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Abstract We used the attentional blink (AB) paradigm to
investigate the processing stage at which extraction of sum-
mary statistics from visual stimuli (Bensemble coding^) oc-
curs. Experiment 1 examined whether ensemble coding re-
quires attentional engagement with the items in the ensemble.
Participants performed two sequential tasks on each trial: gen-
der discrimination of a single face (T1) and estimating the
average emotional expression of an ensemble of four faces
(or of a single face, as a control condition) as T2. Ensemble
coding was affected by the AB when the tasks were separated
by a short temporal lag. In Experiment 2, the order of the tasks
was reversed to test whether ensemble coding requires more
working-memory resources, and therefore induces a larger
AB, than estimating the expression of a single face. Each
condition produced a similar magnitude AB in the subsequent
gender-discrimination T2 task. Experiment 3 additionally in-
vestigated whether the previous results were due to partici-
pants adopting a subsampling strategy during the ensemble-
coding task. Contrary to this explanation, we found different
patterns of performance in the ensemble-coding condition and
a condition in which participants were instructed to focus on
only a single face within an ensemble. Taken together, these
findings suggest that ensemble coding emerges automatically
as a result of the deployment of attentional resources across
the ensemble of stimuli, prior to information being consolidat-
ed in working memory.

Keywords Attentional blink . Visual perception . Ensemble
coding

Introduction

Despite the vast amount of incoming sensory information that
reaches the brain, capacity limitations at various stages of
processing place severe constraints on how much of this in-
formation is consciously accessed at any given point in time
(Marois & Ivanoff, 2005). It has been suggested that the rapid
summarisation, or Bensemble coding,^ of featural information
shared between similar objects within a scene may provide a
means by which the visual system mitigates some of the ef-
fects of these information-processing bottlenecks (Alvarez &
Oliva, 2008; Chong & Treisman, 2003). Evidence of summa-
ry representations of stimulus features (almost universally, the
average of such features) has been shown across a variety of
stimuli, from simple features such as orientation (Oriet &
Brand, 2013; Parkes, Lund, Angelucci, Solomon, &
Morgan, 2001) and size (Ariely, 2001; Chong & Treisman,
2003, 2005b) to high-level features like the emotional expres-
sion (Haberman & Whitney, 2007, 2009) and identity (de
Fockert & Wolfenstein, 2009) of faces.

One of the key aspects of summary representations is that,
despite their reasonable accuracy, recall of individual items
within the ensemble is generally very poor, often at the level
of chance (Ariely, 2001; Corbett & Oriet, 2011; Haberman &
Whitney, 2009). This suggests that redundant featural informa-
tion from the individual items might be quickly pooled into a
summary representation, which is then retained, while the indi-
vidual representations are lost (Chong & Treisman, 2003;
Alvarez & Oliva, 2008). Such summary representations there-
fore could provide a means for circumventing the limited ca-
pacity of visual short-term memory (VSTM). Indeed, there
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seems to be little or no cost associated with estimating averages
from sets of stimuli in which the number of objects exceeds the
3- to 4-item limit of VSTM (Ariely, 2001; Attarha, Moore, &
Vecera, 2014; Haberman&Whitney, 2009; Robitaille &Harris,
2011). Furthermore, such averages can be computed from dis-
plays presented as briefly as 50 to 100 ms (Chong & Treisman,
2003; Haberman & Whitney, 2009; Oriet & Brand, 2013),
much faster than what would be expected if each item were
serially encoded into working memory (Treisman, 2006).
There also is some evidence that summary statistics are com-
puted automatically before any information reaches awareness
(Allik, Toom, Raidvee, Averin, & Kreegipuu, 2013, 2014),
even for unattended stimuli (Alvarez & Oliva, 2008; Oriet &
Brand, 2013). As such, the process has been likened to the low-
level integration of visual information that provides the percep-
tion of texture (Im & Halberda, 2013).

Other evidence, however, positions ensemble coding at a
later stage of visual processing. Chong and Treisman (2005a)
found that ensemble coding was impaired when it followed a
serial visual-search task requiring focused attention compared
with a parallel visual-search task requiring distributed atten-
tion. In addition, they found that summaries were significantly
less accurate when the spatial extent of attention required by a
concurrent task did not include any of the items in the set, than
when attention was spread over the entire ensemble. This de-
pendence on the distribution of attention across the ensemble
argues against a preattentive averaging mechanism. In support
of this, pre-cueing the dimension to be reported produces
equivalent benefits for single and ensemble stimuli, suggest-
ing that the encoding of ensemble statistics requires similar
attentional engagement as the encoding of single features
(Huang, 2015).

Furthermore, the formation of summary representations of
both size and orientation is affected by object-substitution
masking (Jacoby, Kamke, & Mattingley, 2013). In this para-
digm, processing of a target stimulus is impaired when it is
surrounded by task-irrelevant dot stimuli that have an onset
simultaneous with the target but a delayed, asynchronous off-
set (Di Lollo, Enns, & Rensink, 2000). Theoretical accounts
of this effect suggest that it arises during late, re-entrant visual
processing following the integration of featural information
(Chakravarthi & Cavanagh, 2009; Di Lollo et al., 2000;
Dux, Visser, Goodhew, & Lipp, 2010). Additionally, some
findings that purport to show preattentive averaging may also
be consistent with averaging occurring after the distribution of
attention. For example, Alvarez and Oliva (2008) reported that
participants were equally accurate in estimating the final cen-
troid of both attended (target) and unattended (distractor) sets
of moving dots. However, as the participants were aware that
they would be asked to report the location of the distractor
dots, they may have attempted to spread their attention across
both sets. This is consistent with the finding that experimental
manipulations resulting in the allocation of more attention to

the target set had a negative impact on localising the centroid
of the distractor set. In another study, Oriet and Brand
(2013) found that unattended stimuli influenced the mean
estimates of attended stimuli. However in that study, the
attended and unattended sets of stimuli were interspersed
with each other, distinguished only by their orthogonal ori-
entations. In this arrangement, distractor items are also like-
ly to have been captured when attention was spread over
the target set.

These findings suggest that summary representations are
generated at some point subsequent to the deployment of at-
tentional resources. Nonetheless, in light of evidence that en-
semble coding can circumvent capacity limitations in early
visual processing, it remains possible that ensemble coding
occurs prior to the registration of individual items in working
memory. It is therefore important to isolate the stage at which
this process first emerges.

The goal of the present study was to determine the locus of
ensemble coding in relation to the allocation of attention and
encoding in visual short-termmemory. To do this, we used the
Battentional blink^ (AB) paradigm. The AB is a behavioural
phenomenon that occurs under conditions of rapid serial visu-
al presentation (RSVP), in which a stream of stimuli is pre-
sented at a rate of around 10 items per second (Raymond,
Shapiro, & Arnell, 1992; Weischelgartner & Sperling,
1987). Embedded within this stream are two target stimuli
distinguished from the distractors by featural (e.g., colour) or
category-based information (e.g., letters amongst number
distractors). The targets are separated by a varying Blag^ (tem-
poral offset within the stream). The central, robust finding is
that participants often fail to report the second target (T2) if it
follows the first target (T1) at a short lag (an offset of 2 to 6
items, or approximately 200-600 ms). The effect is not due to
a perceptual deficit related to the T2 stimulus itself, because
performance is unimpaired if participants are told to ignore T1
and report only T2. A variety of potential mechanisms have
been invoked to explain this failure to report T2, such as a
central processing bottleneck (Chun & Potter, 1995), delayed
attentional reengagement (Wyble, Potter, Bowman, &
Nieuwenstein, 2011), the temporary loss of control over an
input filter tuned to target properties (Di Lollo, Kawahara,
Ghorashi, & Enns, 2005), or the active shutting of an atten-
tional gate following T1 processing (Olivers & Meeter, 2008;
Raymond, Shapiro & Arnell, 1992). Evidence from neuro-
physiological studies suggests that the AB results from a sup-
pression of the allocation of attention to T2. Sergent, Baillet,
and Dehaene (2005) demonstrated that the N2 event-related
potential (ERP) component, which is linked to attentional en-
gagement with target stimuli (Folstein & van Petten, 2007), is
reduced in T2 stimuli that are undetected, or Bblinked.^ A
paradigm in which ensemble coding is required for a display
presented within the temporal window of the AB thus could
be a powerful way to explore whether the generation of
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summary representations is contingent on attentional engage-
ment with the stimuli in the ensemble.

In a recent study, Joo, Shin, Chong, and Blake (2009) ex-
amined whether extraction of summary size information from
sets of circles can occur during the AB. In their experiment,
participants performed an RSVP task in which they identified
a digit (T1) embedded within a stream of letter distractors. The
T2 stimulus that followed consisted of two sets of circles, one
on the left and one on the right side of the display, and partic-
ipants were asked to estimate which set had the larger mean
size. The authors found no significant difference between T2
accuracy in the dual-task condition and accuracy in a T2-only
condition, in which T1 was ignored. On this basis, they con-
cluded that the mean size estimate can be computed even
when attention is limited. However, several aspects of the
study complicate this interpretation. First, the circle displays
presented as T2 were unmasked; the AB is typically reduced
or even eliminated for unmasked stimuli (Giesbrecht & Di
Lollo, 1998). Acknowledging this issue, Joo et al. performed
a control experiment in which they used a random-dot noise
image as a mask and again found little evidence of an AB.
However, random-dot noise images are unlikely to make ef-
fective masks for simple geometrical shapes (indeed, this has
been our own experience; also see Enns and Di Lollo, 2000).
Second, Joo et al. employed very different types of stimuli and
tasks for the two targets: discriminating digits from letters in
the case of T1 and ensemble coding of sets of circles for T2.
Yet previous research has found that the AB may not occur
when T1 and T2 differentially tap into featural versus
configural processing channels (Awh, Serences, Laurey,
Daliwhal, van der Jagt, & Dassonville, 2004). Accordingly,
the question of whether summary statistics can be successfully
extracted when attentional deployment is disrupted is still
without a clear answer. We addressed this question in an AB
task employing similar stimuli (faces) for both T1 and T2.

The AB paradigm can also be used to examine whether
ensemble coding of a set of items requires the individual items
to be registered in working memory, or if it instead occurs
prior to this step. The AB appears to be underpinned by the
process of encoding and consolidating T1 into working mem-
ory (Bowman&Wyble, 2007). The timing of the AB, approx-
imately 200 to 600 ms following the onset of T1, coincides
with the latency of the P3 ERP component evoked by T1
(McArthur, Budd, & Michie, 1999), which is linked to the
contextual updating of information in working memory (see
Polich, 2007, for a review).More specifically, the AB is linked
to the temporal overlap between the T1-evoked P3 and the
attention-related N2 component produced by T2 (Sergent
et al., 2005), suggesting that updating of working memory
interferes with the attentional engagement of T2. Varying the
task difficulty associated with T1 is also known to affect the
magnitude of the subsequent AB (Dux & Harris, 2007; Elliott
& Giesbrecht, 2015; Giesbrecht, Sy, & Elliott, 2007; Jolicœur,

1999; Wierda, Taatgen, van Rijn, & Martens, 2013); and this
is reflected at the neural level, where concomitant increases in
the amplitude of the P3 evoked by T1 are associated with an
increase in the size of the subsequent AB (Martens, Elmallah,
London, & Johnson, 2006). We compared the size of the AB
induced by a T1 task requiring the ensemble coding of multi-
ple items with that induced by estimating the same feature
from a single item. This allowed us to gauge whether ensem-
ble coding requires the individual items in an ensemble to be
encoded into working memory or whether only the summary
representation itself is encoded.

Current study

The purpose of this study was to utilise the AB paradigm to
examine two questions. First, is the successful extraction of a
summary representation affected by the availability of atten-
tional resources (Experiment 1)? Second, does the formation
of a summary representation necessitate encoding of the indi-
vidual items in working memory (Experiment 2)? Two tasks
were used in each experiment; both employed face stimuli.
One task was a gender discrimination of a single face. The
other task required participants to estimate the mean emotion-
al expression of a set of four faces or the expression of a single
face (in separate blocks of trials). The order of these tasks was
reversed between the first two experiments, such that T1 re-
quired gender discrimination and T2 required emotion estima-
tion in Experiment 1, and vice versa in Experiment 2. The T1
and T2 tasks were separated by either a short lag (within the
typical AB window) or a long lag (beyond the typical AB
window). Performance on the emotion-estimation task was
measured as the difference between the reported expression
and the actual expression. A mixture-modelling procedure
was conducted to estimate the extent to which these response
errors were attributable to guessing; and the difference in the
proportion of non-guess responses between the short and long
lags was used as our measure of the AB. This procedure also
allowed a more accurate measurement of the precision with
which participants performed the emotion-estimation task by
removing the effect of such guesses from their distribution of
responses. If ensemble coding requires attentional engage-
ment with the stimuli constituting the ensemble, we should
predict the presence of an AB in estimating the emotional
expression of the set of four faces when these appear as the
second target (T2) in Experiment 1. Alternatively, if extraction
of summary statistics does not require access to attentional
resources then performance should be equivalent at both short
and long lags. Furthermore, if ensemble coding requires each
face within the ensemble to be encoded into working memory
before computing the summary representation, we would pre-
dict a larger T2 deficit induced by the estimation of the mean
expression of four faces compared to a single face when these
appear as the first target (T1) in Experiment 2. Finally, we
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tested whether the results from these experiments might be
attributable either to participants adopting a particular strategy
that circumvents the need to engage in ensemble coding at all,
or to differential demands on the deployment of spatial atten-
tion (Experiment 3).

Experiment 1

Methods

Participants

A total of 25 undergraduate students were recruited for
Experiment 1 in exchange for course credit. Experimental
procedures were approved by the Human Research Ethics
Committee of the University of Sydney, and all participants
gave their informed consent in writing.

Apparatus

The experiment was programmed and run using PsychoPy
software (Peirce, 2007), operating on a PC under Windows
7 OS, and displayed on a 17″ Sony Trinitron CRT monitor
(1280 × 960 pixels; 85 Hz refresh rate) at a viewing distance
of ~57 cm.

Stimuli

Separate sets of grayscale face stimuli were used for the
Gender-discrimination (T1) and Emotion-estimation (T2)
tasks (Fig. 1). All faces, however, were identical in size,
subtending 4.3° of visual angle in height and 3.5° in width.

The Gender-discrimination stimuli consisted of 12 female
faces and 12 male faces (without facial hair) taken from an
online database (Utrecht ECVP stimulus set; http://pics.psych.
stir.ac.uk/2D_face_sets.htm). The faces were cropped tightly

using an oval frame, thereby removing any hair cues, and
converted to grayscale.

The face stimuli used in the Emotion-estimation task were
identical to those used in Experiment 3 of Haberman, Harp,
andWhitney (2009). Three emotional expressions (happy, sad
and angry) of a single individual, taken from the Ekman gal-
lery (Ekman & Friesen, 1976), formed the basis of the
Emotion-estimation stimulus set used in all trials. Fifty
morphs were created, using Morph 2.5 software, through lin-
ear interpolation between each pair of the original expressions.
This resulted in 150 expressions on a circular scale from hap-
py to sad to angry and back to happy (Haberman et al., 2009,
for details). While we refer to the distance between adjacent
morphed expressions along the distribution as a step of one
Bemotional unit,^ it should be noted that this does not neces-
sarily correspond to a psychological unit of discriminability.

Different backward-masking stimuli were created for the
Gender-discrimination and Emotion-estimation stimuli. Using
MATLAB (Mathworks Inc.), each of the face stimuli was
divided into 4 × 5 blocks. Each individual block was then
rotated (either 0°, 90°, 180°, or 270°) and then randomly com-
bined to produce new, scrambled faces. An oval frame was
then used to crop the scrambled faces to an overall similar
shape to the original face stimuli.

Gender-discrimination task (T1)

In the Gender discrimination task, a single face was presented
in the centre of the screen. Faces were selected pseudo-
randomly such that an equal number of female and male faces
were presented in each of the Single and Ensemble conditions
of the Emotion-estimation task.

Emotion-estimation task (T2)

On each trial, an emotional expression was selected at random
from the entire stimulus set. In the Single condition, this

Fig. 1 Examples of stimuli used in the Gender-discrimination task (T1; left) and Emotion-estimation task (T2; right). Emotion-estimation stimuli were
presented either in a set of four, arranged in a diamond configuration, or as a single face presented in the centre of the screen
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expression alone was presented in the centre of the screen. In
the Ensemble condition, this particular expression was not
shown but instead provided the Bmean^ for a set of four emo-
tional expressions that formed the ensemble. The four expres-
sions selected were those 3 and 9 emotional units above and
below the mean along the morph distribution (i.e., −9, −3, +3,
and +9). Each expression thus differed from the others by at
least 6 emotional units. Each facewas then randomly allocated
to a position at one of the points of an imaginary diamond. The
centre of each face was 3.4° from the centre of the screen
(Fig. 1), sufficient distance to avoid possible crowding effects
(Whitney & Levi, 2011).

Procedure

Attentional-blink paradigms typically involve two target stim-
uli embedded in a stream of irrelevant distractor stimuli, which
share some features with the targets. However, ensemble cod-
ing can integrate feature information over time as well as
space (Haberman et al., 2009; Albrect & Scholl, 2010).
Therefore, to minimize any potential influence from
distractors, we used a Bskeletal^ RSVP design with no
distractor stimuli—only targets and masks. This design still
induces an attentional blink when the targets are presented
with a relatively short stimulus onset asynchrony (SOA;
Ward, Duncan, & Shapiro, 1997).

Each trial began with a black fixation cross, presented for
494–1000 ms against a white background (e.g., Fig. 2). This
was replaced by a male or female face (T1) followed by a
mask. In Short-SOA trials, the mask was immediately follow-
ed by the Emotion-estimation stimulus (T2) and subsequent
mask. In Long-SOA trials, there was an additional 600-ms
delay during which a fixation cross was visible, before the
presentation of T2 and its respective mask. Based on pilot
testing, stimuli for the Emotion-estimation task (in both the
Single and Ensemble conditions) were displayed for 153 ms
(13 monitor frames). Stimuli for the Gender-discrimination
task, as well as mask stimuli for both tasks, were presented
for 94ms (8 monitor frames). This resulted in T1–T2 SOAs of
188 ms in the Short-SOA condition and 788 ms in the Long-
SOA condition. In the Ensemble condition, the four faces
displayed were followed by four masks presented in the same
locations, whereas in the Single condition a single face was
displayed centrally and followed by its mask. At the end of the
trial, a blank screen was shown for 500 ms before participants
were prompted to make their responses for the Gender-
discrimination T1 task and then for the Emotion-estimation
T2 task. No time limit was imposed on either response.

For the Gender-discrimination task, the screen prompt
consisted of an upwards arrow pointing to the word
BWoman^ and a downwards arrow pointing to the word
BMan.^ Participants pressed the up arrow or down arrow

key to indicate whether they had seen a woman or a man,
respectively.

For responses to the Emotion-estimation task, a probe ex-
pression, selected at random from the full set of 150 emotional
expressions, was presented in the centre of the screen, with the
text BAdjust the expression^ below. Moving the mouse along
its x-axis cycled the probe through the full distribution of
expressions. Participants pressed the left mouse button to se-
lect the expression they thought best matched either that of the
single expression (Single condition) or their estimate of the
average of the four emotional expressions (Ensemble
condition).

The Single and Ensemble conditions of the Emotion-
estimation task were performed in separate blocks of 150 trials
(75 each for the Short and Long SOA, randomly intermixed),
with the order of the blocks counterbalanced between
participants.

Analysis

Gender-discrimination task

Accuracy data were analysed using an ANOVA with SOA
(Short vs. Long) and Condition (Single vs. Ensemble) as
within-subjects factors.

Emotion-estimation task

We used a continuous responsemeasure to assess participants’
recall of the mean emotional expression. This is a procedure
that has been employed previously to assess the precision of
mean estimation (Albrecht & Scholl, 2010; Haberman et al.,
2009). On each trial, response error was defined as the differ-
ence between the reported average and the true average on
each trial. AVon Mises curve, which approximates a circular
Gaussian distribution, was then fitted to the distribution of
errors produced by each participant in each condition. We
used a Von Mises curve because the distribution of errors is
circular; for example, an error of +75 is indistinguishable from
an error of −75. A participant’s precision in estimating the
mean is characterised by the dispersion of this fitted distribu-
tion. That is, we take the extent of trial-to-trial variability
around the true mean to reflect the precision of the partici-
pant’s internal representation of the mean. However, this is
complicated by the presence of two different types of re-
sponses: guesses and non-guesses (or Binformed^ responses).
While informed responses are expected to comprise a circular
Gaussian distribution, guesses are drawn from a separate, uni-
form distribution. This is because the participant has no infor-
mation about the stimulus that was presented, and must there-
fore select a response at random. Following Zhang and Luck’s
(2008) application of mixture modelling to a change-detection

104 Atten Percept Psychophys (2017) 79:100–116



paradigm, we adopted a procedure in which errors are as-
sumed to reflect a mixture of a Gaussian distribution (in-
formed responses) and a uniform distribution (guesses; see
Asplund, Fougnie, Zughni, Martin, and Marois, 2014, for an
example of this procedure applied to data from an AB
paradigm). The relative contribution of each distribution to
the fitted model can then be used to determine the probability
that a participant is using information from the stimulus to
make their response (Pe; see Fig. 3 for examples of these
distributions from a representative participant). A lower prob-
ability of an informed response at a short lag compared to a
long lag would then be indicative of an AB.

Only trials in which a correct response was recorded to the
T1 stimulus (Gender-discrimination task) were included in the
T2 analysis. The response-error values were converted to ra-
dians for analysis, however the reported results are in

emotional units. Maximum-likelihood estimation was used
to compute two parameters for analysis. The first was the
relative weight of the von Mises curve in the final distribution
(Pe), expressed as a percentage. This reflected the overall
efficacy with which the participant produced informed re-
sponses (i.e., non-guesses) for that condition. A decrease in
efficacy at the Short SOA compared to the Long SOA was
taken as an indicator of an AB. We also calculated the con-
centration parameter (k) of the von Mises distribution, which
was then converted to the standard deviation (σ) and used as
our measure of the precision of the estimates from informed
responses. (Note that this differs from the temporal precision
parameter sometimes obtained from mixture modelling of
response errors in the AB; see Goodbourn et al., 2016). A
third parameter, the location (μ) of the von Mises distribution,
was allowed to vary in the model but was not analysed. The

Fig. 2 Example of the trial procedure in Experiment 1. Both the Short-
SOA (top) and Long-SOA (bottom) trials began with an initial fixation
cross displayed for 494–1000 ms. Then, a male or female face (T1) was
presented in the centre of the screen for 94 ms, before a backward mask
was presented for a further 94 ms. In the Long SOA trials, the T1 mask
was followed by a fixation cross for 600 ms. Then, in both types of trials,
T2 was presented. T2 consisted of either four faces arranged in a diamond

(Ensemble condition) or a single face in the centre of the screen (Single
condition). The T2 stimulus was shown for 153 ms before a backward
mask was presented for 94 ms. A fixation screen was then shown for a
further 494 ms. Following the trial, participants were first prompted for
their response to the Gender-discrimination T1 task and then for their
response to the Emotion-estimation T2 task
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model was re-fit 400 times to each distribution, with starting
parameters varying randomly (0 ≤ Pe ≤ 1; −1 ≤ μ ≤ 1; 1 ≤ k ≤
5), to obtain the most likely model given the data. In order to
prevent over-fitting, the most likely full model (uniform + von
Mises) was formally compared to a restricted, uniform-only
model using a likelihood-ratio test (α = .05). When the
uniform-only model was preferred, indicating that the partic-
ipant never gave an informed response, efficacy was set to
zero. Efficacy and precision were analysed separately in
two-way, repeated-measures ANOVAs, with SOA (Short,
Long) and Condition (Single, Ensemble) as within-subjects
factors.

Results

Two participants had an overall T1 accuracy of less than
70 % on the Gender-discrimination task and were excluded
from all analyses. A further four participants produced ef-
ficacy parameters of 0 at the Long SOA in the Ensemble
condition, indicating that they were unable to perform this
task under minimal task demands and were also excluded.
This resulted in data from 19 participants being included in
the analyses.

Gender-discrimination task (T1)

No differences in accuracy were found between Conditions
(Single: 93.2 %, SEM = 0.7 %; Ensemble: 93.1 %, SEM =
0.8 %; F(1,18) < 1) or between SOAs (Short: 92.6 %, SEM =
0.9 %; Long: 93.6%, SEM = 0.8 %; F(1,18) = 1.66, p = .21, ηp

2

= .08), nor was there a significant interaction between the two
factors (F(1,18) = 1.29, p = .27, ηp

2 = .07; Fig. 4).

Efficacy in Emotion-estimation task (T2)

The analysis revealed a significant main effect of Condition
(F(1,18) = 13.34, p = .002, ηp

2 = .43), with overall efficacy on
Single-stimulus trials (81.2 %, SEM = 3.1 %) much higher
than that on Ensemble-stimuli trials (61.4 %, SEM = 5.2 %).
There was also a significant effect of SOA (F(1,18) = 18.69, p <
.001, ηp

2 = .51), with overall efficacy higher at the Long SOA
(84.4 %, SEM = 2.5 %) compared with the Short SOA
(58.2 %, SEM = 5.9 %). Finally, there was an interaction
between Condition and SOA (F(1,18) = 6.6, p = .019, ηp

2 =
.27). The effect of SOA was greater for Ensemble trials
(Short SOA: 41.1 %, SEM = 9.1 %; Long SOA: 81.8 %,
SEM = 4.0 %; p < .001) than that for Single trials (Short
SOA: 75.3 %, SEM = 6.1 %; Long SOA: 87.1 %, SEM =
2.4 %; p = .11). The higher efficacy on Single trials relative to
Ensemble trials was only observed at the Short SOA (p =
.003), with no significant difference at the Long SOA (p =
.23; Fig. 5).

Precision in Emotion-estimation task (T2)

The analysis of the precision data indicated a main effect of
Condition (F(1,18) = 16.3, p = .001, ηp

2 = .48), with greater
precision for Single stimuli (σ = 17.3, SEM = 1.2) than for
Ensemble stimuli (σ = 25.5, SEM = 1.8). Overall, precision
was higher at the Long SOA (σ = 17.4, SEM = 1.0) compared

Fig. 3 Example of the fitting of a mixture of a uniform distribution
(modelling Bguesses^) and a von Mises distribution (modelling non-
guesses or Binformed^ responses) to the distribution of error responses
(circles) from a representative participant. Pe = weighting of the von
Mises distribution relative to the total distribution; σ = standard deviation
of the von Mises distribution (in emotional units). To better illustrate the
fit of the model, response errors are shown here in bins 10 emotional units
wide; however, the fitting procedure was applied to the continuous
response-error data
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Fig. 4 Mean T1 Accuracy at Short and Long SOAs for Single and
Ensemble conditions in Experiment 1. Error bars indicate ±1 SEM
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with the Short SOA (σ = 25.5, SEM = 1.99; F(1,18) = 13.9, p =
.002, ηp

2 = .44). The interaction between Condition and SOA
was not significant (F(1,18) < 1).

Discussion

Consistent with the idea that extracting summary statistics
occurs after attentional resources have engaged with the items
within the ensemble, these results indicate that ensemble cod-
ing is affected by disruptions to the allocation of attention to
stimuli. This is in contrast to the findings of Joo et al. (2009),
who reported that computing the mean size of a set of stimuli
was not affected by the AB. This discrepancy might be due to
differences in featural processing between the stimuli used for
T1 and T2, and a lack of effective backward masking of T2 in
the paradigm employed by Joo et al. Both of these factors may
have reduced the likelihood of eliciting an effective AB (Awh
et al., 2004; Giesbrecht & Di Lollo, 1998).

In addition, we observed a significantly greater AB deficit
in the Ensemble condition than in the Single-stimulus condi-
tion. This suggests that the ensemble-coding process itself
imposes an additional cost on central processing resources,
and therefore that summary representations may not be com-
puted automatically. This conflicts with previous studies
reporting very little or no effect of concurrent task demands
on the accuracy of such representations (Chong & Treisman,
2005a). One note of caution is that we did not find a signifi-
cant difference between efficacy at the Short and Long SOAs
for the Single condition. This may be because we used face
stimuli, which have been shown in a number of studies to be
less affected by the AB than other types of stimuli (Awh et al.,
2004; Jackson & Raymond, 2006; Landau & Bentin, 2008).
While Awh et al. (2004) found that face stimuli could experi-
ence a substantial AB when they were used as the two targets
(as in the present study), the discrepancy may be due to the
difficulty of the face-identification task they employed at T1.

Landau and Bentin (2008) found that the magnitude of the AB
suffered by faces at T2 was modulated by the difficulty of a
racial-discrimination task performed on faces presented at T1.
When the T1 task was easy (yielding approximately 82 %
accuracy), the magnitude of the induced AB was relatively
small (approximately 5 %). In our experiment, the T1
gender-discrimination task yielded very high accuracy
(93 %), which may explain why we failed to observe a signif-
icant AB effect in the Single condition.

Alternatively, however, the relatively better performance in
the Single condition at the Short SOA may arise because T2
appears in the same central spatial location as T1, thus not
necessitating any shifts of attention. In comparison, the
Ensemble condition requires a broadening of the attentional
spotlight to take in the four expressions presented at more
peripheral locations. Spatial attention is believed to freeze,
or even shrink, during the AB (Dell’Acqua, Sessa, Jolicœur,
& Robitaille, 2006; Olivers, 2004), and this may result in
fundamental differences in the ability to deploy attention in
the two conditions. This issue is addressed more directly in
Experiment 3.

As well as a decline in efficacy during ensemble coding, we
also found that the precision of mean estimates was worse at
Short SOAs than at Long SOAs. This was true for both Single
and Ensemble stimuli. Moreover, the precision of mean esti-
mates was worse for Ensemble than for Single stimuli. While
this demonstrates that attention is required for accurate repre-
sentation of local (single-item) information, these results also
support the conclusion that accurate ensemble coding relies
critically on the availability of attentional resources. In con-
trast, many other studies on summary statistics generally re-
port summary estimates to be about as good as estimates for
single stimuli (Ariely, 2001; Chong & Treisman, 2003). This
raises the question of whether our finding could be attributed
to observers adopting a nonoptimal strategy when performing
the task in the Ensemble condition. For example, because of
the reduction in attentional resources available for T2, they
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may be encoding only one expression, rather than attempting
to average all of the expressions. Such a subsampling strategy
could be reasonably successful in the present task, because
selecting any single expression provides a fairly close approx-
imation of the mean. However, the resulting distribution of
errors would have a higher variance (i.e., lower precision) than
in the Single condition, because the selected expression would
range between −9 and +9 emotional units from the mean
across trials. We investigate this possibility in Experiment 3.

Having established a lower bound on the processing stage
associated with the emergence of summary representations
(i.e., after attentional engagement) we next turn to examining
the relationship between ensemble coding and working mem-
ory. To do this, in Experiment 2 we reversed the order of the
T1 and T2 stimuli and presented the Emotion-estimation task
at T1. If estimating the mean of an Ensemble display requires
each item to be encoded into working memory, we would
expect to see a greater AB effect on the subsequent Gender-
discrimination T2 task following the Ensemble condition
compared with the Single-stimulus condition.

Experiment 2

Methods

Participants

A total of 24 undergraduate students took part in Experiment 2,
none of whom had participated in Experiment 1. All partici-
pants gave their informed consent in writing.

Stimuli and procedure

The stimuli, tasks, and procedures used in Experiment 2 were
identical to those used in Experiment 1, apart from reversing
the order of tasks: The Emotion-estimation task was presented
as T1, and the Gender-discrimination task as T2. Because
different durations were used for Emotion-estimation and
Gender-discrimination stimuli, this resulted in slightly differ-
ent latencies for the T1–T2 SOAs in Experiment 2: The Short
SOAwas 247 ms, whereas the Long SOAwas 847 ms.

Results and discussion

The data for Experiment 2 were analysed in the same manner
as those for Experiment 1. Three participants demonstrated
extremely poor performance for the Emotion-estimation task
at T1, as indicated by efficacy parameters of 0, and were
excluded. This resulted in data from 21 participants being
analysed for Experiment 2.

Efficacy in Emotion-estimation task (T1)

We found no effect on efficacy of Condition (Single: 78.1 %,
SEM= 3.8 %; Ensemble: 78.6%, SEM= 3.9 %; F(1,20) < 1) or
SOA (Short: 78.7 %, SEM = 3.6 %; Long: 78.0 %, SEM =
4.1 %; F(1,20) < 1); nor was the interaction between the two
factors significant (F(1,20) = 2.82, p = .11, ηp

2 = .12; Fig. 6).

Precision in Emotion-estimation task (T1)

Estimates were more precise in the Single condition (σ = 16.1,
SEM = 1.1) compared with the Ensemble condition (σ = 22.6,
SEM= 1.3; F(1,20) = 17.92, p < .001, η2 = .47). Precision did
not vary with SOA (Short: σ = 20.1, SEM = 1.0; Long: σ =
18.6, SEM = 1.3; F(1,20) < 1), nor was there an interaction
between Condition and SOA (F(1,20) < 1; Fig. 6).

Gender-discrimination task (T2)

All T2 trials were included in the analysis. Given the contin-
uous nature of the T1 measurement, T2 data were not
conditionalised on T1 performance. We observed no effect
on T2 Gender discrimination of the type of stimulus encoded
in the Emotion-estimation task at T1 (Single: 79.3 %, SEM =
1.9 %; Ensemble: 77.5 %, SEM = 1.9 %; F(1,20) = 1.63, p =
.22, ηp

2 = .08). There was an effect of SOA (F(1,20) = 118.38, p
< .001, ηp

2 = .85) with lower accuracy at the Short SOA
(70.0 %, SEM = 2.3 %) relative to the Long SOA (86.8 %,
SEM = 1.6 %). There was no interaction between Condition
and SOA (F(1,20) < 1; Fig. 7).

Discussion

As may be expected given that the T1 task could receive full
attention, efficacy (the proportion of informed responses) was
approximately the same in both Ensemble and Single stimuli
trials. However, the precision of informed responses was
worse on Ensemble trials. Indeed, precision was remarkably
consistent with that observed at the Long SOA in Experiment
1 for both Single and Ensemble trials (approximately 15 and
20 emotional units, respectively). Despite the increased
amount of attention that could be directed towards the
Emotion-estimation task, efficacy did not reach 100 % for
either condition. This likely results from the sheer difficulty
of the task, involving the delayed recall of brief, backward-
masked, complex visual stimuli and is also reflected in the
very sizeable AB induced for the second target. Importantly,
however, we observed no difference in the magnitude of the
AB produced in the Gender-discrimination task by Ensemble
and Single stimuli, indicating similar working-memory de-
mands in both conditions. This is consistent with the notion

108 Atten Percept Psychophys (2017) 79:100–116



that computing summary representations does not require in-
dividual items to be encoded in working memory.

As in Experiment 1, we found that the precision of the
emotion estimation was considerably lower for the
Ensemble than for the Single condition, even though atten-
tional resources are presumably fully engaged with the task.
This raises some alternative explanations that may account for
this result. Firstly, it is possible that observers encode all items
in working memory but these representations are very low-
resolution. This could result in imprecise estimates of the
mean expression while at the same time consuming similar
working-memory resources as a good-quality single represen-
tation and, consequently, inducing a similar-sized AB for the
T2 task. Although we cannot rule this out using the current set
of data, we consider this explanation unlikely. Haberman and
Whitney (2007) have shown that observers do not seem to
have access to information about individual faces in similar
displays of four stimuli, even when the stimuli are presented
for extended periods (2 s) and thus have ample opportunity to
be encoded in visual working memory. Another possible ex-
planation is that the lower precision in the Ensemble condition

may once again be the result of a subsampling strategy. If
participants were instead basing their judgements on a single
expression and encoding this in working memory, this might
also result in an AB deficit of a magnitude equivalent to that in
the Single condition. As we have suggested previously, such a
strategy might be encouraged by the high similarity between
the four expressions presented in the ensemble, because
choosing any one of these expressions could have provided
a reasonable approximation of the mean. It is important to
exclude this alternative before interpreting the present results
as reflecting the cognitive demands of ensemble averaging.
This was the aim of Experiment 3.

Experiment 3

Experiment 3 was based on Experiment 1 with the following
changes. First, we introduced an additional condition in which
participants were explicitly instructed to subsample from a set of
stimuli. This condition was similar to the Ensemble condition in
that a set of four facial expressions was presented, but here
participants were required to focus on and report the emotional
expression of only one face. Comparing precision in this condi-
tion with precision in the Ensemble condition should reveal
whether the results of the Ensemble condition could be ex-
plained by subsampling. This is because calculating the error
of responses in the Subsampling condition relative to the mean
of the entire ensemble, rather than the specific target expression,
provides a simulation of participants employing such a strategy
in the Ensemble condition. If this were the case, then precision in
the Subsampling condition (using error measured relative to the
mean of the ensemble) should be the same as in the Ensemble
condition. If, on the other hand, participants use more than one
expression in their estimates, the process of averaging would
result in higher precision in the Ensemble condition.

Second, the variability of the emotional expressions in the
set was increased, in order to reduce the similarity between
individual expressions and the mean of the ensemble. We
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expected this change would discourage reliance on a subsam-
pling strategy. However, it was important that stimuli were not
too dissimilar, because this might prevent ensemble coding
from occurring at all (Utochkin & Tiurina, 2014).
Accordingly, we doubled the distance between each member
of the set from 6 emotional units to 12.

Finally, we introduced the requirement for a spatial shift of
attention in the Single condition, by presenting the face away
from fixation. All three conditions of this experiment thus
required participants to shift attention beyond the location
where the T1 face was presented.

Methods

Participants

Thirty-six undergraduate students took part in Experiment 3.
None had participated in either Experiment 1 or Experiment 2.
All participants gave their informed consent in writing.

Stimuli and procedure

The stimuli and procedure used in Experiment 3 were identi-
cal to those used in Experiment 1, unless otherwise men-
tioned. There were three conditions (rather than two) in the
Emotion-estimation task at T2. The Ensemble condition was
identical in all respects, other than the increased emotional
distance between stimuli, to that in Experiment 1. The
Single condition differed from that in Experiment 1 in that
the face was presented 3.4° above the centre of the screen
(i.e., the position of the topmost face in the Ensemble condi-
tion; Fig. 8, left panel). In the additional Subsampling

condition, the display was identical to the Ensemble condi-
tion, with four faces presented in a diamond arrangement.
However, participants were instructed to attend to only the
top face amongst the four. For the Subsampling and
Ensemble conditions, the distance in emotional units between
individual expressions in the set was increased from 6 to 12.
This meant that the four expressions were spaced −18, −6, +6,
and +18 emotional units from the trial mean (Fig. 8, right
panel, for an example of such a set). Finally, the gender-
discrimination response for T1 was recoded to use the left
and right arrow keys rather than the up and down keys, in case
any upward shift in attention toward the target face caused a
response bias. The three tasks were completed in separate
blocks of 75 trials each (Short- and Long-SOA trials randomly
intermixed), with the order of the blocks randomised across
participants.

Analysis

The data for Experiment 3 were analysed in the same manner
as in Experiments 1 and 2 but with the addition of
Subsampling to the Condition factor (Single, Subsampling,
Ensemble). As a result, a Huynh-Feldt correction was applied
to correct for possible violations of sphericity, although we
report the uncorrected degrees of freedom for convenience.

In the initial analysis, responses in the Subsampling condi-
tion were evaluated against the expression of the target face
(i.e., how accurately and precisely the participant estimated
the attended emotional expression). We conducted a further
analysis in which responses on the Subsampling task were
treated as estimations of the mean of the entire ensemble,
rather than estimates of the particular face to which they were

Fig. 8 Examples of stimulus configurations used in the Emotion-
estimation task (T2) in Experiment 3. In the Single condition (left panel),
one emotional expression was presented above fixation. In the

Subsampling and Ensemble conditions (right panel), stimuli were pre-
sented in a set of four, arranged in a diamond configuration
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instructed to attend. This analysis provided a direct analogue
for measurements that would be obtained in the Ensemble
condition if participants adopted the strategy of attending to
only one expression in the set.We called this modelled data set
SubsampleMean. The efficacy and precision parameters esti-
mated from these error distributions were directly compared
to those generated in the Ensemble condition using a within-
subjects ANOVA with Condition (SubsampleMean vs.
Ensemble) and SOA (short vs. long) as its factors to test
whether performance in the Ensemble condition is distin-
guishable from that generated by an explicit subsampling
strategy.

Results

Six participants were excluded because of extremely poor
performance at the Long SOA, as indicated by efficacy pa-
rameters of 0. Data from 30 participants were analysed for
Experiment 3.

Gender-discrimination task (T1)

There were no differences in accuracy between Conditions
(Single: 90.3 %, SEM = 1.3 %; Subsample: 91.6 %, SEM =
1.1 %; Ensemble: 90.2 %, SEM = 1.1 %; F(2,58) = 2.07, p =
.14, ηp

2 = .07). However, accuracy was significantly worse on
Short-SOA trials (89.4 %, SEM = 1.1 %) compared with
Long-SOA trials (92.1 %, SEM = 1.1 %; F(1,29) = 21.25, p <
.001, ηp

2 = .42; Fig. 9). There was also a significant interaction
between the two factors (F(2,58) = 3.68, p = .03, ηp

2 = .11). At
the Short SOA, there were no differences between the three
conditions (Single: 89.2 %, SEM = 1.3 %; Subsample:
89.4 %, SEM = 1.2 %; Ensemble: 89.6 %, SEM = 1.2 %; p
= .97). But at the Long SOA, Gender-discrimination perfor-
mance was better on Subsample trials (93.9 %, SEM = 1.1 %)

than on both Single (91.4 %, SEM = 1.3 %; p = .015) and
Ensemble (90.9 %, SEM = 1.3 %; p = .009) trials. The Single
and Ensemble conditions did not differ from each other (p =
.98).

Efficacy in Emotion-estimation task (T2)

As in Experiment 1, only trials in which T1 was correct were
included in the analysis. There was no difference in efficacy
between the three conditions (Single: 60.3 %, SEM = 3.7 %;
Subsample: 63.8 %, SEM = 4.0 %; Ensemble: 64.0 %, SEM =
4.5 %; F(2,58) < 1). Efficacy on Short-SOA trials (44.6 %,
SEM= 5.41) was significantly lower than on Long-SOA trials
(80.7 %, SEM = 2.2; F(1,29) = 43.33, p < .001, ηp

2 = .60),
indicating a pervasive AB. This effect of SOA did not interact
with Condition (F(2,58) < 1; Fig. 10).

Precision in Emotion-estimation task (T2)

There was an overall effect of Condition on the precision of
the Emotion-estimation task (F(2,58) = 18.15, p < .001, ηp

2 =
.38). Estimates of emotional expression were less precise in
the Ensemble condition (σ = 29.2, SEM = 1.1) compared with
the Single (σ = 22.5, SEM = 1.6; p = .005) and Subsampling
conditions (σ = 19.4, SEM = 1.5; p < .001), in which only one
face was attended, whereas the latter two did not differ signif-
icantly from each other (p = .138). Precision was worse at the
Short SOA (σ = 29.2, SEM = 1.6) compared with the Long
SOA (σ = 18.1, SEM = 0.8) across all three conditions (F(1,29)

= 51.51, p < .001, ηp
2 = .640). There was no interaction be-

tween the two factors (F(2,58) < 1; Fig. 10).

Efficacy in emotion-estimation task (T2): SubsampleMean

versus Ensemble

Efficacy was higher in the SubsampleMean condition (74.6 %,
SEM = 4.5 %) than in the Ensemble condition (64 %, SEM =
4.5 %; F(1,29) = 5.36, p = .03, ηp

2= .16; Fig. 11). This is
contrary to the result expected if participants were performing
the Ensemble condition by subsampling only one face.
Overall efficacy was lower at the Short SOA (52.1 %, SEM
= 6.9 %) compared with the Long SOA (86.5 %, SEM =
2.2 %; F(1,29) = 26.22, p < .001, ηp

2= .48), indicating an AB.
There was no significant interaction between SOA and
Condition (F(1,29) = 2.79, p = .11, ηp

2 = .09).

Precision in Emotion-estimation task (T2): SubsampleMean

versus Ensemble

The precision of responses was significantly higher for
SubsampleMean (σ = 26.7, SEM = 1.0) compared with the
Ensemble condition (σ = 29.2, SEM = 1.1; F(1,29) = 4.69, p
= .04, ηp

2= .14). Precision was also overall lower at the Short
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SOA (σ = 32.6, SEM = 1.6) relative to the Long SOA (σ =
23.3, SEM = 0.7; F(1,29) = 32.44, p < .001, ηp

2 = .53), and this
did not vary across conditions (F(1,29) < 1; Fig. 11).

Discussion

The goal of Experiment 3 was to address some of the out-
standing questions that arose from Experiments 1 and 2. The
first was whether the systematically poorer performance in the
Ensemble condition, compared with the Single condition,
could be the result of a subsampling strategy. The results ob-
tained in the Subsampling condition, in which participants
were explicitly directed to focus on only one expression, clear-
ly indicate that this is not the case. The data from this condi-
tion were subjected to an analysis in which response error was
measured relative to the mean of the entire ensemble, rather
than the single face on which participants were instructed to
base their responses. This simulated a subsampling strategy
being employed on ensemble stimuli. Using this approach, we
found significant differences between the Subsample and

Ensemble conditions in both the efficacy and precision of
mean estimation, inconsistent with the use of a common strat-
egy across the two conditions. We expected to observe equiv-
alent performance in the Ensemble condition if observers’
judgements were based on only a single item in the display.
Instead, participants were less successful and had worse pre-
cision in the Ensemble condition than in the Subsampling
condition. Thus, the present results indicate that attempting
to spread attention over an entire array of stimuli has a dele-
terious effect on summarising the featural properties of those
objects. Together with our finding of worse efficacy and pre-
cision at short SOAs than at long SOAs, this reinforces the
conclusion that ensemble coding is affected by impaired allo-
cation of attention.

The second question that we addressed was whether a key
finding in Experiment 1—specifically that ensemble coding
was more severely affected by the AB than was single-
expression coding—could be attributed to differences in
attentional-shifting requirements. In the present experiment,
where both the Single and the Ensemble conditions required
a shift in spatial attention from the central location of the T1
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stimulus, the difference between Ensemble and Single condi-
tions was no longer present. Performance in both conditions
was affected by the AB to a similar extent, in terms of both the
efficacy and the precision of informed responses. This finding
indicates that ensemble coding does not impose any additional
cost on attentional resources over and above estimating the
emotional expression of a single face. However, the presence
of an AB does suggest that ensemble coding depends on the
deployment of spatial attention across the set of stimuli.

An additional finding was that T1 accuracy was lower
when the subsequent T2 stimulus occurred at a short SOA
compared with a long SOA. This effect is sometimes observed
in AB paradigms and is thought to reflect competition be-
tween T1 and T2 for attentional resources and encoding into
working memory (Potter, Staub, & O’Connor, 2002; Hommel
& Akyürek, 2005). While such an effect was not found in
Experiment 1, this competition may have been exacerbated
by the additional requirement to shift attention from the loca-
tion of T1 in the Single and Subsample conditions.
Performance on the T1 task also differed between the three
experimental conditions at the long SOA, but not when they
were separated by a short SOA. At present, we have no satis-
factory explanation for this latter finding, but we note that it
does not affect any of our central conclusions.

General discussion

The current study employed an attentional-blink paradigm to
investigate two questions about the processing of visual sum-
mary statistics. The first was whether ensemble coding of
featural information (facial expression) is affected by the
availability of attentional resources. The second was whether
forming a summary representation requires each item in the
set to be first encoded into working memory.

The first question was addressed in Experiment 1.
Participants reported the average expression of a set of faces
presented as the second task in a dual-task RSVP paradigm,
either during or after the expected temporal window for the
AB. The key finding of this experiment was that the Ensemble
condition suffered an AB, as indexed by a reduction in effica-
cy (reflecting increased guessing) at Short SOA compared
with Long SOA. In contrast to the earlier study by Joo et al.
(2009), these results demonstrated that limiting the attentional
resources available to process an ensemble impairs the repre-
sentation of summary statistics. In addition, efficacy and pre-
cision in this Ensemble condition were compared to a control
condition in which the expression from a single face was
reported. The AB observed for the Ensemble condition was
significantly larger than that for the Single condition. This
may suggest that ensemble coding is even more sensitive to
the depletion of attentional resources than is encoding a single
face; alternatively, it may be attributable to differences

between the two conditions in the spatial re-allocation of at-
tention after the T1 task. When this latter aspect of the proce-
dure was equated in Experiment 3, the magnitude of the AB
was similar between the two conditions, supporting the sec-
ond alternative. We also observed a reduction in the precision
of estimates for informed responses (non-guesses) at the Short
SOA compared with the Long SOA in both Experiments 1
and 3. Because the effect of guesses is removed by the model-
ling process, this may reflect the fact that even when they
make informed responses participants sometimes have only
limited control of attention following encoding of T1.
Attention may not be deployed effectively across the entire
ensemble at the Short SOA, thereby reducing the accuracy of
the mean estimation.

The second question of whether extracting a summary rep-
resentation from a set of stimuli requires all items to first be
encoded into working memory was addressed in Experiment
2. Participants performed the Emotion-estimation task as the
first in the sequence. We compared the size of the AB in a
subsequent T2 task (determining the gender of a single face)
under these two conditions. The key finding of this experi-
ment is that single stimuli and ensemble sets of stimuli pro-
duced a near-identical AB in the subsequent T2 task. This
indicated that summary representations are formed without
the need to encode the individual items into working memory.
If this were necessary, we should have observed a larger AB in
the Ensemble condition. The findings of these experiments
indicated that ensemble coding requires attentional engage-
ment but occurs prior to the consolidation of information in
working memory.

These results can be interpreted within Treisman’s (2006)
framework for the role of attention in visual perception.
According to this model, which builds on Feature
Integration Theory (Treisman & Gelade, 1980), feature maps
represent the distribution of a particular feature (e.g., the col-
our red) across a visual scene. Spatial information within the
feature maps is retained only implicitly via the topographical
organisation of the low-level units that feed this information
forward. These feature maps in turn indiscriminately activate
the object representations with which they are associated.
When attention is focused on a particular object within the
scene, this boosts activity from those feature maps fed by units
processing information from its spatial location, which acts to
bind these features together into a stable object representation.
When attention is distributed across multiple objects, the rep-
resentation of all of them is boosted, and feature maps become
dominated by those objects. However, without focused atten-
tion to promote individuation of each of the items, only the
summaries from the feature maps are accessible for encoding
in working memory (and, consequently, subsequent retrieval).
In other words, summary representations are formed automat-
ically from objects within the spatial distribution of attention
through compulsory pooling of their featural information.
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In our study, the process of consolidating T1 into working
memory impairs the deployment of attentional resources to the
following T2 stimulus. In Experiment 1, this causes a greater
reduction in efficacy for ensemble stimuli relative to a single
stimulus. This is because the Ensemble condition requires a
broadening of spatial attention from the location of T1 to
spread over all items in the subsequent T2 stimulus set. In
comparison, no such shift is required in the Single condition.
Owing to limitations in the allocation of attention imposed by
the AB, this prevents the construction of a feature map for
emotional expression more often in the Ensemble condition
than in conditions where only a single stimulus must be
attended. The observation of a reduction in precision at the
short SOA may also reflect a situation where the impaired
control of attention affects the quality of the feature map pro-
duced for the T2 stimulus. The results from Experiment 2
further suggest that the representations derived from these
feature maps, whether originating from a single stimulus or
summarised from ensemble sets of stimuli, have a fixed cost
on working memory. This is consistent with a recent study
demonstrating that contralateral delay activity, an EEG mea-
sure of working-memory load, is consistent acrossmultiple set
sizes during ensemble coding (Baijal, Nakatani, van Leeuwen,
& Srinivasan, 2013). Finally, in Experiment 3 we equated the
need to shift attention from the location of T1 between the
Single and Ensemble conditions. We observed no difference
in the magnitude of the AB between the two conditions. This
supports the idea that the extraction of summary statistics does
not impose any additional processing costs compared with a
single stimulus (i.e., occurs automatically) provided that spa-
tial attention can be effectively deployed (Chong & Treisman,
2005a).

In Experiments 1 and 2, the precision of the mean estimates
for ensemble sets was significantly poorer than the precision
of estimates for a single face. This raised the possibility that
participants may have used a subsampling strategy to perform
the Emotion-estimation task in the Ensemble condition. If
subjects had performed the task simply by selecting a single
face from the ensemble display, we would expect to observe
systematically lower precision compared with the single-face
condition. Some authors have suggested that ensemble coding
may actually reflect exactly this kind of strategic behaviour,
such as basing size judgments on only the largest or smallest
items in the display (Myczek & Simons, 2008; Marchant,
Simons, & de Fockert, 2013). Such a strategy could also have
been encouraged by the similarity of the faces we used in the
ensemble sets in those experiments. However, the results of
Experiment 3 suggest otherwise. In that experiment, we re-
duced the similarity between the faces in the displays by in-
creasing their separation in emotional-expression space. We
also directly compared performance in the Ensemble condi-
tion with performance in a condition in which the participants
were explicitly instructed to focus on a single face from the

set, and found that the precision in the Ensemble condition
was in fact poorer than the precision of estimating the expres-
sion of a single face. This demonstrates that our results cannot
be explained by participants adopting such a subsampling
strategy. Rather, they suggest that disrupting attentional de-
ployment impairs the ability to summarize the statistics of an
ensemble of stimuli.

The superior precision for the Subsample condition com-
pared to the Ensemble condition does raise the question of
exactly why a single face chosen from the ensemble would
provide a more precise estimate of the mean than averaging
across all of the faces in the ensemble. This is particularly
puzzling given that ensemble coding has been shown previ-
ously to provide accurate estimates of the average emotional
expression of sets of faces with displays similar to those used
here (Haberman & Whitney, 2009). It is possible that the task
demands of the AB paradigm prevented participants from en-
gaging in ensemble coding at all. However, if so, it is unclear
exactly what they could be doing instead. Participants are not
simply guessing, as our mixture-modelling procedure
removes the effect of guessing from estimates of precision.
The results of Experiment 3 also exclude subsampling of a
single face as an alternate strategy. Furthermore, the results of
Experiment 2 are inconsistent with serially encoding a subset
of items (more than one, but less than the full ensemble) and
mentally averaging these; and in any case, such a strategy
would be expected to provide a better estimate of the mean
than subsampling a single face, rather than a worse estimate as
we observed in Experiment 3. Thus, we believe that the most
likely explanation is that our participants are attempting to
perform ensemble coding, but their attempts result in poor
estimates of the mean. This is likely due to the brief presenta-
tion and the backward masking of stimuli in our experiments,
as well as the depletion of attentional resources inherent in the
AB. While average size can be estimated with reasonable
accuracy in as little as 50–100 ms, the accuracy of such esti-
mates has been shown to improve with prolonged stimulus
duration (Chong & Treisman, 2003); and complex stimuli,
such as faces, may require even more time for accurate extrac-
tion of summary statistics. Previous studies have shown that
mean estimates of emotional expression can be computed at
stimulus durations below 200 ms, but their accuracy is com-
paratively poor (Haberman & Whitney, 2009). Under appro-
priate circumstances, a summary representation computed via
ensemble coding might provide less reliable estimates of the
mean than a single face within the set. Nonetheless, these
results indicate that the extraction of average emotional ex-
pression is detrimentally affected when access to attentional
resources is restricted during the AB.

Our study focused on one particular type of ensemble cod-
ing: estimating the average emotion of a set of faces. This
process has been shown to exhibit many of the same proper-
ties as averaging across other features, such as size and
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orientation (Haberman &Whitney, 2009). Summary informa-
tion derived from faces likely taps into configural processing,
given that inverted and scrambled faces do not show the same
level of accuracy in ensemble coding as upright faces
(Haberman et al., 2009). Because configural processing is
likely to introduce additional attentional demands, it is possi-
ble that other properties may be more resilient to the disrup-
tion of attention than are faces and their emotional
expressions. This may explain some of the differences
between our findings and those of Joo et al. (2009) and could
be investigated in future studies.

It is worth noting that the current set of experiments re-
quired the formation and retention of a rather precise repre-
sentation of the mean to perform the adjustment task at the end
of the trial. Therefore, it is still possible that summary repre-
sentations may be computed preattentively, as suggested by
various studies (Oriet & Brand, 2013), but that attention is
required for maintenance and explicit access to this informa-
tion in a similar way to what is observed with some Gestalt
grouping processes (Kimchi&Razpurker-Apfeld, 2004). This
could be investigated in future studies by looking at how sum-
mary statistics derived implicitly (e.g., from distractors that
are outside the focus of attention) interact with the type of
attentional bottlenecks investigated.

In conclusion, the findings from the present study indicate
that summary representations of the emotional content of sets
of faces necessitate the deployment of attention across the
ensemble without requiring the individual items to be regis-
tered in working memory. This accords with a model in which
information about a particular feature set is pooled automati-
cally across the full spatial extent of attention prior to the
encoding of information into working memory. Given that
the distribution of attention can be intentionally controlled,
some of the inconsistencies in the ensemble-coding literature
may also arise because subjects adopt their own idiosyncratic
strategies for performing an experimental task.
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