
Summed Weight Neuron Perturbation: An O(N) 

Improvement over Weight Perturbation. 

Barry Flower and Marwan Jabri 

SEDAL 

Department of Electrical Engineering 

University of Sydney 

NSW 2006 Australia 

Abstract 

The algorithm presented performs gradient descent on the weight space 

of an Artificial Neural Network (ANN), using a finite difference to 
approximate the gradient The method is novel in that it achieves a com
putational complexity similar to that of Node Perturbation, O(N3), but 

does not require access to the activity of hidden or internal neurons. 

This is possible due to a stochastic relation between perturbations at the 
weights and the neurons of an ANN. The algorithm is also similar to 

Weight Perturbation in that it is optimal in terms of hardware require

ments when used for the training ofVLSI implementations of ANN's. 

1 INTRODUCTION 

Optimization of the weights of an ANN may be performed by, the application of a gradi
ent descent teclmique. The gradient may be calculated directly as in Backpropagation, or it 
may be approximated by a Finite Difference Method which is what we concern ourselves 

with in this paper. These methods lend themselves to the task of training hardware imple

mentations of ANNs where real estate is at a premium and synaptic density is of great 
importance. Neuron Perturbation (NP), as described by the Madaline Rule ill (MRllI) 
(Widrow and Lehr, 1990), is a teclmique that approximates the gradient of the Mean 
Square Error (MSE) with respect to the change at a given neuron by applying a small per

turbation to the input of the neuron and measuring the change in the MSE. The weight 

dE 
I1wij = -tl'-:l-'Xr (1) 

onet. 
I 

update is then calculated from the product of this gradient measure and the activation of 

212 



Summed Weight Neuron Perturbation: An (O)N Improvement over Weight Perturbation 213 

the neuron from which the weight is fed, as described by (1). 

Weight Perturbation (WP), as described by Jabri and Flower (Jabri and Flower, 1992) is a 
neural network training techniques based on gradient descent using a Finite Difference 
method to approximate the gradient. The gradient of the MSE with respect to a weight is 
approximated by applying a small pertubation to the weight and measuring the change in 
the MSE. This gradient is then used to calculated the weight update such that: 

iJE 
aWr = -11· :l-.. (2) 

'J uw .. 
I) 

The advantages of WP over NP are that it performs better when limited precision weights 
are used, as shown by Xie and Jabri (Xie and Jabri, 1992), and is optimal with respect to 
hardware requirements when used to train VLSI implementations of ANNs. However, WP 

has O(~) computational complexity whilst NP has O(N3) computational complexity. 

Summed Weight Neuron Perturbation (SWNP) is similar to NP in that it has a computa

tional complexity of O(N3) but it has the added advantage that the activation of internal 
neurons does not need to be known. The cost of this reduced computational complexity is 
that SWNP needs to save the perturbation vector used. 

In the following sections a description of the SWNP algorithm is provided and, finally, 
some experimental results are presented. 

2 THE SUMMED WEIGHT NEURON PERTURBATION 
ALGORITHM 

A subsection of a feedforward ANN containing N neurons is shown in Figure 1. on which 

nomenclature the following derivation is based. 

FIGURE 1: Description Of Indices Used To Describe The Neurons Weights And 
Perturbations In An ANN. 

In a feedforward network of size N neurons the activation of a given neuron is determined 
by: 

Xi (P) = Ii (net i (p» , and neti (p) = ~WilXl (p) , (3) 

and Ii (y) is the ith neuron transfer function, Xi (p) is the activation of the ith neuron for 

the pth pattern, and W iI is the weight connecting the Ith neuron's output to the ith neuron's 

input. The error function, (MSE), is defmed as in (4), where T is the set of output neurons 

and dt (p) is the expected value of the output on the kth neuron. The change in E (p) 



214 Flower and Jabri 

with respect to a given weight may then be expressed as (5). 

1 
E(p) = 2: E (dt(p) -xt (p»2. (4) 

tE T 

oE (p) oE (p) 
dw

ij 
= anet

i 
(p) .Xj (p) . (5) 

The first term of on the right-hand side of (5) can be determined using a Finite Difference, 

which in this case is a Forward Difference, so that: 

oE(p) AEr. (p) 

~. + 0 (ri), 

f 

(6) =-------c- = 
oneti (p) 

where, 

AEr(p) = Er (p) -E(p), (7) , , 

and r i is the perturbation applied to the ith neuron, E r. (p) is the error for the pth pattern , 
with a perturbation applied to the ith neuron and E (p) is the error for the pth pattern 

without a perturbation applied to any neurons. The error introduced by the approximation 
is represented by the last term on the right-hand side in (6). 

The perturbation of one or more of the weights that are inputs to the qth neuron can be 

thought of as being equal to some perturbation applied directly to that neuron. Hence: 

rq = ~Yqrl(P)' (8) 

where Yql is the perturbation applied to weight w ql . As will be shown, perturbing the qth 

neuron by perturbing all the weights feeding into it, enables the sign of the gradient 

o~~) to be determined without performing the product on the right-hand side of (5). 
fJ 

Further more, the activation of hidden neurons, (i.e. Xj (p) in (5» need not be known. The 

contribution of the perturbation of weight w ij to the perturbation of the ith neuron is 

Yi/j(p) . (9) 

Let us take the degenerate case where there is only one weight for the ith neuron. Then the 

gradient of the MSE with respect to weight w ij is: 

AEr (p) Xj (p) 

= '() + 0 (r.) 
y.x). p f 

fJ 

ll.Er . (p) 
= ' +0 (r.) , 

Yij f 
(10) 



Summed Weight Neuron Perturbation: An (O)N Improvement over Weight Perturbation 215 

noting that Xj (p) has been eliminated. In the general case where the ith neuron has more 

than one weight the gradient with respect to weight w ij is shown in (11). 

where, 

oE(p) 

Ow .. 
fJ 

Mr_ (p) Xj (p) 

= I r. +O(ri) 

f 

Mr. (p) 
= I + O(r.) 

':P ij f 
(11) 

r. 
f 

':P ij = x. (p) . (12) 
J 

The form of (10) and (11) are the same and it will be shown that y .. can be substituted for 
fJ 

':P .. in (1) due to a stochastic relationship between them. 
fJ 

Let us represent the sign of y .. and ':P .. as either + 1 or -1 such that: 
fJ lJ 

and 
I ':P iJ~ 

v .. = \TI' 
fJ T .. 

fJ (13) 

The set of all possible states for the system represented by the vector (1.1"J v .. ) , assuming 
fJ f} 

y .. and ':P .. are never zero, is: 
lJ fJ 

{(-1, -1), (-1, 1), (1, -1), (1, 1)} . (14) 

and it can be seen that when 1.1 .. = v .. then the sign of the gradient of the MSE with 
fJ fJ 

respect to weight w ij given by (0) is the same as that given by (11). If the sign of Yij is 

chosen randomly then the probability of 1.1 .. = v .. being true is 0.5, from (4), and so (0) 
fJ fJ 

will generate a gradient that is in the correct direction 50% of the time. This in itself is not 
sufficient to allow the network to be trained as it will take as many steps in the incorrect 
direction as the correct direction if the steps themselves are of the same size, (i.e. the mag

nitude of r. is the same for a step in the correct direction as a step in the incorrect direc-
f 

tion). 

Fortunately it can be shown that the size of the steps in the correct direction are greater 

than those in the incorrect direction. Let us take the case where a particular y .. is chosen 
f} 

such that 

1.1 .. = v ... 
fJ IJ 

(15) 

Now by substituting (8), (2) and (13) into (5) we get: 



216 Flower and Jabri 

rearranging to give, 

~ Yitx t (p) 

x· 
J - -----'---

Yij ~YitXt (p) 

x· 
J 

Yi/j ~YitXt (p) 

(16) 

(17) 

which implies that the contribution to r. made by the pertUIbation y .. is of the same sign 
I v 

as r .. Let us designate this neuron pertUIbation as r. (A) . Now we take the other possible 
I I 

case where, 

JIij * V ij' (18) 

assuming every other parameter is the same, and only the sign of y .. is changed. The 
IJ 

equality in (17) is now untrue and the contribution to r. made by the perturbation y .. is of 
I IJ 

the opposite sign as r .. Let us designate this neuron perturbation as r . (B) . From (8) we 
I I 

can determine that, 

(19) 

Equation (19) shows the relationship between the two possible states of the system where 

r. (A) represents the summed neuron perturbation for a selected weight perturbation y .. 
I v 

that generates a step in the corrected direction and r i (B) is similar but for a step in the 

incorrect direction. Clearly the correct step is always calculated from an approximated 
gradient that is larger than that for an incorrect step as the neuron perturbation is larger. 

The weight update rule then becomes: 

Mr. (p) 

~Wij = -Tl. I 

Yij 

(20) 

The algorithm for SWNP is shown as pseudo code in Figure 2. 

2.1 HARDWARE COMPATmILITY OF SWNP 

This optimisation technique is ideally suited to the training of hardware implementations 
of ANN's whether they consist of discrete components or are VLSI technology. The speed 

up over WP of 0 (N) achieved is at the cost of an 0 (N) storage requirement but this 

sto~ge can be achieved with a single bit per neuron. SWNP is the same order of complex
ity as NP but does not require access to the activation of internal neurons and therefore can 

treat a network as a "black box" into which an input vector and weight matrix is fed and an 



Summed Weight Neuron Perturbation: An (O)N Improvement over Weight Perturbation 217 

output vector is received. 

While (total error> error threshold) { 

For (all patterns in training set) { 

Select next pattern and training vector, 

Forward Prop.;Measure, (calculate) and save error; 

Accumulate total error; 

For (all non-input neurons) { 

For (all weights of current neuron) { 

} Apply & Save perturbation of random polarity; 

Forward Prop.;Measure, (calculate) and save &!rror; 

For (all weights of current neuron) { 

Restore value of weight; 

Calculate weight delta using saved perturbation value; 

} If (Online Mode) Update current weight; 

If (Online Mode) 

} Forward Prop.; Measure, (calculate) and save new error; 

If (Batch Mode) { 

} } 
} 

For (all weights) 

Update current weight; 

FIGURE 2: Algorithm in Pseudo Code for Summed Weight Neuron Perturbation. 

3 TEST RESULTS USING SWNP 

The results for a series of tests are shown in the next three tables and are summarised in 

Figure 4. The headings are, N the number of neurons in the network, P the number of pat
terns in the training set, FF -SWNP the number of feedforward passes for the SWNP 
Algorithm, FF -WP the number of feedforward passes for the WP Algorithm, and RA no 
the ratio between the number of feedforward passes for WP against SWNP. The feedfor
ward passes are recorded to 1 significant figure. 

The results for a series of simulations comparing the performance of SWNP against WP 

are shown in Table 1. The simulations utilised floating point synaptic and neuron preci

s1ons. 

The results for a series of simulations comparing the performance of SWNP against WP 
are shown in Table 2. The simulations utilised limited synaptic precision, (i.e. 6 bits) and 

floating point neuron precisions 

The results for a series of experiments comparing the performance of SWNP against WP 
are shown in Table 2. Note: the training algorithm are the variations of WP and SWNP 
that are combined with the Random Search Algorithm (RSA). The results reported are 
averaged over 10 trials. 

An example of the training error trajectories of WP and SWNP for the Monk 2 problem 

are shown in Figure 3. 



218 Flower and J abri 

Table 1: Performance Of SWMP Versus WP, Comparing Feedforward Operations To 

Convergence. (Simulations With Floating Point Precision) 

PROBLEM N P FF-SWNP FF-WP ERROR RATIO 

XOR 3 4 1.6xlQ3 1.9xlcP 0.0125 1. 22 

4 Encoder 5 4 0.9xlcP 1.8xlcY 0.0125 1.84 

8 Encoder 11 8 1.5xlOS 4.5xlOS 0.0125 2.88 

ICEG 15 119 3.7xlOS 7.9xlrf' 0.0125 21.34 

Table 2: Performance Of SWNP Versus WP, Comparing Feedforward Operations To 

Convergence. (Simulations With Limited Precision) 

PROBLEM N P SWNP WP ERROR RATIO 

Monk 1 4 129 1.OxlOS 1.9x106 0.001 19.38 

MonIa 17 169 3.6xlOS 6.8x106 0.0005 18.71 

Monk3 17 122 1.2xl06 7.1xl06 0.022 5.87 

IECG 55 5 8 1.6xl04 7.2xl04 0.0001 4.2 

Table 3: Performance Of SWNP Versus WP, Comparing Feedforward Operations To 

Convergence. (Hardware Implementation) 

PROBLEM N P SWNP WP ERROR RATIO 

ECG 55 5 8 3.1xlQ3 3.6xlQ3 0.00001 1.13 

ECG045 5 8 1.1xl04 2.Oxl04 0.001 1.78 

MONX 2 PROBLEM 
YBKa lIT' 

..,CO --lIWRP 
",",co 

_co 

>:"'co 

:IOOCO 

1I0CO 

ItDCO 

,OOCO 

1:"'CO 

'OOCO 

lOCO 

«lCO 

ooCO 

:lOCO 

000 

OCO 2).(1) «),(1) «).IX) tom 10000 12).00 leO) J!IIIOC2B 

FIGURE 3: Comparison ofWP and SWNP For Monk 2 Problem 



Summed Weight Neuron Perturbation: An (O)N Improvement over Weight Perturbation 219 

FIGURE 4: Comparison of the number of Feedforward passes performed to achieve 
convergence on a range of problems using SWNP and WP. 

20 
18 
16 
14 
12 
10 
8 
6 
4 
2 

XORx~02 
4ENCODERxI 

8ENCODERxI 
ICEGxl 

MONK. 1 xl 

MONK.2xl 
MONlOxl 

mwsm SWNP Feedforward Passes 

_ WP Feedforward Passes 

lCEG 55xl 

4 CONCLUSION 

ECG 55xl 
ECG045xl 

The algorithm presented, SWNP, performs gradient descent on the weight space of an 
ANN, using a fInite difference to approximate the gradient. The method is novel in that it 

achieves 0 (N3 ) computational complexity similar to that of Node Perturbation but does 

not require access to the activity of hidden or internal neurons. The algorithm is also simi
lar to Weight Perturbation in that it is optimal in terms of hardware requirements when 

used for the training of VLSI implementations of ANN's. Results are presented that show 

the algorithm in operation on floating point simulations, limited precision simulations and 
an actual hardware implementation of an ANN. 

References 

labri, M. and Flower, B. (1992). Weight perturbation: An optimal architecture and learning 

technique for analog vlsi feedforward and recurrent multilayer networks. IEEE 

Transactions on Neural Networks, 3(1):154-157. 

Widrow, B. and Lehr, M. A. (1990). 30 years of adaptive neural networks: Perceptron, 

madaline, and backpropagation. Proceedings of the IEEE, 78(9):1415-1442. 

Xie, Y. and lahri, M. (1992). Analysis of the effects of quantization in multilayer neural 

networks using a statistical model. IEEE Transactions on Neural Networks, 

3(2):334-338. 


