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There is an extensive literature on band-limited signals, i.e. func-
tions f of the form

(1) fity = | e Fadu,
and their representation by the sampling theorem (known to mathe-
maticians as the cardinal series),

(2) Fit) = 3 fmySRECE = 1)
e (t — m)

which does represent f under reasonable conditions on F. I take the
band-width to be 7 to simplify the formulas; the general case,

’

f(t) = STTe‘““F(u)du
can be dealt with by a change of variable.

The point of the present note is that many results from this circle
of ideas can be obtained rather quickly from well-known summation
formulas. I shall illustrate this by using Poisson’s summation formula
to derive not only the sampling theorem (2) itself, but also an estimate,
due to Weiss [7] and Brown [2], for the error when (2) is applied to an
f that is not in fact band-limited, and some related formulas obtained
by Jagerman [4]. (One can give similar applications of the Euler-
Maclaurin summation formula.) Finally I give (independently of sum-
mation formulas) a very short proof of (2) when F is integrable.

1. Poisson’s formula. The form usually given [6, p. 60] is that if

(3) g(x) = (2m)™"* S me“‘iuzG(u)d’u ) G(u) = (Zﬂ)—llzglg(x)eiuzdx ’
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then
(4) 5 ok) = @n)" 3 Glexk) .

=—0c0

Sufficient conditions for (4) are that g is continuous, of bounded variation,
zero at oo, with g(x)dx convergent (which implies, since g is of
bounded variation, that 3 g(k) converges); or, of course, that G satisfies
the same conditions. There is a more general form, obtainable from (4)
by appropriate substitutions (see [5, p. 217]), which G. H. Hardy used to
give in lectures: if A, B, a, b are real and AB = 27 then

(5) Al/zenubingweznnaiG[A(n + b)] — Bl/ze—zabinnganbig[B(n . a)] .

2. Poisson’s formula and 3, f(np + q). Let us change the notation
in (1) so that it now reads

(6) £ty = ey |

e " F(u)du ,

with F(u) = 0 for [u| = =. Suppose that fe L, i.e. that | | 7(9)]dt < e.
It is known from the theory of entire functions [1, pp. 101, 211] that
f'eL and f(x) —0 as |2|— . This makes (4) applicable to g = f,
G = F. All the terms on the right of (4) are zero except the one with
k = 0, and this term is

@0 FO) = |~ fvat,
so that
(7) Sfm =" fwar,

as obtained by Jagerman [4] under more restrictive hypotheses. In fact,
we see that (7) holds even if F(u) = 0 for |u| = 27, i.e. if the band-
width is allowed to be twice as large. (Added in proof: Formula (7) was
obtained earlier, in the same way, by N. Wiener; see [8], [9].)

More generally, if we drop the assumption that F(u) = 0 for |u| = 7,
but suppose that feL, f'eL, f(d) =0 (which would certainly be
true if f(u) = 0 for |u| = A with some A), then

= |"_fwdt + @ny" 5 Femk) ,

and so the difference lz,f(n) — Sf(t)dt' does not exceed (27)% > 1150 | F'(27E)|.
We can obtain other formulas like (7) by specializing the parameters



SUMMATION FORMULAS AND BAND-LIMITED SIGNALS 123

in (5) in various ways.
Take a =0, b=1/2, A=2n, B=1, g = f as in (6); then

S(=1() = o) SF(2a(n + )
but all the terms on the right are zero and we obtain
(8) Sifen) = Sifen + 1) .
Next take a =0, b =1/2, A=r, B= 2. Then we have
23 (=1)f(2n) = #™{F(n/2) + F(—m/2)} .
Similarly if 6 = 0, A = 2x/3, B =3,
32 3 f(3(n — @) = (2n/3)"{F(0) + ¢ F(2n/3) + ¢ **F(—2x/3)},
and in particular when a = 0 or 1/2,
3>, f(8n) = 2n)"*{F(0) + F(2r/3) + F(—2x/3)},
33 f<3<n — %)) — (2n)"{F(0) — F(2r/3) — F(—21/3)} .

3. Poisson’s formula and the sampling theorem. In (5) take g =f,
a=0, b=t/(2r), A =2, B =1, so that Poisson’s formula reads (formally)

(9) @n) S, Fena + t) = ngwf(n)e""‘ )

n=—co

Suppose that Fe L. Since

w> (" IFg1a= 3P0 a = 3 [T Fer + g4,

=—o0

the series on the left of (9) converges for almost all ¢ to an integrable
funection, whose kth Fourier coefficient is
e 3 ["Pens + gevat = @on|” e Foat = £
0 —oco

n=—oo

(the term-by-term integration being permitted by dominated convergence).
Hence the series on the right of (9) is the Fourier series of the function
on the left, and we can multiply both sides by e %** and integrate over
(—m, 7). The result is

@ S S;e“”F(Zmz + t)dt

n=—oo

= S| eorar =2z fmySnT@ =)

n=—os w(x — n)

n=—o0
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i.e.

$pmySinEE —mn) _ (zn)—mg" e~ F(@nr + t)dt
= w(w — m)

J— —1/2 < @n+ix —izt ,2nriz

= 2m)~'* 3, e~=tetinf()dt .
n=—o0 J(2n—1)71

But we have

fl@) = (27r)—1/zS et F(H)dt = (27‘7)—1/2,‘2”‘4 S(2k+1)x6_¢th(t)dt ,

=—o00 J (2k—1)7
and so
10) f@) — 3 fm)SREE=1 _ on-n $ - e“’””)S(ZHMF(t)dt .
n=—oco 7'[(:1,' — n) ke—o (2k—1)7

If F(t) =0 for |t| =, we have (1). In general, the absolute value of
the left side of (10), i.e. of the difference of the two sides of (1), does

not exceed

22m)" | sin ko f5(2:+””| Fb) | dt = 2(271’)—1/z§
k (2k—1)m

=—o0

| F(t) |dt .
1t1>=
This is equivalent to Brown’s result [2], which is, as he shows, the
best result of its kind. However, it can be sharpened if = is not one
of the points (2n + 1)7/2, since |sin kmx | < 1 except at these points.
We could also obtain the same formulas by applying (5) to
= f(u) sin w(x — w)

g(w) (X — u)

(with a fixed x).

5. Short proof of the sampling theorem. If we just want to prove
the sampling theorem under rather general hypotheses, the following
proof is quite simple. Let

Ft) = S;e‘““F(u)du , FeL.

This means that f(n)/(2r) are the Fourier coefficients of F' repeated with
period 27. Since a Fourier series can be multiplied by the bounded
function e¢7*** and integrated term by term, we have

f(x) — gwf(")(zﬂ)ﬂ;i gint—intdp — i f(’l’b) sin 71'(n — ) .

n==e n(n — x)

The same method could be applied to functions represented by finite
Fourier transforms of distributions (Campbell [3]). (Added in proof: The
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same proof has been found independently by Pollard and Shisha [10].)

(1]
[2]

[3]
[4]
[5]

[6]
[7]

(8]

[9]

[10]

REFERENCES

R. P. Boas, JR., Entire functions, Academic Press, New York, 1954.

J. L. BROWN, JR., On the error in reconstructing a non-bandlimited function by means
of the bandpass sampling theorem, J. Math. Analysis Appl. 18 (1967), 75-84.

L. L. CAMPBELL, Sampling theorem for the Fourier transform of a distribution with
bounded support, SIAM J. Appl. Math. 16 (1968), 626-636.

D. JAGERMAN, Bounds for truncation error of the sampling expansion, SIAM J. Appl.
Math. 14 (1966), 714-723.

W. MAGNUS, F. OBERHETTINGER, Formeln und S#tze fiir die speziellen Funktionen der
mathematischen Physik, 2d ed., Springer, Berlin-Gottingen-Heidelberg, 1948.

E. C. TITCHMARSH, Introduction to the theory of Fourier integrals, Oxford, 1937.

P. WEIss, An estimate of the error arising from misapplication of the sampling theorem,
Notices Amer. Math. Soc. 10 (1963), 351.

A. B. BHATIA AND K. S. KRISHNAN, Light-scattering in homogeneous media regarded
as reflexion from appropriate thermal elastic waves, Proc. Roy. Soc. London. Ser.
A. 192 (1948), 181-194.

K. S. KRISHNAN, On the equivalence of certain infinite series and the corresponding
integrals, J. Indian Math. Soc. (N.S.) 12 (1948), 79-88.

H. POoLLARD AND O. SHISHA, Variations on the binomial series, Amer. Math. Monthly
79 (1972), 495-499.

NORTHWESTERN UNIVERSITY
EvansToN, ILL., 60201
U.S.A.






