is also mainly considered by the participants.
In particular, team S76 proposes a novel architecture named dis-
criminative multi-stream neural network (DMSNet) for overlapped
speech detection. Instead of adopting beamforming, the winner team
A41 employs cross-channel self-attention to integrate multi-channel
signals, where the non-linear spatial correlations between different
channels are learned and fused.
4.4. Post-Processing

Since the challenge does not restrict on the computation work-
load and system fusion, most teams employ the DOVER-Lap [52] to
fuse multiple effective models. The improvement from DOVER-Lap
fusion depends on the number and type of models, and the relative
DER reduction ranges from 2% to 15%. Note that although conven-
tional VBx clustering is not as good as TS-VAD, but it brings extra
gain after model fusion. Re-clustering is also an effective method
for conventional clustering-based speaker diarization, which is ap-
plied to further refine the number of speakers by combining the very
similar clusters according to their cosine distances. Since our chal-
lenge provides oracle VAD, Team X22 fuses the results with oracle
VAD by deleting wrong speech segments and labeling the silent seg-
ments, leading to 22.2% relative DER reduction on Eval set (13.04%
to 10.14%).

5. SUMMARY ON TRACK 2 - MULTI-SPEAKER ASR
Twelve teams submitted their results to track 2 and the CER for

the top 5 teams is summarized in Table 4. Similar to the observa-
tion in track 1, CER sharply increases with the number of speak-
ers in the meeting sessions, mainly due to the high speaker overlap
ratio in meetings with more speakers. The winner team R62 [53]
obtained the lowest average CER of 18.79% with over 12% abso-
lute CER reduction as compared with the baseline. The superior
performance comes from a SOT-based multi-speaker ASR system
with large-scale data simulation. Moreover, system fusion is also
beneficial as reported by the winner team. In their approach, the
standard conformer-based joint CTC/Attention Conformer [43] and



Table 4. Top 5 ranking teams in terms of CER in track 2 and their major techniques.

Team Code

Main Approach Data Augmentation Front-End Processing Post-
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R62              8.39 18.04 27.43 18.79
B24           10.49 19.80 29.50 20.81
X18      10.29 18.57 35.20 23.15
G34          11.69 38.12 30.42 24.81
M57       12.26 23.38 39.74 26.79

Baseline      14.60 31.57 43.68 30.90

U2++ [54] model with a bidirectional attention decoder are fused
with clear performance gain. The main approaches, data augmen-
tation strategies, front- and back-end processing are summarized in
Table 4.

5.1. Main Approach
The 5 top teams all adopt the SOT approach [12] similar to our

multi-speaker baseline system, resulting in over 15% CER reduction
compared with single speaker ASR system on the Eval set. The SOT
method has an excellent ability to model the dependencies among
outputs for different speakers and no longer has a limitation on the
maximum number of speakers. Undoubtedly, the Conformer archi-
tecture [43], which models both local and global context of speech,
is used by all teams. It should be noted that besides Conformer,
the winner team R62 [53] also uses the recent U2++ [54] structure,
where a bidirectional attention decoder is used to integrate informa-
tion from both directions at inference. As a result, the fusion of the
two models brings 8.7% relative CER reduction on the Eval set.

5.2. Data Augmentation
Similar to track 1, various data augmentation tricks were widely

adopted in track 2. Noise augmentation, reverberation simulation,
speed perturbation and SpecAugmentation are the mainstream meth-
ods with stable performance improvement. According to the report
provided by second-place team B24 [55], relative CER reduction of
13.5% can be achieved by multi-channel multi-speaker data simula-
tion as compared with the baseline trained using Train-Ali-far. Com-
pared with speaker diarization, data simulation for multi-speaker
ASR is more complex, which needs to consider various factors such
as speaker turn and conversation duration. Thus fine-grained data
simulation is essential to ensure consistent performance gain. For
example, the simulation on speaker overlapping ratio should be rea-
sonable, including the coverage of extreme cases like sudden (very
brief) interruption from another speaker. It is also worth noticing
that the winner team R62 makes substantial efforts in data augmen-
tation and simulation. Finally, they expand the original training data
to about 18,000 hours, which achieves 9.7% absolute CER reduction
compared with the baseline system.

5.3. Front-End Processing
Similar to track 1, the classical front-end processing techniques

in far-field speech recognition, including beamforming, dereverber-
ation and DOA, are also adopted in track 2 with performance gain.
Specifically, beamforming is used by most teams and WPE-based
dereverberation is considered by two teams, while DOA estimation
of target speaker is only used by the winner team R62 among the top
5 teams. Front-end and back-end joint modeling using neural net-
works is also considered by the second- and third-place team (B24
and X18). With the premise that optimizing front-end and back-end
separately will lead to sub-optimal performance, joint modeling will
make the whole system to be optimized under the final metric. Team

B24 and X18 both take multi-channel signal as the input of a neural
front-end and then cascade the front-end with the back-end Con-
former ASR model. The whole neural architecture is then jointed
trained. According to the report from B24, joint modeling leads to
13.3% relative CER reduction (from 24.0% to 20.8%) on Eval set.

5.4. Post-Processing
As reported by several teams, the contribution from language

modeling (LM), either n-gram or neural LM, is very weak. This
is mainly because the building of LM is only restricted to the tran-
scripts of the training data while using extra text data is prohibited
according to the challenge rule. Most teams employ model fusion
which brings absolute improvement ranging from 10% to 15% on
the Eval set as compared with the baseline. For example, the winner
team R62 has eventually fused 7 models by simple ROVER, includ-
ing 3 Conformer models and 4 U2++ models, trained with different
configurations of data. Other fusion tricks include LM rescoring for
single speaker and multi-speaker ASR models (team G34) and model
averaging from different training stages (team B24).

6. CONCLUSIONS
This paper briefly describes the setup of the ICASSP 2022 multi-

channel multi-party meeting transcription challenge (M2MeT) and
summarizes the outcomes of the challenge, highlighting the major
techniques used by the top performing teams. We conclude this pa-
per with listing the following major findings. With limited a mount
of data to train systems, data augmentation and simulation are effec-
tive for both speaker darization and multi-speaker ASR. Likewise,
system fusion is another important trick with steady performance
gain if system computational resource is not constrained. Front-end
processing techniques are also beneficial for far-field scenarios in-
cluding meeting transcription – the task at hand. But uniquely for
meetings like the AliMeeting data, speaker overlap should be explic-
itly addressed. For speaker diarization, TS-VAD is still the superior
approach to handle speaker overlap. By using the above-mentioned
methods and tricks, the diarization error rate has been lowered to
3% on AliMeeting. For multi-speaker ASR, Conformer is still the
state-of-the-art (single-speaker) ASR model used by most teams and
Serialized Output Training is the easy-to-use approach to explicitly
consider speaker overlap. Front-end and back-end joint modeling us-
ing neural networks is also a promising solution that deserves future
investigation. The best performing system in the ASR track achieves
18.79% character error rate given the limited training data.
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