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Abstract of the Dissertation

Summed Score Likelihood Based Indices for

Testing Latent Variable Distribution Fit in Item

Response Theory

by

Zhen Li

Doctor of Philosophy in Education

University of California, Los Angeles, 2015

Professor Li Cai, Chair

In item response theory (IRT), the underlying latent variables are typically as-

sumed to be normally distributed. If the assumption of normality is violated, the

item and person parameter estimates can become biased. Therefore, it is necessary

in practical data analysis situations to examine the adequacy of this assumption in

an effective manner. There is a recent surge of interest in limited-information over-

all goodness-of-fit test statistics for IRT models (see e.g., Cai, Maydeu-Olivares,

Coffman, & Thissen, 2006; Joe & Maydeu-Olivares, 2010; Cai & Hansen, 2013),

but their appropriateness for diagnosing latent variable distributional fit has not

been studied.

The approach undertaken in this research is to use summed score likelihood

based indices. The idea itself is not new (see e.g., Ferrando & Lorenzo-Seva,

2001; Hambleton & Traub, 1973; Lord, 1953; Ross, 1966; Sinharay, Johnson, &

Stern, 2006; Thissen & Wainer, 2001), but this study recasts the problem using

the framework of limited-information goodness of fit testing. The summed score

based indices can be viewed as a particular form of reduction of the full underlying

multinomial that are potentially sensitive to the latent variable distributional
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misspecifications.

Results from a pilot study (Li & Cai, 2012) show that summed score like-

lihood based indices enjoy high statistical power for detecting latent variable

distributional assumption violations, and are not sensitive (correctly) to other

forms of model misspecification such as unmodeled multidimensionality. Mean-

while, the limited-information overall fit statistic M2 (Maydeu-Olivares & Joe,

2005) has relatively low power against latent variable non-normality. However,

technically the statistical indices proposed by Li and Cai (2012) don’t follow an

exactly chi-squared distribution. They proposed a heuristic degrees of freedom

adjustment, but more rigorous justifications could be developed along the lines of

Sattora-Bentler type moment adjustment popular in structural equation modeling

(Satorra & Bentler, 1994). In IRT, the moment adjustment approaches have been

used by Cai et al. (2006) and Maydeu-Olivares (2001).

The major methodological contributions of my dissertation come from simu-

lation studies that examine the calibration and power of the moment adjusted

test statistics across various conditions: number of items, sample size, item type,

generating latent variable distribution, and the values of generating item param-

eters. The performance of these fit statistics are also compared with the limited-

information overall fit statistic M2 (Maydeu-Olivares & Joe, 2005). Simulation

study results show that the proposed moment-adjusted statistics improve upon

the unadjusted statistics in the null and alternative conditions, especially when

generating item parameters are dispersed. Finally, performance of the indices

is illustrated with empirical data from educational and psychological assessment

development projects.
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CHAPTER 1

Introduction

In the area of educational and psychological measurement, item response theory

(IRT) models are widely utilized for test development and scoring (Embretson &

Reise, 2000; Thissen & Wainer, 2001; Brennan, 2006). In standard IRT models,

the distribution of the latent variable is often assumed to be normal (Lord, 1980).

Then, the expected probability of a particular item response is modeled as a

function of item parameters and the latent variables. This function, known as

an item response function (IRF), can be considered the building block for item

parameter estimation.

As with any statistical model, many assumptions are made in the application of

IRT models, and verification of these assumptions is desirable. For instance, when

an IRT model is fitted with maximum marginal likelihood estimation (MMLE,

Bock & Lieberman, 1970), the latent variable is often assumed to follow a normal

distribution. While many latent variables may arguably follow a normal distri-

bution, this assumption might be unrealistic in other cases (Woods & Thissen,

2006). For example, in large-scale educational assessment, two subpopulations

with different means and variances might be grouped together (e.g., English Lan-

guage Learners and the general population). As a consequence, the population

distribution of the proficiency latent variable might be nonnormal.

The purpose of the current research is to develop a set of statistical indices to

test the appropriateness of the latent variable normality assumption for realistic

data analysis situations. It is valuable because if the assumption of latent vari-
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able normality is violated, item parameter estimates might be biased (Woods &

Thissen, 2006). For example, in Computer Adaptive Testing (CAT) applications,

item parameter estimates are ultilized in item selection and later on for test scor-

ing, thus the bias of parameter estimates could lead to undesirable consequences

for both. Furthermore, many quantities of interest, such as score estimates and

test information, are functions of the item parameter estimates. Consequently,

bias in the parameter estimates will lead to bias in these other quantities.

Certainly, there are alternative approaches to specifying the latent variable

distribution in IRT modeling. Researchers have developed several methods to

estimate the shape of the latent variable distribution. These include the empiri-

cal histogram (EH) method (Bock & Aitkin, 1981), Ramsay-Curve IRT (Woods

& Thissen, 2006), and Davidian Curve IRT (Woods & Lin, 2009) as well as its

multidimensional extension (Monroe, 2014). The various approaches can provide

reasonable item and structural parameter estimates in the case of a non-normal

latent variable distribution. However, all of these methods are more computation-

ally demanding than standard IRT estimation (assuming normality) and require

special software. Clearly, it would be convenient and useful for practitioners to

consult a statistical test of the assumption of normality before more complex

models are applied.

In the application of IRT models, overall goodness-of-fit statistics, based on

discrepancies between model-implied and observed response pattern probabilities

(Reiser, 1996) are calculated to assess model fit. These include Pearsons chi-square

test, the likelihood ratio test, and Maydeu-Olivares and Joe’s (2006) M2 index.

But recent studies (Li & Cai, 2012; Hansen, Cai, Monroe, & Li, 2015) show that

the overall goodness-of-fit test statistics are not sensitive to the violation of the

latent variable distribution assumption. Bayesian methods, such as the Posterior

Predictive Model Checking (PPMC, Sinharay et al., 2006) approach, could also be

applied to check the latent variable distribution assumption. However, predictive
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model checking has not been applied to IRT model fit test in the context when

item parameters are estimated by MMLE, which remains by far the more popular

approach to item parameter estimation in practical settings. An ideal test statistic

should be easily computed along with MMLE, and be specifically sensitive to the

violation of the assumption of latent variable normality.

Summed score likelihood based indices (Li & Cai, 2012), a special case of

limited-information goodness-of-fit tests, were demonstrated to meet these re-

quirements. These indices are derived from a power divergence family of goodness-

of-fit (GOF) statistics (Cressie & Read, 1984). Compared with the limited-

information goodness-of-fit test statistics, summed score likelihood based statis-

tics are more powerful in detecting latent variable non-normality (Li & Cai, 2012).

However, in Li and Cai’s (2012) study, a heuristic formula for the degrees of free-

dom (df ) was applied for the statistics, and the empirical distribution of these

statistics did not always seem to follow a chi-squared distribution. In this dis-

sertation, I propose two moment-matching approaches (Satorra & Bentler, 1994;

Cai et al., 2006) to adjust the summed score likelihood based indice X̄2. An

adapted Lord-Wingersky algorithm (Lord & Wingersky, 1984) was developed to

calculate the Jacobian matrix useful for finding the first and second moments of

X̄2. To distinguish the unadjusted and adjusted statistics, the chi-square statistic

with a heuristic df (Li & Cai, 2012) is renamed as X̄2
H . The proposed statistic

with first-moment adjustment is named as X̄2
C1, while the one with both first-

and second-moment adjustments is named as X̄2
C2. A simulation study and an

empirical study are proposed to examine the performance of X̄2
C1, X̄

2
C2 and X̄2

H

under various conditions, in comparison with overall GOF statistics, such as M2.

My dissertation consists of nine chapters in total. Chapter 2 introduces some

typical unidimensional IRT models. Chapter 3 demonstrates the importance

of normal latent variable distribution assumption in IRT modeling. Chapter 4

presents popular multinomial goodness-of-fit statistical tests (full-information and

3



limited-information) for IRT. Chapter 5 introduces the proposed summed score

likelihood based indices as a member of the limited-information statistical test

family, the moment adjustment procedure, and the adapted Lord-Wingersky al-

gorithm for the Jacobian matrix. Chapter 6 describes the simulation study design

and the data generation process. Chapter 7 illustrates the simulation study re-

sults. Chapter 8 presents an application of the proposed statistics to two sets of

empirical data. Chapter 9 provides a conclusion for the current study and some

directions for future exploration.
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CHAPTER 2

Item Response Theory Model

The statistical aspects of item response theory can be understood from the gen-

eralized linear model formulation (Skrondal & Rabe-Hesketh, 2004) for categor-

ical item level data. In unidimensional IRT models, the examinee’s responses to

items are assumed to be related to a general underlying dimension, representing

proficiency, ability, achievement, preference, etc. Item response probabilities are

assumed to be independent conditional on the latent variable (Thissen & Stein-

berg, 2009). Some commonly used item response theory models are introduced in

this chapter.

In standard IRT models, the conditional item response probabilities (also re-

ferred to as item tracelines) are represented as a function of item parameters and

the latent variable θ. For example, the 3-parameter logistic (3-PL) model can be

written as:

Ti(1|θ) = gi +
1− gi

1 + exp[−(ci + aiθ)]
, (2.1)

where Ti(1|θ) represents item i ’s traceline for the 1 category (indicating correct/

endorsement response in most contexts) as a function of θ. The item parameters

include: gi, which is the pseudo-guessing probability for the item (lower asymptote

parameter); ai, which is the slope (discrimination) parameter, and ci, which is

the item intercept parameter. The slope parameter indicates to what extent the

item can discriminate individuals on the latent variable continuum. The classical

difficulty (threshold) parameter is obtained as bi = −ci/ai, which is defined as the

value of θ when correct/ endorsement response probability equals to (1+ gi) ∗ 0.5.
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If gi is zero, the model reduces to a 2-parameter logistic (2-PL) model, and if

all the item slopes are constrained to be equal to a common slope (ai ≡ a), the

1-parameter logistic (1-PL) model results. For an item with two categories, the

incorrect/non-endorsement response probability is equal to Ti(0|θ) = 1− Ti(1|θ).

For an item with Ki ordered polytomous responses, the graded response model

(Samejima, 1969) is often utilized. Let the response categories be coded as k =

0, ..., Ki − 1. The cumulative response probability for item i in categories k and

above is

T+
i (k|θ) = 1

1 + exp[−(cik + aiθ)]
, (2.2)

for k = 1, ..., Ki − 1. Having defined the boundary cases T+
i (0|θ) = 1 and

T+
i (K|θ) = 0, the category response probability can be written as

Ti(k|θ) = T+
i (k|θ)− T+

i (k + 1|θ), (2.3)

for k = 0, ..., Ki−1. Let Ui be a random variable whose realization ui is a response

to item i. Regardless of the number of categories or the form of the model, the

probability mass function of Ui, conditional on θ, is that of a multinomial with

trial size 1:

P (Ui = ui|θ) =
Ki−1
∏

k=0

[Ti(k|θ)]1k(ui), (2.4)

where 1k(ui) is an indicator function such that

1k(ui) =











1 : if k = ui,

0 : otherwise.

A 2-PL model is actually a special case of the graded response model when

the number of response categories equals to two: correct or incorrect. In addi-

tion, there are alternative unidimensional IRT models for polynomial data, such

as Muraki’s (1992) generalized partial credit (GPC) model and Bock’s (1972)
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nominal categories model. Details about these models can be found elsewhere

(e.g., Thissen & Wainer, 2001). In my dissertation, the graded response model

(Samejima, 1969) is applied for polytomous item response data.
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CHAPTER 3

The Latent Variable Distribution in IRT

As previously mentioned, in the application of IRT, the population distribution of

latent variable g(θ) is often conveniently assumed to be normal for the purposes of

item parameter calibration and latent trait estimation (Thissen & Wainer, 2001).

In reality, however, the distribution of the latent variables can be nonnormal.

Woods and Thissen (2006) described several potential situations where θ might

be nonnormal. For example, as severe symptoms of psychological disorders rarely

exist in the general population and most people have low levels of psychopatho-

logical symptoms, the population distribution of latent variables reflecting these

symptoms may be positively skewed. Another possible cause arises in the sit-

uation when the population is heterogeneous. For instance, when two or more

subpopulations with different means and variances are grouped together, poten-

tially multimodal population distributions may be the result. Calibrating the

items with respect to the combined population renders the normality assumption

suspect.

When the assumption of normal latent variable distribution is challenged, non-

parametric or semi-parametric estimation methods can be applied to estimate g(θ)

along with item parameters. The EH method is now an established strategy for

detecting and correcting latent variable nonnormality in IRT (Bock & Aitkin,

1981; Mislevy, 1984; Woods, 2006). Newer semi-parametric density estimation

procedures (e.g., Ramsay Curve IRT, Woods & Thissen, 2006; Davidian Curve

IRT, Woods & Lin, 2009) offer more efficient alternatives. Monroe and Cai (2014)
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and Monroe (2014) extended these estimation methods for multidimensional IRT

models, where semi-parametric densities are estimated for more than one latent

variable.

In practice, however, estimating latent variable densities often requires addi-

tional computation and specialized software. Although the EH method has been

implemented in several IRT software, such as BILOG-MG (Zimowski, Muraki,

Mislevy, & Bock, 1996) and flexMIRT (Cai, 2013), more complex latent variable

distributions involve more parameters to be estimated from the data, increasing

the need for larger calibration sample sizes to achieve stable estimation. Moreover,

even as nonnormal latent densities may be modeled, e.g., using a Ramsay Curve

IRT model (Woods & Thissen, 2006), and the relative model fit may be evaluated

against a baseline using likelihood ratio tests, it does not circumvent the need for

absolute goodness of fit indices to establish the adequacy of the least restrictive

model in the class of models being compared (see Maydeu-Olivares & Cai, 2006

for further explanation). It would be highly desirable to use statistical tests to

examine the extent to which a normal latent variable distribution may in fact be a

reasonable characterization before more computational demanding methods and

software programs for semi-parametric density estimation are employed.

In developing such a family of test statistics for latent variable distribution fit,

several requirements should be considered. First, the statistics should be easily

computed, preferably using only standard byproducts of the MMLE procedure.

Second, the statistics should have well-grounded heuristic motivation and theo-

retical justification. Third, the asymptotic distribution of the statistics under the

null hypothesis should be sufficiently accurate. Finally, the statistics should have

adequate power that is focused on latent variable distribution assumption viola-

tion and sufficient diagnostic specificity, comparing with the overall GOF fit test

statistics.

The guiding insight has been provided elsewhere in the literature. For uni-
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dimensional IRT modeling, the observed and model-implied summed score dis-

tribution can be a basis for inferring the adequacy of the latent variable distri-

bution specification in the IRT model (Thissen & Wainer, 2001). After model

fitting, residual summed score probabilities may be used to construct chi-square

test statistics. While the idea has been discussed from different standpoints (see

Ferrando & Lorenzo-Seva, 2001; Hambleton & Traub, 1973; Lord, 1953; Ross,

1966; Sinharay et al., 2006, among others), the recently developed theory of

limited-information goodness-of-fit testing is utilized to formally demonstrate that

the summed score likelihood based fit indices proposed here belong to the general

family of multinomial limited-information tests.
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CHAPTER 4

Multinomial Goodness-of-fit Tests

With no loss of generality, consider a test with N examinees and n dichotomous

items. The observed responses can be summarized in an n-dimensional contin-

gency table, with 2n cells. Statistically, the adequency of an IRT model can always

be tested using goodness-of-fit indices by comparing the observed probabilities in

each of the 2n cells with expected probabilities based on the model, with test

statistics such as likelihood ratio and Pearson’s statistics (Reiser, 1996). More-

over, there are different ways to construct an asymptotically chi-square distributed

test statistic with a quardrature form (Cressie & Read, 1984). In this chapter,

several quardratic-form statistics for model misfit detection in IRT are described,

as well as the relationship among these statistics. Summed score likelihood based

indices turn out to belong to the general family of multinomial limited-information

tests.

4.1 Multinomial IRT model

Based on n-dimensional contingency table, and under the conditional indepen-

dence assumption, the IRT model specifies the conditional response pattern prob-

ability as follows:

P

( n
⋂

i=1

Ui = ui|θ
)

=
n
∏

i=1

P (Ui = ui|θ). (4.1)
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Assuming that g(θ) is the distribution of the latent variable (also known as the

prior distribution), the marginal response pattern probability is the following in-

tegral:

P

( n
⋂

i=1

Ui = ui

)

=

∫ n
∏

i=1

P (Ui = ui|θ)g(θ)dθ = πu(γ), (4.2)

where u = (u1, ..., un)
′ is the response pattern, and γ is a d×1 vector that collects

together the free item parameters from all n items. The parenthetical notation

πu(γ) in Equation 4.2 is used to emphasize the fact that it is the model. The

marginal response probability depends on the item parameters, the item-level

response models, and the assumed latent variable distribution. Recall that the

number of categories for item i is two. For n items, the IRT model generates a

total of C = 2n cross-classifications or possible item response patterns in the form

of a contingency table. Based on a sample of N respondents, let the observed

proportion associated with pattern u be denoted as pu. The sampling model for

this contingency table is a multinomial distribution with C cells and N trials.

The multinomial log-likelihood for the item parameters γ is proportional to

logL(γ) ∝ N
∑

u

pu log πu(γ), (4.3)

where the summation is over all C response patterns. Maximization of the log-

likelihood (e.g., with the EM algorithm; Bock & Aitkin, 1981) leads to the maxi-

mum marginal likelihood estimator γ̂. Upon finding γ̂, the IRT model generates

model-implied probabilities for each response pattern πu(γ̂) = π̂u. Suppose the

model-implied response pattern probabilities π̂u are collected into a C × 1 vector

π̂ of all model-implied response pattern probabilities. By analogy, let a C × 1

vector π contain the true (population) response pattern probabilities. Similarly,

the observed proportions pu can be collected into a C × 1 vector p. For example,

for 3 dichotomously scored items there are 23 = 8 item response patterns, and the
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response pattern probabilities and observed proportions are:

π =






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


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


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, π̂ =


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=
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, p =
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. (4.4)

From results in discrete multivariate analysis (e.g., Bishop, Fienberg, & Holland,

1975), γ̂ is consistent, asymptotically normal, and asymptotically efficient, which

can be summarized as follows:

√
N(γ̂ − γ)

D−→ Nd(0,F
−1), (4.5)

where F = ∆′[diag(π)]−1∆ is the d × d Fisher information matrix, with the

Jacobian matrix ∆ defined as a C × d matrix of all first-order partial derivatives

of the response pattern probabilities with respect to the item parameters:

∆ =
∂π(γ)

∂γ ′
. (4.6)

4.2 Distribution of Multinomial Cell Residuals

Based on Equation 4.6, it can be shown that the asymptotic distribution of the

multinomial cell residual vector (p− π) is C -variate normal:

√
N(p− π)

D−→ NC(0,Ξ), (4.7)
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whereΞ = diag(π)−ππ
′ is the covariance matrix associated with the multinomial.

The cell residual vector (p−π̂) under MMLE of item parameters is asymptotically

C -variate normal:
√
N(p− π̂)

D−→ NC(0,Γ), (4.8)

where Γ = Ξ−∆F−1∆′, and the second term (∆F−1∆′) reflects variability due

to estimation of item parameters.

4.2.1 Lower-order Marginal Probabilities

The IRT model implies marginal probabilities. Consider the 3-item example from

above. There are 3 mathematically independent first-order marginal probabili-

ties π̇i (i = 1, ..., 3), one per item. There are also 3 mathematically independent

second-order marginal probabilities π̈ij for the unique item pairs (1 ≤ j < i ≤ 3).

In general, these probabilities correspond to the n univariate and n(n − 1)/2 bi-

variate margins that can be obtained from the full C -dimensional contingency

table using a reduction operator matrix (see e.g., Maydeu-Olivares & Joe, 2005).

An example is given below:

π̂2 =
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, (4.9)

where L is a fixed operator matrix of 0s and 1s that reduces the response pattern

probabilities and proportions into marginal probabilities and proportions up to or-
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der 2. π̂2 is the vector of first and second order marginal probabilities. Obviously

p2 = Lp is the vector of first and second order observed marginal proportions.

More general versions of the reduction operator matrices for multiple categor-

ical IRT models can be derived using similar logic (see e.g., Maydeu-Olivares &

Joe, 2006; Cai & Hansen, 2013). Note that L has full row rank. It implies that the

marginal residual vector (p2− π̂2) = L(p− π̂) is a full rank linear transformation

of the multinomial cell residual vector (p− π̂). Therefore, the marginal residual

vector (p2 − π̂2) is asymptotically normal:

√
N(p2 − π̂2) =

√
NL(p− π̂)

D−→ NZ(0,Γ2), (4.10)

and Γ2 = LΓL′ = LΞL′−L∆F−1∆′L′ = Ξ2−∆2F
−1∆′

2, where Ξ2 = LΞL′, and

∆2 = L∆ is the Jacobian for the marginal probabilities. Z is the number of first

and second order marginal residuals. For example, in the case of dichotomous

items, the dimensionality of the marginal residual vector is Z = n+n(n− 1)/2 =

n(n+ 1)/2.

4.2.2 Summed Score Probabilities

In addition to the response pattern and marginal probabilities, the IRT model

also generates model-implied summed score probabilities. For a test with n di-

chotomous items, there are a total of S = 1 + n summed scores ranging from 0

to n. Suppose the observed summed probabilities based on a sample of size N

are equal to p̄s for s = 0, ..., n. Under maximum likelihood estimation of item

parameters, the corresponding IRT model-implied summed score probabilities are

formally defined as

π̄s =
∑

u

1s(‖u‖)π̂u, (4.11)
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where ‖u‖ =
∑n

i=1 ui is a notational shorthand for the summed score associated

with response pattern u, and the indicator function takes a value of 1 if and only

if s = ‖u‖:

1s(‖u‖) =











1 : if s = ‖u‖,

0 : otherwise.

Equation 4.11 shows that the IRT model-implied probability for summed score s

is a sum over all such response pattern probabilities leading to summed score s,

in other words, it may also be obtained by a reduction operator matrix.

Let S be a matrix of fixed 0s and 1s such that the pre-multiplication of π by

S yields the summed score probabilities. Each row of S can be understood as a

set of binary logical relations for a particular summed score. An entry in row m

of S is equal to 1 if and only if the corresponding response pattern in π leads to

summed score m− 1. In general, for n items, there are S rows and C columns in

S. In particular, S has full row rank and the rows of S are mutually orthogonal.

Returning to the 3-item example, there are 4 summed scores in this case: 0,

1, 2, and 3. The 4× 8 matrix S (below) relates the summed score probabilities to

the original multinomial probabilities:
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
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, (4.12)
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and

ˆ̄π =










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
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


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
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

= Sπ̂. (4.13)

The observed summed score proportions can be obtained in a similar way:

p̄ =








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


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



= Sp. (4.14)

From Equation 4.8, under MMLE, the summed score residual vector p̄ − ˆ̄π is

asymptotically S -variate normally distributed:

√
N(p̄− ˆ̄π) =

√
N(Sp− Sπ̂) =

√
NS(p− π̂)

D−→ NS(0, Γ̄), (4.15)

and Γ̄ = SΓS′ = Sdiag(π)S′−Sππ′S′−S∆F−1∆′S′ = diag(π̄)−π̄π̄
′−∆̄F−1∆̄

′
,

with ∆̄ = S∆. Recall that π̄ contains the true (population) summed score prob-

abilities. ∆̄ is the S × d Jacobian matrix for ˆ̄π, F is the d× d Fisher information

matrix, and the term ∆̄F−1∆̄
′
reflects variability due to item parameter estima-

tion.

The reason for introducing the reduction operator matrix S is primarily a the-

oretical one. It facilitates the subsequent derivations of summed score likelihood

based indices for testing latent variable distribution fit. Pragmatically, the Lord-

Wingersky algorithm (Lord & Wingersky, 1984) could be applied to compute the

model-implied summed score probabilities. If summed score to scale score conver-

sion tables are computed (for unidimensional IRT model, see Thissen & Wainer,

2001; for multidimensional IRT model, see Cai, 2014), the probabilities become
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automatic byproducts.

4.3 Model-fit Test Statistics in IRT

4.3.1 Overall Goodness of Fit Statistics

Overall goodness of fit indices may be used for testing latent variable distribution

fit. The full-information test statistics such as likelihood ratio G2 and Pearson’s

X2 use residuals based on the full response pattern cross-classifications to test the

IRT model against the general multinomial alternative. The comparison between

π̂u and pu (on logarithmic or linear scales) leads to well-known goodness of fit

statistics such as the likelihood ratio G2 and Pearson’s X2:

G2 = 2N
∑

u

pu log
pu
π̂u

, (4.16)

X2 = N
∑

u

(pu − π̂u)
2

π̂u

. (4.17)

Under the null hypothesis that the IRT model fits exactly, these two statistics

have the same asymptotic reference distribution, which is a central chi-square

with degrees of freedom equal to C − 1− d (Bishop et al., 1975). For subsequent

development, it is instructive to rewrite Pearson’s statistic as a quadratic form in

multinomial residuals:

X2 = N(p− π̂)′[diag(π̂)]−1(p− π̂). (4.18)

Unfortunately as the number of items increases, the number of response pat-

terns increases exponentially. For more than a dozen or so dichotomous items (or

perhaps a handful of polytomous items), the contingency table upon which the

multinomial is defined becomes sparse for any realistic N. It is well known that

the asymptotic chi-square approximations for the full-information test statistics
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break down under sparseness (see e.g., Bartholomew & Tzamourani, 1999) and

the utility of the full-information overall goodness of fit indices for routine IRT

applications is questionable at best.

Recently, limited-information overall fit statistics such as Maydeu-Olivares and

Joe’s (2005) M2 have been developed. Limited-information fit statistics use resid-

uals based on lower order (e.g., first and second order) margins of the contingency

table. These lower order margins are far better filled when compared to the sparse

full contingency table. There is growing awareness that limited-information tests

can maintain correct size and can be more powerful than the full-information tests

(Cai et al., 2006; Joe & Maydeu-Olivares, 2010).

Under the assumption that the number of first and second order margins (Z )

is larger than the number of free parameters (d): Z > d, and that ∆2 has full

column rank (local identification), M2 can be written as

M2 = N(p2 − π̂2)
′∆̃2[∆̃

′

2Ξ2∆̃2]
−1∆̃

′

2(p2 − π̂2), (4.19)

evaluated at the MMLEs. With γ̂ being the MMLEs, the statistic M2 can be

obtained with Equation 4.19, where π̂2 = Lπ(γ̂), Ξ2 = Ξ2(γ̂), and ∆̃2 = ∆̃2(γ̂).

∆̃2 is a Z × (Z − d) orthogonal complement of ∆2 such that ∆̃
′

2∆2 = 0. It

is not unique, but the choice of ∆̃2 should not influence M2. From Equation

4.10, (p2 − π̂2) is asymptotically normal with zero means and covariance matrix

Ξ2 − ∆2F
−1∆′

2, which implies that the covariance matrix of ∆̃
′

2(p2 − π̂2) is

∆̃
′

2Ξ2∆̃2. Thus, M2 is asymptotically chi-square distributed with Z − d degrees

of freedom. In the simulation study M2 will be used as a benchmark due to its

numerous desirable properties identified in the literature (see e.g., Cai & Hansen,

2013). Performance of the proposed latent variable distribution fit indices will be

evaluated against M2.

While an overall test may be used to detect specification errors of latent vari-
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able distributions, the fact that they are also sensitive to other forms of model error

(e.g., unmodeled multidimensionality) makes it difficult to pinpoint the source of

model misspecification. To that end, more specific diagnostic indices have been

created for IRT. For example, Chen and Thissen’s (1997) local dependence in-

dices are particularly sensitive to violations of the local independence assumption.

Orlando and Thissen’s (2000) item fit diagnostics is another example where the

extent to which the IRT model fits the empirical operating characteristics for an

item (e.g., whether monotonicity holds) can be examined. The next section devel-

ops summed score likelihood based indices that specifically target latent variable

distribution fit for IRT models.
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CHAPTER 5

The Proposed Indices

This chapter describes two motivations for summed score likelihood based statis-

tical indices: X̄2
C1, X̄

2
C2 and X̄2

H . As Li and Cai’s (2012) statistical indice X̄2 with

a heuristic df ( renamed as X̄2
H in this study) does not follow an asymptotically

chi-squre distribution under some conditions, two moment-matching approaches

to adjust X̄2 are developed (the statistic with first-order moment adjustment is

named as X̄2
C1 and the statistic with two-moment adjustment is named as X̄2

C2).

Similar to Satorra and Bentler’s (1994) approach, the first-order moment adjust-

ment involves the computation of a scaling constant to correct the mean of test

statistics, and the two-moment adjustment matches both the mean and variance

of the statistics with fixed degrees of freedom. One challenge for the correction

is the calculation of Jacobian matrix of summed score likelihoods with respect to

item parameters. In this chapter, we develop and illustrate an efficient procedure

of Jacobian matrix calculation based on a modification of the Lord-Wingersky

algorithm (Lord & Wingersky, 1984).

5.1 Summed Score Likelihood Based Indices

There are two important lines of reasoning for the derivation of these model fit

indices. The first is a recognition based on heuristics: IRT model-implied summed

score probabilities may provide useful diagnostic information about the latent

variable distributional assumption (Thissen & Wainer, 2001; p. 130). The second

recognition is that the summed score based indices proposed here are formally
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limited-information test statistics.

5.1.1 A Heuristic Motivation

Researchers (Ferrando & Lorenzo-Seva, 2001; Hambleton & Traub, 1973; Li & Cai,

2012; Lord, 1953; Ross, 1966; Sinharay et al., 2006; Thissen & Wainer, 2001) no-

ticed that when the latent variable distribution assumed in the IRT model does not

represent the population distribution of the respondents adequately, the model-

implied summed score probabilities ˆ̄πs will depart from the observed summed

score probabilities p̄s. Hence all that is needed is to find appropriate test statistics

that can summarize the degree to which the model-implied and observed summed

score probabilities diverge. It is also preferable if the indices are approximately

chi-squared distributed test statistics.

The power divergence family (Cressie & Read, 1984) meets this requirement.

Recall that the total number of summed scores is S = 1 +
∑n

i=1(Ki − 1), where

Ki is the number of categories for each item. The power divergence family of

goodness of fit statistics yields a direct comparison between the model-implied

summed score probability ˆ̄πs and the observed summed score probability p̄s:

D̄(λ) =
2N

λ(λ+ 1)

S−1
∑

s=0

p̄s

{(

p̄s
ˆ̄πs

)λ

− 1

}

, (5.1)

where a real-valued scalar λ parameterizes the family. Members of this fam-

ily include Pearsons statistic X̄2 = D̄(1) and (defined by continuity) the like-

lihood ratio statistic Ḡ2 = D̄(0). These test statistics are different from the

full-information test statistics shown in Equation 4.16 because they are based on

summed score probabilities as opposed to response pattern probabilities. Cressie

and Read (1984) also advocated a compromise statistic D̄2 = D̄(2/3) that is “be-

tween” the two classical statistics X̄2 and Ḡ2. As my major interest is not to

compare these various statistics, I will focuse on X̄2 in this study, because Pear-
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sons statistic X̄2 is algebraically the most straightforward member of the power

divergence family.

It is conjectured that under a wide variety of conditions X̄2 statistic might

have an asymptotic distribution whose tail-area probability can be approximated

by a central chi-squared random variable under the null hypothesis that the latent

variable distribution g(θ) is correctly specified in the IRT model. Li and Cai (2012)

proposed a heuristic approach for computing the df of X̄2. The rationale behind

the heuristic df is as follows.

The S summed scores probabilities must sum to 1. The first minus 1 is to reflect

that constraint. If the item parameters were known, the df would be exactly

S − 1. When the item parameters are estimated (assuming with MMLE), an

additional penalty must be introduced to reflect the effect of parameter estimation.

While the location and scale of the latent variable θ are typically fixed for model

identification, the model-implied summed score distribution does not have an

inherent location and scale. The location and scale is determined as a result

of estimating the item parameters. Hence the estimation of item parameters

amounts to adding at least two more constraints for the model-implied summed

score probability distribution. X̄2 with the heuristic df is simple and performs well

in some conditions (Li & Cai, 2012). However, a relatively more complex moment-

matching approach can adjust X̄2 so that the goodness-of-fit statistics more closely

follow an asymptotic chi-squared distribution under the null hypothesis and may

lead to a more powerful test under the alternative.

5.1.2 A More Formal Derivation

While the proposed test statistics are not associated with particular marginal

probabilities in the same manner as Maydeu-Olivares and Joe’s (2005) M2, they

are nevertheless related to the response pattern probabilities via the reduction
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operator matrix S defined earlier (see Equations 4.12). It is the choice of this

particular reduction operator that leads to more focused tests targeting latent

variable distribution fit (see Joe & Maydeu-Olivares, 2010). Using the reduction

operator S, the derivations above imply that X̄2 can be rewritten as

X̄2 = N

S−1
∑

s=0

(p̄s − ˆ̄πs)
2

ˆ̄πs

= N(p̄− ˆ̄π)′[diag(ˆ̄π)]−1(p̄− ˆ̄π), (5.2)

where (p̄ − ˆ̄π) = S(p − π̂) is the summed score residual vector (see Equation

4.12). Under the null hypothesis that the IRT model is correctly specified, one

can obtain the probability limit of the weight matrix as plim ([diag(ˆ̄π)]−1) =

[diag(π̄)]−1 by the consistency of the maximum likelihood estimator (see Equation

4.4), the continuity of the mapping from γ to the summed score probabilities,

and the continuity of the matrix inverse. Following results on quadratic forms in

asymptotically normal random vectors (e.g., Mathai & Provost, 1992, p. 53), the

asymptotic expected value of X̄2 is equal to

tr {Γ̄[diag(π̄)]−1} = tr {[diag(π̄)− π̄π̄
′][diag(π̄)]−1} − tr {∆̄F−1∆̄

′
[diag(π̄)]−1}

= tr (IS)− tr {π̄π̄′[diag(π̄)]−1} − tr {∆̄F−1∆̄
′
[diag(π̄)]−1}

= S − 1− tr {∆̄F−1∆̄
′
[diag(π̄)]−1}.

(5.3)

In this equation, S is the number of all possible summed scores for the test. Minus

one is due to the constraint that summed score probabilities sum up to 1. The

third part in Equation 5.3 reflects additional uncertainty due to estimation of item

parameters. “tr” indicates the “trace” of a matrix. “IS” indicates an (S×S) iden-

tity matrix. The Jacobian matrix ∆̄ (S × d) and Fisher information matrix F

(d×d) can be calculated once the MMLEs of item parameters are available. Sim-

ilarly, the asymptotic variance of X̄2 is equal to 2tr {Γ̄[diag(π̄)]−1Γ̄[diag(π̄)]−1},
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and

tr {Γ̄[diag(π̄)]−1Γ̄[diag(π̄)]−1}

= tr
{(

[diag(π̄)− π̄π̄
′][diag(π̄)]−1 − ∆̄F−1∆̄

′
[diag(π̄)]−1

)

(

{[diag(π̄)− π̄π̄
′][diag(π̄)]−1} − ∆̄F−1∆̄

′
[diag(π̄)]−1

)}

= tr (IS)− 2tr {π̄π̄′[diag(π̄)]−1} − 2tr {∆̄F−1∆̄
′
[diag(π̄)]−1}

+ 2tr {π̄π̄′[diag(π̄)]−1∆̄F−1∆̄
′
[diag(π̄)]−1}+ tr (π̄π̄′1S)

+ tr{∆̄F−1∆̄
′
[diag(π̄)]−1∆̄F−1∆̄

′
[diag(π̄)]−1}

= S − 2− 2tr {∆̄F−1∆̄
′
[diag(π̄)]−1}+ 2sum (∆̄F−1∆̄

′
) + sum (π̄π̄′)

+ tr {∆̄F−1∆̄
′
[diag(π̄)]−1∆̄F−1∆̄

′
[diag(π̄)]−1}. (5.4)

In this equation, S, ∆̄, F are the same components as in Equation 5.3. “sum()”

means the sum of all elements of a matrix. The first-order and second-order

moments of the statistics are essential elements for the adjustement of the in-

dices. From now on, tr {Γ̄[diag(π̄)]−1} will be indicated by U1 for short, and

tr {Γ̄[diag(π̄)]−1Γ̄[diag(π̄)]−1} will be indicated by U2. The next section will

illustrate how to use the first and second moments (U1 & U2) to adjust X̄2.

5.2 Adjustment of Statistics

From Equation 5.2, it is clear that the statistic X̄2 cannot be asymptotically

chi-squared. Even though it is a quadratic form in asymptotically normally dis-

tributed random vectors, a key condition for its chi-squaredness is not met. That

is, the product of the probability limit of the weight matrix [diag(π̄)]−1 and the

covariance matrix of the normal random vector (Γ̄) is not idempotent in general,

i.e., Γ̄[diag(π̄)]−1Γ̄[diag(π̄)]−1 6= Γ̄[diag(π̄)]−1. On the other hand, according to

Satorra and Bentler’s (1994) paper, test statistics which do not follow an asymp-

totically chi-squared distribution can be modified, using a scaling to correct the
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mean (or the mean and variance) of the test statistics or an adjustment to df. Cai

et al. (2006) also illustrated an approach of moment adjustment to goodness-of-fit

testing of IRT models when parameter estimation is taken into account.

In this study, two Satorra-Bentler type modification approaches (Satorra &

Bentler, 1994) to adjust X̄2 are developed: a first-order moment adjustment and

a two-moment adjustment. The rational for the first-order moment adjustment is

as following. Equation 5.3 shows that the asymptotic expected value of X̄2 is equal

to S−1 minus a constant that depends on the trace of matrix F−1∆̄
′
[diag(π̄)]−1∆̄,

which reflects additional uncertainty due to estimation of item parameters. Ac-

cording to the properties of a chi-squared distribution, the df of X̄2 should be

equal to the asymptotic expected value of X̄2: U1. Therefore, the df of X̄2 should

be better approximated by U1 than the heuristic df. On the other hand, if the df

is fixed to a constant (e.g., S − 1− 2), the statistic could be rescaled so that the

asymptotic expected value of the adjusted statistic would approach the fixed df.

For the two-moment adjustment, both the asymptotic mean and variance of X̄2

are considered (Asparouhov & Muthen, 2010). Not only the asymptotic expected

value of the two-moment adjusted statistic would approximate a fixed df, but also

the asymptotic variance of the two-moment adjusted statistic would approximate

2df. Next, equations for the moment adjustment approaches are illustrated step

by step.

Obviously, the index X̄2
H equals to X̄2:

X̄2
H = X̄2 = N(p̄− ˆ̄π)′[diag(ˆ̄π)]−1(p̄− ˆ̄π). (5.5)

Let

C =
U1

dffixed
. (5.6)
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Thus the first-order moment adjusted statistic X̄2
C1 is

X̄2
C1 = C(−1) X̄2

=
X̄2 dffixed

U1

, (5.7)

where

dffixed = S − 1− 2. (5.8)

Similiar to the first-order moment adjustment, the df of X̄2
C2 is fixed to some

constant dffixed, and the two-moment adjusted statistics is:

X̄2
C2 = X̄2

√

dffixed
U2

+ dffixed −
√

dffixed(U1)2

U2

, (5.9)

where

dffixed = S − 1− 2. (5.10)

Theoritically, the constant dffixed can take on an arbitrary value. For the purpose

of comparison among the summed score likelihood based indices, all the proposed

statistics have the same df as X̄2
H in this study. Though all the elements in the

adjusted part can be calculated using the MMLEs of item parameters, the process

of calculation might be computationally demanding when the number of items is

large. Some commercial software for IRT (e.g., flexMIRT R©; Cai, 2013) provides

the Fisher information matrix F and model-implied summed score probabilities

ˆ̄π in the output file, but none of them produces the Jacobian matrix of summed

score likelihoods ∆̄. Direct numerical calculation of the Jacobian matrix can be

very computationally demanding. Take the 2-PL model as an example. It requires

the computation of 2× 2n first-order derivatives to obtain ∆̄. For a test with 12
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items, 8,192 first-order derivatives need to be computed. When the number of

items increases to 24, 33,554,432 first-order derivatives need to be computed. To

solve this problem, a modified Lord-Wingerskty algorithm (Lord & Wingersky,

1984) for calculating ∆̄ is developed in the next section.

5.2.1 Lord-Wingersky Algorithm for Calculating the Jacobian Matrix

As the calculation of the Jacobian matrix for the moment adjustment becomes

a computational problem when the number of items is large, a modified Lord-

Wingersky algorithm (Lord & Wingersky, 1984) for computing the Jacobian ma-

trix is proposed in this section.

The Lord-Wingersky algorithm (Lord & Wingersky, 1984) for summed score

probabilities in unidimensional and multidimensional IRT applications was thor-

oughly demonstrated in a recent publication (Cai, 2014), and the algorithm could

be adapted to calculate the Jacobian matrix using the chain rule. The logic of rea-

soning is as following. When Lord-Wingersky algorithm is applied, the summed

score likelihoods are accumulated by multiplying items’ tracelines one at a time.

When the nth item is added, the likelihood of a summed score s is a function of

summed score likelihoods from the previous steps and the current item’s tracelines.

The Jacobian matrix can be obtained by recursively multiplying the first-order

derivatives for each item with all the other items’ summed score probabilities, and

the latter is easily found via the Lord-Wingersky algorithm. An example of the

procedure for the case of dichotomously scored items is presented as follows.

Consider a test with n dichotomous items, calibrated by a 2-PL IRT model.

Recall that Ti(1|θ) is the ith item’s traceline for category 1 (Equation 2.1), with

Ti(0|θ) = 1 − Ti(1|θ) for category 0. Theoretically, there should be 2n response

patterns. The variable of response patterns, indicated by u = (u1, ..., un)
′. Under

the assumption of items’ conditional independence, the likelihood for u can be
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expressed as

L(u|θ) =
n
∏

i=1

Ti(ui|θ). (5.11)

For n dichotomous items, the summed score s ranges from 0 to n. S = n + 1

is the number of all possible summed scores. Recall that ‖u‖ =
∑n

i=1 ui is a

notational shorthand for the summed score associated with response pattern u

(see Equation 4.12). The likelihood for summed score s = 0, ..., n is defined as

L(s|θ) =
∑

‖u‖=s

L(u|θ) =
∑

s=‖u‖

n
∏

i=1

Ti(ui|θ). (5.12)

Clearly, the likelihood of a summed score s is the sum of all response pattern

likelihoods for ‖u‖ = s. In Lord-Wingersky algorithm, the summed score likeli-

hoods are built up recursively, one at a time (Lord & Wingersky, 1984; Cai, 2014).

Let Li(s|θ) indicate the likelihood for summed score s after item i has been added

into the computation. In the first step, two summed score likelihoods are com-

puted based on the tracelines of item 1: L1(0|θ) = T1(0|θ) and L1(1|θ) = T1(1|θ);
In the second step, we have three summed score likehoods based on the summed

score likelihoods from step 1 and tracelines of item 2:

L2(0|θ) =L1(0|θ)T2(0|θ),

L2(1|θ) =L1(1|θ)T2(0|θ) + L1(0|θ)T2(1|θ),

L2(2|θ) =L1(1|θ)T2(1|θ).

(5.13)

Suppose n items have been added in. The likelihoods for summed scores (0,
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..., n) would be:

Ln(0|θ) =Ln−1(0|θ)Tn(0|θ),

· · ·

Ln(s|θ) =Ln−1(s|θ)Tn(0|θ) + Ls−1(s− 1|θ)Tn(1|θ),

· · ·

Ln(n|θ) =Ln−1(n− 1|θ)Tn(1|θ).

(5.14)

To obtain the Jacobian matrix of summed scores with respective to item pa-

rameters, the Lord-Wingersky algorithm is adapted slightly. As previously men-

tioned, in the first step, there are only two summed score likelihoods based on

item 1: L1(0|θ) and L1(1|θ). Suppose I have a parameter γ1 for this item. The

first-order derivatives of summed score likelihoods with respect to γ1 are com-

puted:

∂L1(0|θ)
∂γ1

=
∂T1(0|θ)

∂γ1
,

∂L1(1|θ)
∂γ1

=
∂T1(1|θ)

∂γ1
.

(5.15)

Notice that
∂T1(0|θ)

∂γ
= −∂T1(1|θ)

∂γ
, (5.16)

where γ is a parameter in a 2PL model.

In the second step, one more item is added. The first-order derivatives of

summed score likelihoods with respect to γ1 and γ2 are computed based on the
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first step:

∂L2(0|θ)
∂γ1

=
∂L1(0|θ)

∂γ1
T2(0|θ),

∂L2(1|θ)
∂γ1

=
∂L1(0|θ)

∂γ1
T2(1|θ) +

∂L1(1|θ)
∂γ1

T2(0|θ),

∂L2(2|θ)
∂γ1

=
∂L1(1|θ)

∂γ1
T2(1|θ),

∂L2(0|θ)
∂γ2

=L1(0|θ)
∂T2(0|θ)

∂γ2
,

∂L2(1|θ)
∂γ2

=L1(0|θ)
∂T2(1|θ)

∂γ2
+ L1(1|θ)

∂T2(0|θ)
∂γ2

,

∂L2(2|θ)
∂γ2

=L1(1|θ)
∂T2(1|θ)

∂γ2
.

(5.17)

Then, the first-order derivatives of summed score likelihood functions with
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respect to the n item’s parameters (γ1, ..., γn) are:

∂L(0|θ)
∂γ1

=
∂Ln−1(0|θ)

∂γ1
Tn(0|θ),

· · ·
∂L(s|θ)
∂γ1

=
∂Ln−1(s− 1|θ)

∂γ1
Tn(1|θ) +

∂Ln−1(s|θ)
∂γ1

Tn(0|θ),

· · ·
∂L(n|θ)
∂γ1

=
∂Ln−1(1|θ)

∂γ1
Tn(1|θ),

· · ·

· · ·

· · ·
∂L(0|θ)
∂γs

=
∂Ln−1(0|θ)

∂γs
Tn(0|θ),

· · ·
∂L(s|θ)
∂γs

=
∂Ln−1(0|θ)

∂γs
Tn(1|θ) +

∂Ln−1(1|θ)
∂γs

Tn(0|θ),

· · ·
∂L(n|θ)
∂γs

=
∂Ln−1(1|θ)

∂γs
Tn(1|θ),

· · ·

· · ·

· · ·
∂L(0|θ)
∂γn

=Ln−1(0|θ)
∂Tn(0|θ)

∂γn
,

· · ·
∂L(s|θ)
∂γn

=Ln−1(s|θ)
∂Tn(0|θ)

∂γn
+ Ln−1(s− 1|θ)∂Tn(1|θ)

∂γn
,

· · ·
∂L(n|θ)
∂γn

=Ln−1(n− 1|θ)∂Tn(1|θ)
∂γn

.

(5.18)
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The resulting first-order derivatives of summed score likelihoods with respect to

n slope parameters and n intercept parameters is collected into a S×2n Jacobian

matrix ∆̄. Then the first and second moments of X̄2 for the adjustments of

statistics follow.

5.2.2 An Illustrative Example

The process of modified Lord-Wingersky algorithm for calculating the Jacobian

matrix is illustrated with an example. Consider a simple test with three dichoto-

mous items. The traceline for each item is defined using a 2-PL IRT model:

Ti(1|θ) =
1

1 + exp[−(ci + aiθ)]
. (5.19)

The values of slope parameters are a = (1.0, 0.8, 1.2), and the values of inter-

cept parameters are c = (−0.2, 0.6,−1.0). Recall that the marginal probability

for summed scores with known g(θ) (see Equation 4.2) is

p(s) =

∫

L(s|θ)g(θ)dθ. (5.20)

The integrals in Equation 5.20 must be approximated by quadrature. In ad-

dition, a good way to demonstrate the algorithm is to show the calculations over

a set of quadrature points (Cai, 2014). We approximate the marginal probability

using Q quadrature points and quadrature weights:

p(s) =

∫

L (s|θ)g(θ)dθ =

Q
∑

q=1

L (s|Xq)W (Xq). (5.21)

where Xq is a quadrature node and W (Xq) is the corresponding quadrature

weights. To obtain W (Xq), a set of normalized ordinates of the prior density

are applied (Cai, 2014), i.e., W (Xq) = g(Xq)/
∑Q

q=1 g(Xq).
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Table 5.1 shows the recursive computations with numbers for item 3. This

illustration is similar to Thissen and Wainer’s (2001) Table 3.8, as well as Cai’s

(2014) Table 2. It shows the values of summed score likelihoods, 1st-order deriva-

tives of tracelines, and the 1st-order derivatives of summed score likelihoods at

five equally spaced quadrature points: -2, -1, 0, 1, and 2.

Table 5.1: Calculating 1st-order derivatives of summed score likelihoods with re-
spect to item 3’s slope parameter at five rectangular quadrature points

Quadrature points of θ -2 -1 0 1 2

Summed score likelihoods for all the other items

L2(0|θ) .658 .423 .195 .061 .014

L2(1|θ) .315 .473 .515 .385 .213

L2(2|θ) .027 .104 .291 .553 .773

Derivatives of tracelines with respect to item 3’s a parameter

∂Tn(1|θ)
∂a3

-.063 -.090 .000 .248 .317

∂Tn(0|θ)
∂a3

.063 .090 .000 -.248 -.317

First-order derivatives of summed score likelihoods

∂L3(0|θ)
∂a3

= L2(0|θ)∂T3(0|θ)
∂a3

.041 .038 .000 -.015 -.004

∂L3(1|θ)
∂a3

= L2(1|θ)∂T3(0|θ)
∂a3

+ L2(0|θ)∂T3(1|θ)
∂a3

-.021 .005 .000 -.080 -.063

∂L3(2|θ)
∂a3

= L2(2|θ)∂T3(0|θ)
∂a3

+ L2(1|θ)∂T3(1|θ)
∂a3

-.018 -.033 .000 -.042 -.177

∂L3(3|θ)
∂a3

= L2(2|θ)∂T3(1|θ)
∂a3

-.002 -.009 .000 .137 .245

Note. The first block presents the summed score likelihoods after the 1st and 2nd items are added
in. The second block presents the 1st-order derivatives of item 3’s tracelines with respect to its
slope parameter. The third block presents the 1st-order derivatives of summed score likelihoods
with respect to item 3’s slope parameter.

Table 5.2 presents the 1st-order derivatives of the marginal probabilities of the
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summed scores with quardrature weights. Notice that, more quadrature points

should be used for better precision in practice.
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Table 5.2: Calculating 1st-order derivatives of marginal summed score likelihoods
with respect to item 3’s slope parameter with quadrature weights

Quadrature points of θ

-2 -1 0 1 2

W (θ) .054 .244 .403 .244 .054

First-order derivatives of summed score likelihoods

∂L3(0|θ)
∂a3

.041 .038 .000 -.015 -.004

∂L3(1|θ)
∂a3

-.021 .005 .000 -.080 -.063

∂L3(2|θ)
∂a3

-.018 -.033 .000 -.042 -.177

∂L3(3|θ)
∂a3

-.002 -.009 .000 .137 .245

Weighted derivatives Jacobian

∂L3(0|θ)
∂a3

∗W (θ) .002 .009 .000 -.004 .000 .008

∂L3(1|θ)
∂a3

∗W (θ) -.001 .001 .000 -.020 -.003 -.023

∂L3(2|θ)
∂a3

∗W (θ) -.001 -.008 .000 -.010 -.010 -.029

∂L3(3|θ)
∂a3

∗W (θ) .000 -.002 .000 .033 .013 .044

Note. W (θ) indicates quadrature weights at each θ level. “Weighted derivatives” are found
by multiplying (point to point) the first-order derivatives of summed score likelihoods with
W (θ). The last column “Jacobian” indicates the 1st-order derivatives of marginal summed
score likelihoods with respect to item 3’s slope parameter. It is the summation of the weighted
derivatives over all quadrature points for each summed score likelihood.
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CHAPTER 6

Simultion Study Design

The primary goal of the simulation study is to examine the performance of summed

score likelihood based indices X̄2
H , X̄2

C1 and X̄2
C2 for detecting latent variable

nonnormality. Recall that the statistic X̄2
H has the same formula as X̄2 (see

Equation 5.5), with fixed degrees of freedom. X̄2
C1 and X̄2

C2 are adjusted indices

based on the first-order and second-order moments of X̄2.

This chapter illustrates the simulation conditions, process of data generation,

and evaluative statistics of interest for the simulation study. There are three ob-

jectives in the simulation study. First, I will check whether the tail areas of the

statistics X̄2
H , X̄

2
C1 and X̄2

C2 can be well approximated by their purported chi-

squared distributions under null conditions, where the latent variables are gener-

ated from a normal distribution. Second, I will examine the statistical power of

X̄2
H , X̄

2
C1 and X̄2

C2 against latent variable nonnormality in alternative conditions,

comparing with overall limited-information goodness-of-fit statistics, specifically

Maydeu-Olivares and Joe’s (2005) M2. Finally, I am interested in the influence

of item parameters’ dispersion on the difference among X̄2
C1, X̄

2
C2 and X̄2

H with

respect to their performance.

6.1 Simulation Conditions

Simulations were undertaken to evaluate the summed score likelihood based in-

dices X̄2
H , X̄

2
C1 and X̄2

C2, comparing with the limited-information overall fit statis-
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tics M2. There are 96 conditions in total (2× 2× 4× 3× 2), with 500 replications

in each condition. Studied variables are: the item types (2-PL or graded response

with 4 categories), the number of items (12 or 24), the value of item parameters

(e.g., the extent to which generating item slope/threshold parameters are fixed

to be equal across items or dispersed), the sample size (500, 1000, or 1500), and

last but not the least, the distribution of generating θ (normal or non-normal), as

shown in Table 6.1.

Table 6.1: Manipulated factors and conditions for simulation study

Levels Conditions

Item types (2) 2-PL, Graded response with 4 categories

Number of items (2) 12, 24

Value of item parameters (4) Equal a and Equal b

Random a and Random b

Random a and Dispersed b

Dispersed a and Dispersed b

Sample size (3) 500, 1000, 1500

Distribution of θ (2) Normally distributed θ

Nonnormally distributed θ

In condition “Value of item parameters”, “Equal a” means all the slope (a)

parameters are fixed to 1; “Equal b” means all the threshold (b) parameters are

fixed to 0; “Random a” means all the a parameters are generated randomly from

a log-normal distribution (M=0.5, SD=0.2); “Random b” means all the b param-

eters are generated randomly from a standard normal distribution; “Dispersed a”

means b parameters are equally spaced from 1 to 3. “Dispersed b” means b param-

eters are equally spaced from -2 to 2. In condition “Distribution of θ”, “Normally

distributed θ” indicates that the latent variable θ was generated from a standard

normal distribution; “Nonnormally distributed θ” indicates that a nonnormal θ
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(a) Normal (b) Non-normal

Figure 6.1: Density plots for illustrating normal vs non-normal latent variable
distribution

was generated from a distribution obtained from a combination of two normal

distribution with different means and variances (group1: M=1, SD=0.4; group2:

M=0, SD=1; Ngroup1 : Ngroup2 = 1 : 4). Figure 6.1 shows an example of normal

vs non-normal generating latent variable distributions in the simulation study.

6.2 Data Generation

Item parameters were generated with properties mimicking item parameters found

in typical educational assessments, and then manipulated to meet the require-

ments of research design. Table 6.2 presents the generated item parameters for

2-PL model with 12 items. For item slope parameters, there are three groups of

values: “equal”, “random” and “dispersed”. The value of “equal” slope param-

eters was chosen to be 1. In the group of “dispersed”, the generated item slope

parameters were equally spaced from 1 to 3, which is an unrealistic condition. We

only use it to illustrate a high level of item parameter dispersion in this study

and does not represent any real data. Values in the group of “random” were ran-

domly drawn from a log-normal distribution (M = 0.5, SD = 0.2). Item threshold
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parameters also have three group of values. The value of “equal” threshold pa-

rameters was chosen to be 0. Values in the group of “random” were drawn from

a standard normal distribution (M = 0, SD = 1). In the group of “dispersed”,

the generated item threshold parameters were equally spaced from -2 to 2. after

completing the generation of item slopes and thresholds, combining one group of

item slope parameter with one group of item threshold parameter in Table 6.2

formed a set of generating item parameters. As mentioned in Table 6.1, there

would be four sets of generating item parameters for 2-PL model with 12 items:

1) Both slope and threshold parameters equal; 2) Both slope and threshold pa-

rameters random; 3) The slope parameters random, but the threshold parameters

dispersed; 4) Both slope and threshold parameters dispersed.

Table 6.3 presents the generated item parameters for graded model with 12

items. Item slope parameters and the first threshold paramters took the same

value as 2-PL model. The second threshold parameters were generated by adding

0.5 to their first threshold parameters correspondingly, and the third threshold

parameters were generated by adding 0.5 to the second threshold parameters. For

both 2-PL model and graded model with 24 items, the random item parameters

were generated with the same distribution as in Table 6.2 and 6.3 and then ma-

nipulated in the same way. More details can be found in the Appendix: Table

A.1 and Table A.2.

After the item parameters were obtained, response pattern data were simulated

with randomly generated θ drawn from normal or nonnormal distributions. For

each simulation condition, the true item parameters remained unchanged, and 500

sets of response data were generated.
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6.3 Evaluative Statistics of Interest

The means, variances, minimum & maximum values of X̄2
H , X̄

2
C1, and X̄2

C2 were

calculated for each simulation condition. To compare the performance of these

indices, empirical rejection rates were computed in the null conditions at three

levels: 0.01, 0.05, and 0.1. The rejection rates are expected to be close to their α-

levels. The confidence intervals for all the rejection rates were calculated as well.

Moreover, the Kolmogorov-Smirnov test (KS test) was carried out to compare the

distributions of the statistics with their purported chi-squared distributions. In

the alternative conditions, statistical power against model misspecification were

also evaluated at three α-levels: 0.01, 0.05, and 0.1. Additionally, a fourth model

fit index, the limited-information overall goodness-of-fit statisticM2 was employed

as a comparison in this study.
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Table 6.2: Generating item parameters for two-parameter IRT models, n=12

a b

Item Equal Random Dispersed Equal Random Dispersed

1 1 1.85 1.00 0.00 -0.28 -2.00

2 1 1.87 1.18 0.00 -0.29 -1.64

3 1 1.80 1.36 0.00 1.05 -1.27

4 1 1.72 1.55 0.00 -0.52 -0.91

5 1 1.39 1.73 0.00 -1.32 -0.55

6 1 1.24 1.91 0.00 0.29 -0.18

7 1 1.19 2.09 0.00 0.62 0.18

8 1 1.66 2.27 0.00 0.50 0.55

9 1 1.71 2.45 0.00 0.55 0.91

10 1 2.11 2.64 0.00 0.81 1.27

11 1 1.68 2.82 0.00 1.49 1.64

12 1 1.98 3.00 0.00 0.52 2.00

Note. In this table, all possible generating item slope parameters (a) and item threshold pa-
rameters (b) for a 12-item multiple-choice test with 2-PL item type are presented. Both item
slope and threshold parameters could be equal, random or dispersed across items. The range of
a parameters is from 1 to 3, and the values are equally spaced in this range in the ”dispersed
parameter” condition. The range of b parameters is from -2 to 2. Their values are also equally
spaced in this range in the last condition. When both item slope and threshold parameters are
set to equal across items, a parameters of all the twelve items equal to 1 and b parameters all
equal to 0.

42



T
ab

le
6.
3:

G
en
er
at
in
g
it
em

p
ar
am

et
er
s
fo
r
gr
ad

ed
-r
es
p
on

se
IR
T

m
o
d
el
s,
n
=
12

a
b
1

b
2

b
3

It
em

E
q
u
al

R
an

d
om

D
is
p
er
se
d

E
q
u
al

R
an

d
om

D
is
p
er
se
d

E
q
u
al

R
an

d
om

D
is
p
er
se
d

E
q
u
al

R
an

d
om

D
is
p
er
se
d

1
1.
00

1.
85

1.
00

0.
00

-0
.2
8

-2
.0
0

0.
50

0.
22

-1
.5
0

1.
00

0.
72

-1
.0
0

2
1.
00

1.
87

1.
18

0.
00

-0
.2
9

-1
.6
4

0.
50

0.
21

-1
.1
4

1.
00

0.
71

-0
.6
4

3
1.
00

1.
80

1.
36

0.
00

1.
05

-1
.2
7

0.
50

1.
55

-0
.7
7

1.
00

2.
05

-0
.2
7

4
1.
00

1.
72

1.
55

0.
00

-0
.5
2

-0
.9
1

0.
50

-0
.0
2

-0
.4
1

1.
00

0.
48

0.
09

5
1.
00

1.
39

1.
73

0.
00

-1
.3
2

-0
.5
5

0.
50

-0
.8
2

-0
.0
5

1.
00

-0
.3
2

0.
45

6
1.
00

1.
24

1.
91

0.
00

0.
29

-0
.1
8

0.
50

0.
79

0.
32

1.
00

1.
29

0.
82

7
1.
00

1.
19

2.
09

0.
00

0.
62

0.
18

0.
50

1.
12

0.
68

1.
00

1.
62

1.
18

8
1.
00

1.
66

2.
27

0.
00

0.
50

0.
55

0.
50

1.
00

1.
05

1.
00

1.
50

1.
55

9
1.
00

1.
71

2.
45

0.
00

0.
55

0.
91

0.
50

1.
05

1.
41

1.
00

1.
55

1.
91

10
1.
00

2.
11

2.
64

0.
00

0.
81

1.
27

0.
50

1.
31

1.
77

1.
00

1.
81

2.
27

11
1.
00

1.
68

2.
82

0.
00

1.
49

1.
64

0.
50

1.
99

2.
14

1.
00

2.
49

2.
64

12
1.
00

1.
98

3.
00

0.
00

0.
52

2.
00

0.
50

1.
02

2.
50

1.
00

1.
52

3.
00

N
o
te
.
in

th
is

ta
b
le
,
al
l
p
os
si
b
le

ge
n
er
at
in
g
it
em

sl
op

e
p
ar
am

et
er
s
(a
)
an

d
it
em

th
re
sh
ol
d
p
ar
am

et
er
s
(b
1
,
b
2
,
b
3
)
fo
r
a
1
2
-i
te
m

m
u
lt
ip
le
-c
h
o
ic
e

te
st

w
it
h
gr
ad

ed
re
sp
on

se
it
em

ty
p
e
ar
e
p
re
se
n
te
d
.
N
ot
ic
e
th
at

th
e
sl
op

e
p
ar
am

et
er

an
d
th
e
fi
rs
t
th
re
sh
o
ld

p
a
ra
m
et
er

fo
r
ea
ch

it
em

a
re

th
e
sa
m
e

as
th
os
e
fo
r
2-
P
L
IR

T
m
o
d
el
s.

H
ow

ev
er
,
tw

o
m
or
e
co
lu
m
n
s
of

th
re
sh
ol
d
p
ar
am

et
er
s
in
d
ic
at
es

th
at

it
em

d
iffi

cu
lt
ie
s
a
re

m
o
n
o
to
n
ic
a
ll
y
in
cr
ea
si
n
g

fr
om

ca
te
go
ry

1
to

ca
te
go
ry

4
w
it
h
in

an
it
em

.

43



CHAPTER 7

Simulation Study Results

This chapter presents results from the simulation study. Findings include the

means, variances, minimum & maximum values of summed score likelihood based

statistics X̄2
H , X̄

2
C1 and X̄2

C2, as well as those values of the overall goodness-of-fit

statistic M2 in various simulation conditions. In the null conditions, where the

latent variable follows a standard normal distribution, emperical rejection rates at

three α levels and the Kolmogorov-Smirnov test (KS test) p-values are reported

for all the statistics. In the alternative conditions, where the latent variable is

generated from a non-normal distribution, the statistical power of the proposed

statistics are reported and compared with overall fit statistic M2. In addition,

the influence of number of items, item type, sample size, and dispersion of item

parameters on the performance of these statistics are examined.

7.1 Simulation Results for 2-PL IRT Models

7.1.1 Type I Error Rates

In the null condition, the generating latent variable follows a normal distribution,

and simulated item response patterns were calibrated with a standard unidimen-

sional 2-PL IRT model. Since the fitted model was the same as the generating

model, the distribution of the proposed statistics X̄2
H , X̄

2
C1 and X̄2

C2 should be well

approximated by their purported chi-squared distribution under null hypothesis.

That is, the means of the statistics should be close to df , the variances should be
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close to 2df , and empirical rejection rates should approximate their corresponding

α levels respectively.

Table 7.1, Table 7.2, Table 7.3 and Table 7.4 present simulation study results

under the null hypothesis for 2-PL model. The number of items is 12, and sample

size has three levels, N = 500, 1000, 1500. The result tables for larger number

of items (n = 24) could be found in the Appendix (see Table A.3, Table A.4,

Table A.5, and Table A.6). From Table 7.1 to Table 7.4, the extent of item

parameter dispersion is increasing: Table 7.1 for the condition of “Equal a &

Equal b”; Table 7.2 for the condition of “Random a & Random b”; Table 7.3 for the

condition of “Random a & Dispersed b”; Table 7.4 for the condition of “Dispersed

a & Dispersed b”. As mentioned in Chapter 6, the values of generating item

parameters could exert an influence on the adjustment of summed score likelihood

based statistics. Therefore, I present these four tables side by side, and further

discussion will be carried out later. These tables report the means, variances,

minimum & maximum values of the statisics, and empirical rejection rates at three

α levels (95% confidence inverval): α = 0.01(0.004, 0.016), α = 0.05 (0.036, 0.064),

α = 0.1(0.081, 0.119), as well as the p values of KS test.
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Results in Table 7.1 show that when the generating item parameters are equal

across items, all the proposed indices work well under the null hypothesis. As

suggested earlier, the means of these indices should be close to the expected value

of their purported chi-squared distribution, specifically, the degrees of freedom,

and the variances of these indices should approximate the expected variance of a

chi-squared distribution, that is, twice the degrees of freedom. Data in Table 7.1

confirm this speculation: Most of the means are close to their corresponding df ,

and the variances are approximating 2df . Empirical rejection rates are close to

their α levels, too. Take the empirical rejection rates at the level α = 0.05 as an

example. All rejection rates fall into its confidence interval (0.036, 0.064). When

the sample size is small, the rejection rates for summed score likelihood based

statistics are slightly smaller than 0.05, and some KS test p-values are smaller

than 0.05. But their performance improves as the sample size increases. Further-

more, Q-Q plots in Figure 7.1 show that under the null conditions when the item

parameters are equal and sample size is small (N=500), the distribution of statis-

tics X̄2
H , X̄

2
C1, and X̄2

C2 can be well approximated by a chi-squared distribution

with a fixed df .

From Table 7.2, we can see that when the generating item parameters are

random, the empirical rejection rates of X̄2
H are lower than their corresponding

α levels, indicating that the tail area of the distribution of X̄2
H cannot be well

approximated by a chi-squared distribution with df = 10. In addition, KS test

p-values for this index are smaller than 0.001. Results in Table 7.3 show that when

the item parameters become more dispersed, the empirical rejection rates for X̄2
H

are even lower. As reflected in both Table 7.2 and Table 7.3, the moment adjusted

statistics X̄2
C1 and X̄2

C2 perform well in these two conditions, with reasonable

empirical rejection rates and KS test p-values.

Table 7.4 show that in the condition of “Dispersed a & Dispersed b”, X̄2
C2

performs better than both X̄2
H and X̄2

C1. Specifically, the empirical rejection rates
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(a) X̄2
H (b) X̄2

C1

(c) X̄2
C2 (d) M̄2

Figure 7.1: Q-Q plots for a null condition (normal θ, n=12, N=500, Equal a & b
parameters)

of X̄2
C2 reach its corresponding α levels. The first-moment adjusted index X̄2

C1

seems to be a little more sensitive than it should be in this condition, but it still

improves upon X̄2
H . Furthermore, Q-Q plots in Figure 7.2 show that under the

null condition where the item parameters are widely dispersed, the distributions

of statistics X̄2
C1 and X̄2

C2 are better approximated by a chi-squared distribution

than that of X̄2
H .

Limited-information overall fit statistic M2 appears to be well calibrated in

the null conditions, with relatively stable empirical rejection rates.
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(a) X̄2
H (b) X̄2

C1

(c) X̄2
C2 (d) M̄2

Figure 7.2: Q-Q plots for a null condition (normal θ, n=12, N=500, dispersed a
& b parameters)
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7.1.2 Statistical Power under Alternative Hypothesis: Non-normal

Latent Variable Distribution

Since the proposed statistics’ distribution can be well approximated by a chi-

squared distribution with a fixed df in the null conditions, the performance of

these statistics in the alternative conditions could be further examined. In the

alternative conditions, item response data were generated with a non-normally

distributed latent variable, but calibrated under the assumption that the latent

variable follows a normal distribution. Since the model is misspecified, it is ex-

pected that the proposed statistics will not follow a central chi-squared distribu-

tion in these conditions. Statistical power indicates to what extent the proposed

statistical indices are sensitive to model misspecification.

Table 7.5, Table 7.6, Table 7.7, and Table 7.8 present simulation study results

under the alternative hypothesis for 2-PL model. Similiar to the null condition,

the number of items is 12, and sample size has three levels, N = 500, 1000, 1500.

From Table 7.5 to Table 7.8, the level of item parameter dispersion is inceasing.

These tables together present the indices’ statistical power against latent variable

nonnormality across different sample sizes and levels of item parameter dispersion.

Results for a longer test (n = 24) can be found in the Appendix (see Table A.7,

Table A.8, Table A.9, and Table A.10). It is worth mentioning that the number

of items exerts a non-ignorable influence on these indices’ statistical power. The

larger the number of items, the more powerful the statistics are against non-normal

latent variable distribution.
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Results in Table 7.5 show that in the condition of “Equal a & Equal b”,

summed score likelihood based statistics, X̄2
H , X̄

2
C1 and X̄2

C2, perform identically

well. Comparing with the overall model-fit statistic M2, they are more sensitive to

the nonnormality of θ distribution. With larger sample size, the statistical power

of these indices is increasing. Similiar to the results in the null condition, there

is not much difference among X̄2
H , X̄

2
C1 and X̄2

C2 when item parameters are equal

across items.

Table 7.6 presents results in the condition of “Random a & Random b”. All

the summed score likelihood based statistics still have larger power than the over-

all model-fit index M2. But the statistical power of the unadjusted index X̄2
H

becomes consistently lower than the moment adjusted statistics X̄2
C1 and X̄2

C2.

The difference between the unadjusted and adjusted statistics increases in Table

7.7, where b parameters are highly dispersed.

Table 7.8 demonstrates that when the generating item parameters are most

widely dispersed (“Dispersed a & Dispersed b), the X̄2
C1 and X̄2

C2 indices have

larger power than the X̄2
H statistic to detect latent variable nonnormality. Take

the first block (N = 500) for example. X̄2
H has almost no power against latent

variable nonnormality at all α levels. On the contrary, the statistical power of

X̄2
C1 is 0.036 at level α = 0.1, 0.142 at α = 0.05, and 0.246 at α = 0.1, indicating

a moderate degree of sensitivity to detection of model misspecification. In this

condition, the power of X̄2
C1 and X̄2

C2 are very similiar. X̄2
C1 enjoys a slightly

higher power than X̄2
C2. One explanation is that X̄2

C1 is generally more sensitive

than X̄2
C2, in both null and alternative conditions.
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7.2 Simulation Results for Graded Response IRT model

7.2.1 Type I Error Rates

Four-category polytomous data were generated for tests with 12 or 24 items. The

sample size has three levels: 500, 1000, and 1500. As with 2-PL model, the null

hypothesis is that the unidimensional latent variable follows a standard normal

distribution. Graded response data were fitted using the same IRT model as data

generation. Thus, the statistics X̄2
H , X̄

2
C1 and X̄2

C2 should follow their purported

chi-squared distribution under the null hypothesis.

Table 7.9, Table 7.10, Table 7.11, and Table 7.12 present simulation results

in the null conditions for the graded model. The number of items is 12. Table

7.9 show that when the item parameters are equal, all the proposed statistics,

as well as the overall model-fit index M2, perform equivalently well. Most of the

empirical rejection rates fall into their 95% confidence intervals. There is one

exception: when the sample size is relatively large (N = 1500), M2 seems to be

slightly more sensitive than it should be. At the same time, the expected values

of the statistics X̄2
H , X̄

2
C1 and X̄2

C2 are close to each other.

Table 7.12 presents simulation results when the item parameters are widely dis-

persed. In the condition where the sample size is small, KS test p-values indicate

that X̄2
C1 and X̄2

C2 cannot be well approximated by their purported chi-squared

distribution. But when the sample size increases to 1500, the performance of X̄2
C1

and X̄2
C2 improves, while X̄2

H has a KS test p-value that is smaller than 0.05.

Though, all of these empirical rejection rates fall into its confidence interval at

α = 0.05(0.036, 0.064), indicating that the tail area of the statistics’ sampling

distribution could be well approximated by a chi-squared distribution and these

statistics could be used for detecting IRT model misfit.

Results for 24-item graded response model are presented in the Appendix (see

Table A.11, Table A.12, Table A.13, and Table A.14). When the number of items
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is large and the sample size is small, the empirical rejection rates of the proposed

statistics tend to be higher than their α levels, especially when the item parameters

are dispersed. However, when the sample size increases, the rejection rates would

approach their corresponding α levels.
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7.2.2 Statistical Power under Alternative Hypothesis: Non-normal

Latent Variable Distribution

Table 7.13, Table 7.14, Table 7.15 and Table 7.16 present simulation results for

the graded model in alternative conditions. The statistical power of the proposed

statistics were calculated for 12-item tests with 4-category polytomous data. Table

7.13 shows results for the condition where all the item parameters are equal across

items. Table 7.16 contains results for the condition where both item slope and

threshold parameters are widely dispersed. Table 7.14 and Table 7.15 present

results for conditions with moderately dispersed item parameters.

Results in Table 7.13 show that when latent variable distribution is misspeci-

fied for the graded models, the proposed statistics can detect this kind of model

misspecification, and their statistical power improves when the sample size in-

creases. For example, when the sample size is 500, the means of the statistics

X̄2
H , X̄

2
C1, and X̄2

C2 are respectively 37.59, 37.78 and 37.76, slightly greater than

the degrees of freedom (df = 34). Their statistical power at α = 0.05 are 0.11,

0.116, and 0.114 respectively. When the sample size is 1500, the statistical power

of the three indices increase to 0.404, 0.412, and 0.408 respectively. Obviously,

the power of the unadjusted and moment adjusted statistics are very close to each

other.

In the condition where item parameters are widely dispersed, as shown in Table

7.16, even though all the summed score likelihood based statistics are sensitive

to latent variable nonnormality, the moment adjusted statistics X̄2
C1 and X̄2

C2 has

higher statistical power than the unadjusted indice X̄2
H . Likewise, all the three

indexes have more statistical power against model misfit with larger sample size.

In this condition, M2 always has much lower statistical power than the other three

indices.

Another finding is that for the graded model, even when the item parameters
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are dispersed, the first-moment adjusted indice X̄2
C1 performs as well as the two-

moment adjusted indice X̄2
C2, and has a slightly larger power than X̄2

C2 in most

conditions. More results for the graded model can be found in the Appendix (see

Table A.14, Table A.15, Table A.16, and Table A.17)
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7.3 Discussion

With simulated data, the properties of the proposed moment adjusted statistics

X̄2
C1 and X̄2

C2 for detecting latent variable nonnormality were examined across

different numbers of items, sample sizes, item types and values of generating item

parameters. Meanwhile, their performance were compared to unadjusted summed

score likelihood based statistic X̄2
H (Li & Cai, 2012) and overall GOF statistic M2

(Maydeu-Olivares & Joe, 2005). This chapter presents all the simulation study

results.

In the null conditions, when the fitted models and data generating models

are the same, the expected values of statistics X̄2
C1 and X̄2

C2 are mostly close

to the value of df, indicating that the distribution of moment-adjusted statistics

could be well approximated by a chi-squared distribution. Both moment adjusted

indices X̄2
C1 and X̄2

C2 perform better than the unadjusted statistic X̄2
H , especially

when the values of generating item parameters are widely dispersed. It’s worth

mentioning that, values of item parameters are very likely to spread to some extent

between completely equality and extreme dispersion in a real test. Thus, the use

of moment adjusted statistics is recommended.

In the alternative conditions, when the generating latent variable is nonnor-

mally distributed, the statistics X̄2
C1, X̄

2
C2 and X̄2

H turned out to be sensitive to

the violation of assumption of latent variable normality, while the overall limited-

information GOF statistic M2 has almost no power against the nonnormal al-

ternative. This could be explained by the observation that M2 is based only on

first and second order margins of the underlying contingency table, but to detect

latent variable distributional misfit, information from higher order margins and

interactions might be necessary. Additionally, when the values of generating item

parameters are equal across items, X̄2
C1, X̄

2
C2 and X̄2

H perform equivalently well.

Otherwise, when the item parameters are dispersed, the adjusted indices X̄2
C1 and
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X̄2
C2 enjoy greater power than the unadjusted index X̄2

H .

7.3.1 Do the Moment Adjusted Statistics Improve upon the Unad-

justed One?

Summed score likelihood based statistic X̄2
H (Li & Cai, 2012) proved to be sen-

sitive to latent variable nonnormality for IRT models. One challenge of applying

this statistic is that its distribution is not asymptotically chi-squared. In some

scenarios, adjustments to the statistic or degrees of freedom might increase its

statistical power. By matching its first one or two moments with those of a ref-

erenced chi-squared distribution, moment adjusted statistics X̄2
C1 and X̄2

C2 were

expected to perform better than X̄2
H .

In most of the conditions I tested, when compared with X̄2
H , simulation study

results show that X̄2
C1 and X̄2

C2 can be better approximated by a chi-squared dis-

tribution in the null conditions, and enjoy increased statistical power in the alter-

native conditions. Furthermore, the dispersion of generating slope and threshold

parameters exerts a non-ignorable influence on the comparative performance of

the statistics. When the generating item parameters are equal, X̄2
H , X̄

2
C1 and

X̄2
C2 perform equally well. However, in the case of high dispersion of generating

item parameters, X̄2
C1 and X̄2

C2 would improve upon X̄2
H . In order to illustrate

this finding, Table 7.17 and Table 7.18 present the empirical rejection rates and

statistical power of X̄2
C1, X̄

2
C2 and X̄2

H at three α levels across different values of

generating item parameters: “Equal a & b”, “Random a & b”, and “Dispersed a

& b”.

According to Table 7.17, the empirical rejection rates and statistical power of

X̄2
H , X̄

2
C1 and X̄2

C2 are very close in the condition of “Equal a & b”. But when

the generating item parameters are unequal, moment adjusted statistics X̄2
C1 and

X̄2
C2 improve upon unadjusted statistic X̄2

H in general. For example, the statistical
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power of X̄2
C1 and X̄2

C2 are higher than that of X̄2
H , even when both slope and

threshold parameters were randomly generated. This difference increases when

item parameters become more dispersed. However, this is not the case for the

graded model (see Table 7.18). The statistical power of X̄2
C1 and X̄2

C2 are greater

than that of X̄2
H only when item parameters are widely dispersed.

The reason why the values of item parameters exert an influence on the perfor-

mance of the test statistics is demonstrated as following. As illustrated in Chapter

5, the df of X̄2
H is equal to S − 1 − 2. “−2” is a heuristic value to adjust the

degrees of freedom due to item parameter estimation. When the values of a and

b parameters are equal, the expected values of X̄2
H are very close to its heuristic

df. But when the values of item parameters are widely dispersed, the expected

values of X̄2
H are often smaller than the heuristic df. With moment adjustments,

the expected values of X̄2
C1 and X̄2

C2 better approach their purported degrees of

freedom. Therefore, the performance of X̄2
C1 and X̄2

C2 improve upon X̄2
H when

generating item parameters are dispersed.
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7.3.2 The Influence of Other Factors on the Performance of Statistics

In addition to item parameter dispersion, other properties of tests also exert an

influence on the performance of the proposed statistics. Results from simulation

studies for both 2-PL and the graded model show that the empirical rejection

rates in the null conditions and statistical power in the alternative conditions are

highly influenced by the sample size and number of items.

In the null conditions, the empirical rejection rates approach their α levels

with increased sample size increases. In the alternative conditions, the statistical

power of the proposed statistics grows when the sample size is augmented. For

instance, as shown in section 7.1.2, when the sample size is small (N = 500), X̄2
H

has a very low power against model misfit for 2-PL models, and it has a slightly

larger power when the sample size becomes 1000. However, when the sample

size changes from 1000 to 1500, X̄2
H becomes certainly sensitive to latent variable

nonnormality. Meanwhile, the moment adjusted statistics X̄2
C1 and X̄2

C2 always

have more statistical power than X̄2
H across different sample sizes.

It is also evident that the statistical power of the proposed indices improves

when the number of items increases. As previously discussed, when the number

of items is small (n = 12), the unadjusted statistic X̄2
H has very low power against

latent variable nonnormality. But when the number of items increases to 24, the

statistical power of X̄2
H becomes moderately large. The adjusted statistics X̄2

C1

and X̄2
C2 are in general more sensitive than X̄2

H , but the difference between the

adjusted and unadjusted indexes decreases with a growing number of items.

7.3.3 Summary

In sum, simulation study results suggest the following: 1) Compared with X̄2
H

(Li & Cai, 2012), the moment adjusted statistics X̄2
C1 and X̄2

C2 can be better ap-

proximated by a chi-squared distribution in the null conditions and enjoy higher
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statistical power in the alternative conditions, especially in the situation when

the generating item parameters are dispersed; 2) Compared with the overall GOF

statistic M2, all of the summed score likelihood based statistics are more sensitive

to the violation of the assumption of normal latent variable distribution in alter-

native conditions. Therefore, the proposed statistics X̄2
C1 and X̄2

C2 are prefered

for detecting latent variable nonnormality. The two-moment adjusted statistic

X̄2
C2 and the first-moment adjusted statistic X̄2

C1 perform equally well in most

conditions, and X̄2
C1 seems to have a slightly larger power.

Results from simulation studies also show that the performance of the proposed

statistics could be influenced by several factors. First of all, sample sizes and

numbers of items are highly influential. For both 2-PL and graded models, when

the sample size increases, the empirical rejection rates of X̄2
C1 and X̄2

C2 approach

their corresponding α levels, and their statistical power against latent variable

nonnormality become larger in alternative conditions. Likewise, the statistical

power of X̄2
H , X̄

2
C1 and X̄2

C2 grow with increased number of items.

Nonetheless, the proposed statistics should be used with caution in some situ-

ations, especially when the number of items is large and the sample size is small.

Results for graded models show that in the condition of n = 24 and N = 500,

all of the summed score likelihood statistics have empirical rejection rates larger

than their corresponding α levels, indicating that the tail area of their distribution

cannot be well approximated by a chi-squared distribution.

Another important finding is the influence of values of generating item param-

eters on the comparison between unadjusted and adjusted statistics. It is evident

that the more dispersed the generating item parameters are, the more effective the

proposed moment adjustment approaches turn out to be. For 2-PL models, when

item slope and threshold parameters are both randomly generated, the statistical

power of X̄2
C1 and X̄2

C2 are mostly greater than X̄2
H . However, it is worth noting

that this study only considers four levels of item parameter dispersion, and the
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differences between two adjacent levels are not equivalent.
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Table 7.17: Comparison of X̄2
C1, X̄

2
C2 and X̄2

H across values of generating item
parameters for 2-PL models (n = 12, N = 500)

Levels
Equal a & b Random a & b Dispersed a & b

X̄2
H X̄2

C1 X̄2
C2 X̄2

H X̄2
C1 X̄2

C2 X̄2
H X̄2

C1 X̄2
C2

Rejection
rates

α = .01 .008 .010 .010 .012 .018 .018 .004 .008 .008

α = .05 .038 .040 .038 .042 .056 .052 .032 .056 .050

α = .10 .104 .106 .106 .076 .112 .106 .054 .102 .090

Power

α = .01 .044 .052 .050 .046 .082 .076 .010 .036 .028

α = .05 .160 .164 .162 .170 .234 .226 .064 .142 .132

α = .10 .282 .294 .284 .290 .368 .366 .134 .246 .230

Table 7.18: Comparison of X̄2
C1, X̄

2
C2 and X̄2

H across values of generating item
parameters for graded models (n = 12, N = 500)

Levels
Equal a & b Random a & b Dispersed a & b

X̄2
H X̄2

C1 X̄2
C2 X̄2

H X̄2
C1 X̄2

C2 X̄2
H X̄2

C1 X̄2
C2

Rejection
rates

α = .01 .012 .012 .012 .014 .014 .014 .014 .017 .017

α = .05 .058 .060 .060 .050 .052 .052 .054 .064 .062

α = .10 .108 .114 .114 .102 .110 .110 .106 .135 .133

Power

α = .01 .026 .030 .028 .048 .054 .052 .012 .040 .032

α = .05 .110 .116 .114 .128 .140 .138 .090 .129 .127

α = .10 .196 .208 .202 .246 .276 .274 .182 .236 .233
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CHAPTER 8

Empirical Applications

In this chapter, I present results from applications of the proposed summed score

likelihood based statistics to psychological and educational datasets. The first

dataset consists of 2,717 cigarette smokers’ responses to 12 items regarding pos-

itive consequences of nicotine (PCN), as part of a questionnaire dealing with

various attitudes, beliefs and behaviors related to smoking (see Shadel, Edelen, &

Tucker, 2011). The data were collected as part of the National Institute of Health’s

Patient Reported Outcomes Measurement Information System (PROMIS) Smok-

ing Initiative (Edelen, 2014). It is plausible that these 12 items measure a common

latent dimension. The density plot (Figure 8.1a) of the latent variable distribu-

tion shows its deviation from a standard normal distribution as there are two

maximum points in the middle instead of a “bell curve” shape.

The second data set contains 10 items from the PISA 2012 mathematics assess-

ment (Kastberg, Roey, Lemanski, Chan, & Murray, 2014). The sample consists

of 1,648 students from three different countries, and the latent variable is very

likely to be non-normal when subgroups with different means and variances are

combined together. Figure 8.1b shows the density plot of the latent variable dis-

tribution for the 10-item test data. The distribution appears to have three modes

at different values of θ, enforcing the conjecture that there are three different

subgroups.
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Figure 8.1: Latent variable distribution for empirical data sets

(a) PROMIS Smoking Initiative (b) PISA Mathematical Achievement Test

8.1 PROMIS Smoking Initiative

Table 8.1 presents the contents of the 12 items from PROMIS smoking assessment.

All 12 items assess positive consequences of nicotine (Tucker et al., 2014), and each

item is rated on a 5-point ordinal scale: “Not at all”, “A little bit”, “Somewhat”,

“Quite a bit”, or “Very much”.

The fitted IRT model contains a normal latent variable. Item parameter esti-

mates and standard errors of parameter estimation are presented in the Appendix.

The unadjusted and moment adjusted nonnormality detecting indices were cal-

culated. Results show that X̄2
H equals to 208.46; X̄2

C1 equals to 179.28, and X̄2
C2

equals to 195.17. All three statistics indicate significant model misfit (df=46,

p=0.000). However, when the empirical histogram latent density estimation was

used in the parameter estimation, X̄2
H equals to 51.21 (df=46; p=0.277), X̄2

C1

equals to 49.38 (df=46; p=0.340), and X̄2
C2 equals to 49.45 (df=46; p=0.340).

Thus, the latent variable distribution for the 12 items is non-normal, and the

proposed statistics were sensitive to latent variable nonnormality.
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Table 8.1: Items from PROMIS Smoking Initiative

Item wordings

Item 1 Smoking helps me concentrate.

Item 2 Smoking helps me think more clearly.

Item 3 Smoking helps me stay focused.

Item 4 Smoking makes me feel better in social situations.

Item 5 Smoking makes me feel more self-confident with others.

Item 6 Smoking helps me feel more relaxed when I’m with other people.

Item 7 Smoking helps me deal with anxiety.

Item 8 Smoking calms me down.

Item 9 If I’m feeling irritable, a cigarette will help me relax.

Item 10 Smoking a cigarette energizes me.

Item 11 Smoking makes me feel less tired.

Item 12 Smoking perks me up.

8.2 PISA Mathematical Assessment

The proposed statistics were applied to an educational data set, 1,648 students’

responses to 10 items from the paper-based mathematical test in PISA 2012

(Kastberg et al., 2014). As in other large-scale assessments, test items in PISA

were compiled into clusters, and administerd in the form of booklets. The items

used in this study were located in the cluster “PM2” of Booklet 12 in PISA 2012.

This cluster was also administered in PISA 2003, 2006, and 2009. The selected

items were scored as either “no credit” or “full credit”. The name and labels for

these items are presented in Table 8.2.

To fit the data with an IRT model, I recoded “no credit” into “0”, and “full

credit” into “1”. All students have complete responses. The 10 items were mod-

eled with a normal unidimensional 2-PL model using flexMIRT R© (Cai, 2013). The
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Table 8.2: Items from PISA Mathematics Assessment

Name Item labels

Item 1 PM305Q01 MATH - P2000 Map Q1

Item 2 PM406Q01 MATH - P2003 Running Tracks Q1

Item 3 PM406Q02 MATH - P2003 Running Tracks Q2

Item 4 PM423Q01 MATH - P2003 Tossing Coins Q1

Item 5 PM496Q02 MATH - P2003 Cash Withdrawal Q2

Item 6 PM496Q01T MATH - P2003 Cash Withdrawal Q1

Item 7 PM564Q01 MATH - P2003 Chair Lift Q1

Item 8 PM564Q02 MATH - P2003 Chair Lift Q2

Item 9 PM571Q01 MATH - P2003 Stop the Car Q1

Item 10 PM603Q01T MATH - P2003 Number Check Q1

proposed summed score likelihood based statistics were calculated. Results show

that X̄2
H is equal to 31.46; X̄2

C1 is equal to 32.97, and X̄2
C2 is equal to 32.03. All

the summed score likelihood based statistics are significant (df = 8; p < 0.000)

and close to one another. After implementing the empirical histogram latent den-

sity estimation, X̄2
H is equal to 5.66 (df = 8; p = 0.686), X̄2

C1 is equal to 5.00

(df = 8; p = 0.758), and X̄2
C2 is equal to 4.70 (df = 8; p = 0.758). All the pro-

posed statistics are not significant anymore. Thus, the latent variable is very likely

to follow a nonnormal distribution in this dataset, and summed score likelihood

based statistics are able to detect the violation of assumption of latent variable

normality.
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CHAPTER 9

Conclusion

Normality of latent variable distribution is a critical assumption in standard max-

imum marginal likelihood estimation for IRT models. However, this assumption

could be violated in real data analysis (Woods, 2006; Woods & Lin, 2009). Conse-

quently, item parameter estimation and test scoring might suffer from bias. Even

though alternative approaches to estimate the latent variable distribution have

been proposed, most of them are computationally demanding and not available

in commercial software programs. Therefore, it is necessary to develop statistical

indices to detect latent varibale nonnormality before more “expensive” approaches

are ultilized.

A family of summed score likelihood based indices has been proposed for de-

tecting the violation of latent variable normal ditribution assumption (Li & Cai,

2012). However, as stated in the introduction, those statistics do not asymptot-

ically follow a chi-squared distribution. In this study, two Satorra-Bentler type

moment adjustment approaches (Satorra & Bentler, 1994) are proposed to correct

the summed score likelihood based indice X̄2 (Li & Cai, 2012). These moment

adjustment methods have been utilized widely for the modification of goodness-

of-fit statistics (Satorra & Bentler, 1994; Cai et al., 2006; Asparouhov & Muthen,

2010). Nonetheless, the calculation of first-order and second-order moments of

X̄2 is quite computationally challenging, which involoves the computation of a

Jacobian matrix. To solve this problem, an adapted Lord-Wingersky algorithm

(Lord & Wingersky, 1984) was developed to calculate the Jacobian matrix re-
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cursively. The adapted Lord-Wingersky algorithm and an illustration example

could be found in Chapter 5. The algorithm provides an efficient way to obtain

the Jacobian matrix, upon which the first- and second-order moments of X̄2 are

worked out. Once the first- and second-order moments of the statistics are known,

the process of correction is relatively straightforward (see Chapter 5; Satorra &

Bentler, 1994; Asparouhov & Muthen, 2010).

The simulation study findings reinforced the conjecture that moment adjusted

statistics X̄2
C1 and X̄2

C2 have improved properties in the null and alternative con-

ditions. Their sampling distribution could be well approximated by a chi-squared

distribution under the null hypothesis, and the indices are sensitive to the viola-

tion of latent variable normality in the alternative conditions. Simulation results

also provided evidence that X̄2
C1 and X̄2

C2 improve the unadjusted statistic in-

dex X̄2
H the most when the generating item parameters are highly dispersed. In

this study, the two-moment adjusted statistic X̄2
C2 and the first-moment adjusted

statistic X̄2
C1 perform equivalently well in most conditions.

In addition, This study is not without its limitations. Firstly, among the

three summed score likelihood based indices proposed by Li and Cai (2012), only

the Pearson’s X̄2 indice was considered in my dissertation. While the simulation

study results have demonstrated the feasibility and effectivity of the moment

adjustment approaches for X̄2, future efforts could focuse on the adjustments

of other summed score likelihood based indices. Secondly, limited simulation

conditions were examined. More conditions could be tested in future simulation

studies, for example, other types of IRT models, different kinds of latent variable

nonnormality (e.g., skewed, bi-modal, or multi-modal), or various levels of model

misspecification.

Finally, this study only considered the conditions when item response data are

unidimensional. Multidimensional IRT models (MIRT, Reckase, 2009) should be

considered in the subsequent work. One particularly popular model in educational
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and psychological research is the full-information item bifactor model (Gibbons &

Hedeker, 1992; Cai, Yang, & Hansen, 2011; Reise, 2012). In this model, all items

load on a general dimension, and an item is permitted to load on at most one

specific dimension that influences non-overlapping subsets of items. This feature

of bifactor models implies that there exits valuable relation between an observed

summed score and the distribution of the latent general dimension (Cai, 2014).

This relation implies an opportunity to test the underlying assumption about

the distribution of general latent dimension with summed score likelihood based

statistics.
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APPENDIX A

Appendix

Table A.1Generating item parameters for two parameter (2-PL) IRT model (n=24)

Table A.2Generating item parameters for graded response (GR) IRT model (n=24)

Table A.3 Results of simulation study for the null conditions (2-PL, Equal a &

Equal b, n = 24)

Table A.4 Results of simulation study for the null conditions (2-PL, Random a &

Random b, n = 24)

Table A.5 Results of simulation study for the null conditions (2-PL, Random a &

Dispersed b, n = 24)

Table A.6 Results of simulation study for the null conditions (2-PL, Dispersed a

& Dispersed b, n = 24)

Table A.7 Results of simulation study for the alternative conditions (2-PL, Equal

a & Equal b, n = 24)

Table A.8 Results of simulation study for the alternative conditions (2-PL, Ran-

dom a & Random b, n = 24)

Table A.9 Results of simulation study for the alternative conditions (2-PL, Ran-

dom a & Dispersed b, n = 24)

Table A.10 Results of simulation study for the alternative conditions (2-PL, Dis-

persed a & Dispersed b, n = 24)

Table A.11 Results of simulation study for the null conditions (graded model, Equal

a & Equal b, n = 24)
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Table A.12 Results of simulation study for the null conditions (graded model, Ran-

dom a & Random b, n = 24)

Table A.13 Results of simulation study for the null conditions (graded model, Ran-

dom a & Dispersed b, n = 24)

Table A.14 Results of simulation study for the null conditions (graded model, Dis-

persed a & Dispersed b, n = 24)

Table A.15 Results of simulation study for the alternative conditions (graded

model, Equal a & Equal b, n = 24)

Table A.16 Results of simulation study for the alternative conditions (graded

model, Random a & Random b, n = 24)

Table A.17 Results of simulation study for the alternative conditions (graded

model, Random a & Dispersed b, n = 24)

TableA.18 Results of simulation study for the alternative conditions (graded model,

Dispersed a & Dispersed b, n = 24)

Table ?? Item parameter estimates for PROMIS smoking initiative

TableA.20 Item parameter estimates for PISA 2012 mathematical test
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Slope Threshold

Item Equal Random Dispersed Equal Random Dispersed

1 1.00 1.85 1.00 0.00 -0.28 -2.00

2 1.00 1.87 1.09 0.00 -0.29 -1.83

3 1.00 1.80 1.17 0.00 1.05 -1.65

4 1.00 1.72 1.26 0.00 -0.52 -1.48

5 1.00 1.39 1.35 0.00 -1.32 -1.30

6 1.00 1.24 1.43 0.00 0.29 -1.13

7 1.00 1.19 1.52 0.00 0.62 -0.96

8 1.00 1.66 1.61 0.00 0.50 -0.78

9 1.00 1.71 1.70 0.00 0.55 -0.61

10 1.00 2.11 1.78 0.00 0.81 -0.43

11 1.00 1.68 1.87 0.00 1.49 -0.26

12 1.00 1.98 1.96 0.00 0.52 -0.09

13 1.00 1.73 2.04 0.00 -0.27 0.09

14 1.00 1.81 2.13 0.00 0.01 0.26

15 1.00 1.98 2.22 0.00 -0.39 0.43

16 1.00 1.59 2.30 0.00 -0.15 0.61

17 1.00 1.59 2.39 0.00 -0.69 0.78

18 1.00 2.05 2.48 0.00 0.36 0.96

19 1.00 1.47 2.57 0.00 1.09 1.13

20 1.00 1.89 2.65 0.00 0.52 1.30

21 1.00 2.08 2.74 0.00 0.41 1.48

22 1.00 1.89 2.83 0.00 2.10 1.65

23 1.00 1.70 2.91 0.00 1.12 1.83

24 1.00 1.81 3.00 0.00 0.65 2.00

Table A.1: Generating item parameters for two-parameter IRT model, n=24
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Item a s.e. b s.e.

1 0.66 0.07 -0.03 0.12

2 2.83 0.2 0.95 0.06

3 3.07 0.21 1.18 0.06

4 0.81 0.1 -2.22 0.25

5 1.42 0.12 -0.48 0.05

6 1.68 0.14 0.09 0.04

7 0.87 0.08 0.45 0.07

8 1.18 0.1 0.36 0.05

9 1.18 0.1 0.43 0.05

10 0.85 0.08 0.92 0.09

Table A.20: Item parameter estimates for PISA 2012 mathematical test
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