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Abstract

Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already

been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic

vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated,

respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal

communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare

ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock

tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra

was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composi-

tion, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate

that warming induces shifts in the extramatrical properties of the communities, where the species with medium-

distance exploration type seem to be favored with potential implications for the mobilization of different nutrient

pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered

by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant

increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking

our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain

ECM species are favored by warming and may become more abundant, while many other species may go locally

extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient

cycling and soil organic C storage.
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Introduction

Soils of the northern circumpolar region cover approxi-

mately 16% of the global soil surface and contain an

estimated 50% of all soil organic carbon (C) pool

(Tarnocai et al., 2009). Because these regions have been

experiencing some of the highest rates of warming

(0.06–0.1 °C per year over the past 40 years), a large

proportion of this C is increasingly vulnerable to mobi-

lization due to warming-induced melting of permafrost

and higher microbial decomposition rates (Anisimov

et al., 2007; Hansen et al., 2010; Comiso & Hall, 2014).

This warming is resulting in a suite of climate feed-

backs, including changes in sea ice cover and the length

of ice-free periods (Arrigo & van Dijken, 2011; Post

et al., 2013), a greening of the surrounding land surface,

and tree line advancement (Kharuk et al., 2013; Zhang

et al., 2013). All of these are altering the albedo of the

Arctic (Chapin et al., 2005; Post et al., 2009). Although

many of these feedbacks are positive, some could

potentially be negative. For example, a greening of the

Arctic driven by increases in shrub density (Sturm

et al., 2005; Loranty & Goetz, 2012; Tape et al., 2012)

could result in greater degrees of C sequestration (Wel-

ker et al., 1997; Sistla et al., 2013; Anderson-Smith 2013;

Pattison & Welker, 2014), but see Hartley et al. (2012)

for counterargument. Increases in shrub density and

canopy growth can further alter the tundra by local

snow trapping in winter, increasing soil insulation,

causing higher winter, and spring-time soil tempera-

tures, and increasing the rates of nitrogen (N) and C
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mineralization. Greater rates of winter CO2 emissions,

in turn, may enhance the potential for shrub growth

and further expansion (Sturm et al., 2001; Schimel et al.,

2004; Sturm et al., 2005; Weintraub & Schimel, 2005;

Tape et al., 2006). However, whether these changes are

accompanied by a simultaneous reorganization of the

soil fungal community and whether these responses

differ in moist tussock and dry tundra have not been

resolved.

Arctic soils have limited availability of nutrients and

arctic plants are highly dependent on mutualistic rela-

tionships with mycorrhizal fungi for survival (Gardes

& Dahlberg, 1996; Hobbie et al., 2009; Bjorbækmo et al.,

2010). It has been estimated that 61–86% of the N in

Arctic tundra plants is obtained through mycorrhizal

fungi (Hobbie & Hobbie, 2006). Ectomycorrhizal (ECM)

fungi are the predominant fungal guild in the Arctic

(Gardes & Dahlberg, 1996; Clemmensen et al., 2006;

Bjorbækmo et al., 2010). Recent studies of belowground

Arctic ECM fungal communities, revealed higher spe-

cies richness than what had previously been known

from aboveground surveys (Ryberg et al., 2009; Bjor-

bækmo et al., 2010; Geml et al., 2012; Timling et al.,

2012; Timling & Taylor, 2012). These studies indicated

that the most diverse arctic ECM genera are Tomentella

(here interpreted as including Thelephora), Inocybe, Corti-

narius, Sebacina, Russula, and Hebeloma.

ECM fungal community composition in the Arctic is

generally correlated with soil properties, geology, plant

productivity, and climate (Timling et al., 2012, 2014).

There is also evidence to suggest that ECM plant host

identity is not a main driver of ECM fungal community

composition in the Arctic (Ryberg et al., 2009; Timling

et al., 2012). Although there are a few studies focused

on the molecular diversity of belowground ECM fungal

communities in the Arctic (Ryberg et al., 2009; Bjor-

bækmo et al., 2010; Geml et al., 2012 Timling et al., 2012,

2014), the main drivers at the landscape scale remain

largely unresolved, and this hampers our current

in-depth comprehension of arctic soil ecology.

Recent evidences, reported from other biomes than

the Arctic, suggest that the extramatrical mycelium

(EMM) morphology and ECM fungi extracellular

enzyme activity are of great relevance to understand

the nutrient dynamics of the ECM symbiosis (Cairney &

Burke, 1996; Agerer, 2001; Anderson & Cairney, 2007;

Hobbie & Agerer, 2010; Peay et al., 2011; Tedersoo et al.,

2012; Talbot et al., 2013; B€odeker et al., 2014) that is cru-

cial to understand soil ecology. ECM fungi produce

EMM that grows from the ectomycorrhizae into the sur-

rounding soil with the crucial functions of foraging the

litter and/or mineral layers for nutrients, and of seeking

new root tips for colonization (Martin et al., 2001;

Anderson & Cairney, 2007). The EMM forms an intricate

hyphal network that interconnects plant roots, and

paves the way for interplant C and nutrient movements

(Selosse et al., 2006). EMM of different taxa are known

to have distinct anatomical and physiological features

that are attributable to various strategies of foraging

(Colpaert et al., 1992; Agerer, 2001; Hobbie & Agerer,

2010). Several studies linked the EMM characteristics

with the pools of nutrients they explore in the soil, and

with their roles in soil-plant interaction, taking into

account energetic cost-benefit for both fungi and plant

host (e.g., Agerer, 2001; Lilleskov et al., 2002; Hobbie &

Agerer, 2010; Lilleskov et al., 2011; Cairney, 2012). The

main characteristics to classify the EMM are the myce-

lium exploration type, presence/absence of rhizo-

morphs and hydrophobicity of the hyphae (Agerer,

2001; Hobbie & Agerer, 2010; Peay et al., 2011; Lilleskov

et al., 2011; Cairney, 2012). Moreover, besides EMM

characteristics per se, species with abundant EMM gen-

erally showed stronger potential to produce extracellu-

lar enzymes than species with scarce EMM (Tedersoo

et al., 2012), even though multiple exceptions exist. It

has been hypothesized that species with EMM of the

medium-distance fringe, and long-distance exploration

types might have the potential to explore recalcitrant

nutrient pools through extracellular enzyme activity,

and that species with contact, short, and medium-

distance smooth exploration types might be associated

with labile nutrient soil pools (e.g., Lilleskov et al., 2002;

Hobbie & Agerer, 2010; Lilleskov et al., 2011). Such func-

tional information is still under investigation, and there-

fore, currently only available for a limited number of

taxa. Nevertheless, this framework constitutes a valu-

able insight into the ecological functions of ECM fungal

community.

The long-term effects of climate change on arctic

tundra function and structure have primarily been

investigated with respect to aboveground growth,

phenology, vegetation composition, and plant and

ecosystem C exchange (e.g., Chapin & Shaver, 1985;

Arft et al., 1999; Welker et al., 1997, 2000, 2004; Elmen-

dorf et al., 2012; Tape et al., 2012; Cahoon et al., 2012;

Sharp et al., 2013; Pattison & Welker, 2014). Vegetation

studies, in the moist tussock tundra at Toolik Lake,

Alaska, indicated that long-term experimental summer

warming induced significant increases in the abun-

dance and height of Betula nana, Salix pulchra, and

graminoids, and in the accumulation of the litter layer

(Wahren et al., 2005; Mercado-D�ıaz, 2011). Conversely,

the bryophytes decreased significantly (Mercado-D�ıaz,

2011), most likely due to competitive exclusion by

shrubs (Cornelissen et al., 2001; J€agerbrand et al., 2009).

These aboveground vegetation changes are likely corre-

lated with changes below ground, such as soil mois-

ture, soil nutrient pools, fine-root abundance, and root
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turn-over dynamics, which interplay with ECM fungal

community dynamics (e.g., Read et al., 2004; Dickie &

Reich, 2005; Dickie et al., 2005; Strand et al., 2008; Tolj-

ander et al., 2006; Twieg et al., 2009; Peay et al., 2011).

Even though some studies addressed belowground

processes, such as N cycling (e.g., Schimel et al., 2004;

Borner et al., 2008; Schaeffer et al., 2013) and microbial

community change (e.g., Clemmensen et al., 2006;

Campbell et al., 2010; Deslippe et al., 2011, 2012), our

knowledge about the compositional and functional

changes of arctic communities in response to long-term

warming remains rudimentary.

In this study, we use high-throughput sequencing

techniques to study the long-term effects of experimen-

tal warming on the ECM basidiomycete community in

dry and moist tussock tundra in Northern Alaska. Our

hypotheses were twofold. First, we hypothesize that

long-term warming induces changes in the ECM fun-

gal community composition, because aboveground

changes in the vegetation, including several ECM host

plants, have already been documented (Wahren et al.,

2005; Mercado-D�ıaz, 2011) and this is suggestive of

changes in belowground processes (Sullivan & Welker,

2005; Sullivan et al., 2007). Secondly, based on the

results from the above vegetation studies and reported

warming-induced increases in ECM fungal and fine-

root biomass (Clemmensen et al., 2006), we expect that

the ECM fungal community of the moist tussock tundra

will show a stronger response to warming than the dry

tundra. Furthermore, we expect to find a more diverse

ECM community in the warmed moist tussock tundra

plots, because Deslippe et al. (2011) reported significant

increases in the diversity of arctic ECM fungi associated

with root tips of Betula nana as a response to warming.

Betula nana is a dominant in our sampling plots and has

shown strong, positive response to experimental warm-

ing (Wahren et al., 2005; Mercado-D�ıaz, 2011).

Material and methods

Sampling location

The sampling area is located at the Arctic Long Term Ecologi-

cal Research site in the Toolik Lake region in the northern

foothills of the Brooks Range, Alaska, USA (68°370N,

149°320W; 760 m above sea level). The region lies within the

bioclimatic subzone E that is the warmest subzone of the arctic

tundra with mean July temperatures ranging from 9 to 12 °C
(Walker et al., 2005). The two main vegetation types of the

region are: the dry heath tundra, characterized by Dryas octo-

petala, Salix polaris, Vaccinium spp. and fruticose-lichens, and

the moist tussock tundra, dominated by Betula nana, Salix

pulchra and the sedge Eriophorum vaginatum. Detailed descrip-

tions of the plant communities can be found in Walker et al.

(1999) and Kade et al. (2005).

Experimental design

Between July 23 and 25, 2012, we sampled soil from 20 plots

representing the dry and the moist tussock tundra. In each

tundra type, we sampled five plots that were subjected to pas-

sively increased summer air temperature by hexagonal open

top chambers (OTCs), subsequently referred to as ‘treatment’,

and five adjacent areas with unaltered conditions (‘control’).

The sampling was performed with a soil corer of approxi-

mately 2 cm 9 20 cm (diameter 9 depth). In each of the 20

plots, five soil cores were taken, thoroughly mixed and kept

frozen until lyophilization.

The OTCs used are 1 m2, 0.4 m high, and constructed of

translucent fiberglass (Marion et al., 1997; Walker et al., 1999).

Within the OTCs the summer air temperature increases by a

mean daily average of 1.5 °C, while soil temperatures remain

the same as in the control plots (Walker et al., 1999). Every

year, since 1994, the OTCs are set up as soon as 50% of the

ground area of a given plot was snow free (usually early June)

and are removed at the end of August or early September, fol-

lowing the International Tundra Experiment (ITEX) protocol

(Welker et al., 1997). It has been repeatedly shown that OTCs

provide a reasonable approximation to the predicted climatic

changes in the Arctic as they alter daytime temperature signif-

icantly and minimize unwanted ecological effects, such as

changes in soil moisture, the influence of wind speed on air

temperature (Marion et al., 1997; Sharkhuu et al., 2013;

Bokhorst et al., 2013 and references therein). Therefore, OTCs

have been recommended to study the response of high-lati-

tude ecosystems to warming (Marion et al., 1997).

Molecular work

Genomic DNA was extracted from 1 ml (0.4–1 g) of lyophi-

lized soil from each of the twenty samples using NucleoSpin�

soil kit (Macherey-Nagel Gmbh & Co., D€uren, Germany),

according to manufacturer’s protocol. For each sample, two

independent DNA extractions were carried out and pooled to

optimize the homogenization of the extraction. The extracted

DNA was eluted with 30 ll of SE buffer. PCR amplification

and Ion Torrent sequencing of the ITS2 region (ca. 250 bp) of

the nuclear ribosomal rDNA repeat were carried out as

described by Geml et al. (2014b) using primers fITS7 (Ihrmark

et al., 2012) and ITS4 (White et al., 1990). The ITS4 primer was

labeled with sample-specific Multiplex Identification DNA-

tags (MIDs). The amplicon library was sequenced using an

Ion 318TM Chip by an Ion Torrent Personal Genome Machine

(PGM; Life Technologies, Guilford, CT, USA) at the Naturalis

Biodiversity Center.

The initial clean-up of the raw sequence data was carried

out using the online platform Galaxy (https://main.g2.bx.

psu.edu/root), in which the sequences were sorted according

to samples and sequence regions of primers and adapters

(identification tags) were removed. We used a parallel ver-

sion of MOTHUR v. 1.32.1 (Schloss et al., 2009) for subse-

quent sequence analyses following the protocol described in

detail in Geml et al. (2014b). The quality-filtered sequences

were normalized following Gihring et al. (2012) by random

subsampling, so that each sample contained 56 483 reads
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(the lowest number of sequences obtained for a sample). The

resulting sequences were clustered into operational taxo-

nomic units (OTUs) using OTUPIPE (Edgar, 2010) with the

simultaneous removal of putatively chimeric sequences using

de novo and reference-based filtering using curated dataset of

fungal ITS sequences of Nilsson et al. (2011) as reference. We

used a 97% sequence similarity clustering threshold as has

been routinely done in fungal ecology studies (e.g.,

O’Brien et al., 2005; Higgins et al., 2007; Geml et al., 2008,

2009; Amend et al., 2010; Tedersoo et al., 2010; Geml et al.,

2012; Kauserud et al., 2012; Brown et al., 2013; Blaalid et al.,

2013; Geml et al., 2014a). Global singletons were discarded

from further analysis. The reference database published by

K~oljalg et al. (2013) was used to determine the taxonomic

affinity of the OTUs using USEARCH v7 (Edgar, 2010). OTUs

with less than 80% similarity to any identified fungal

sequence were also excluded from the final analysis due to

unreliable classification, and therefore, uncertainty regarding

their ecological role. A representative sequence of each OTU

was deposited in GenBank under the accession numbers

KJ792472 – KJ792742.

ECM fungal database and EMM determination

For in-depth analyses related to the research hypotheses sta-

ted above, we selected all OTUs that showed affinity with

ECM basidiomycete genera based on Tedersoo & Smith

(2013). However, in Sebacinales, we used phylogenetic analy-

ses to select the OTUs representing the ECM lineages,

because many sebacinoid taxa are not ECM. In the Sebaci-

nales, ECM OTUs were selected based on their supported

phylogenetic placement (with ≥70% bootstrap and/or ≥0.95
posterior probability) among sequences of known ECM taxa

published by Urban et al. (2003), Ryberg et al. (2009) and

Tedersoo & Smith (2013). We followed the work of Agerer

(2006) and consulted the DEEMY database (http://deemy.

de), an information system for the characterization and deter-

mination of ECM fungi (accessed in January and February of

2014), to determine the EMM characteristics per species. In

the genus Russula, if no EMM information was available for

the species of interest, we assumed the EMM characteristics

based on the closest species with known characteristics. To

determine the closest species we followed the phylogenetic

study by Miller & Buyck (2002). Similarly, for OTUs of the

genus Hebeloma, we followed the phylogenetic study by

Boyle et al. (2006).

Statistical analysis

For each sample, we calculated rarefied OTU accumulation

curves using the R package Vegan (Oksanen et al., 2012) and

determined the Good’s coverage (complement of the ratio

between the number of local singletons and the total

sequence counts). Because of demonstrated uncertainties

regarding the reliability of read abundance as indicators of

species abundance in the samples (Amend et al., 2010), we

carried out the further analyses with two types of data

transformations. First, we transformed the data into

presence-absence matrix, where OTU presence was defined

as five or more sequences on a per sample basis following the

suggestion of Lindahl et al. (2013) to minimize false positives

(e.g., OTUs that are common in one sample, but may be low-

abundant contaminants in others). In addition, we used

square-root transformed read abundance to moderate the

influence of OTUs with high sequence counts, while main-

taining some approximation of template abundance that may

reflect ecological significance. We used PC-Ord v. 5.32

(McCune & Grace, 2002) to run nonmetric multidimensional

scaling (NMDS) on a primary matrix of experimental plots by

OTUs and a secondary matrix of plots by OTU richness per

taxon (this analysis was also performed with root-square

abundance of sequence counts as a surrogate to species abun-

dance). The dataset was subjected to 500 iterations per run

using the Sørensen similarity (Bray-Curtis index) and a ran-

dom starting number. We also calculated the Pearson’s corre-

lation coefficient (r) values between relative OTU richness,

OTU diversity per taxon, and axes 1 and 2. We tested

whether fungal communities were statistically different

across the treatments using a multi-response permutation

procedure (MRPP) and determined any preferences of indi-

vidual OTUs for either control or treatment plots in moist

tussock and dry tundra using Indicator Species Analyses

(Dufrêne & Legendre, 1997) as implemented in PC-Ord

v. 5.32. We also tested for significant differences in OTU

richness between moist tussock and dry tundra, control and

treatment plots, genera, and EMM characteristics using

Students t-test. We determined the Venn diagram for the

genera with higher OTU richness, using the online version of

the publication by Oliveros (2007).

Results

Taxonomic composition and OTU richness

We obtained 4 046 811 reads with an average length of

211.6 � 111 bp (SD). From this, approximately 87% of

the data had a mean Phred ≥20. After quality control,

2 068 216 reads (51%) were kept, and after random sub-

sampling we retained 1 129 660 reads with an average

length of 254.9 � 56 bp (SD). After clustering at 97%

sequence similarity, 10 035 OTUs were generated. From

this dataset, we removed 3148 putative chimeras and

1249 singletons. The asymptotic rarefaction curves

(Fig. 1a) and Good’s coverage (Fig. 1b) suggest that the

deep sequencing allowed for a very high OTU coverage

and that likely all fungi present in the samples were

sequenced. The final dataset included 343 ECM basidio-

mycete OTUs (110 665 reads).

We detected 20 ECM basidiomycete genera

(Table 1). Four of these dominated the communities,

accounting for approximately 82% of all OTU richness:

Tomentella (106 OTUs, 31%), Cortinarius (77, 22%), Inoc-

ybe (63, 18%), and Russula (34, 10%). OTU richness in

the control plots was not significantly different
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(P = 0.296, t8 = 1.119) between the dry and moist tun-

dra types, although the plot-based richness values

were somewhat higher in the dry than in the moist

tussock tundra (Fig. 1c). The NMDS analysis of the full

dataset indicated that species assemblages in the dry

and moist tundra types are highly dissimilar (Fig. 2a).

Therefore, we analyzed the results for the two types of

tundra separately to focus on the effect of warming on

ECM community composition.

Moist tussock tundra

The total ECM OTU richness in the warmed plots was

approximately half of that in the control plots, 71 and

138, respectively. Similarly, OTU richness per plot was

significantly greater in the control, 59 � 21 (mean

� SD) OTUs per plot, than in the treatment (20 � 18)

(t8 = 3.19, P = 0.013) (Table 1). NMDS analyses of the

presence–absence matrix resulted in a 2-dimensional

solution with a final stress of 0.0395 and a final instabil-

ity <0.00001. The two axes explained the majority of

variability in the sampled fungal communities (axis 1:

r2 = 0.816; axis 2: r2 = 0.085; total r2 = 0.901; orthogo-

nality = 88.5%). The NMDS ordination plot was orthog-

onally rotated by the treatment to visualize correlations

between warming and fungal community composition

in general, and the taxonomic groups in particular. The

MRPP analysis suggested a significant correlation

between community composition and the warming

treatment (A = 0.12345835, P = 0.0066) that was visu-

ally depicted on the NMDS ordination plot (Fig. 2b).

The NMDS and MRPP results obtained from the

square-root abundance were very similar to the pres-

ence-absence based results (Figure S1a).

Cortinarius was the genus with the highest richness,

followed by Tomentella, Russula, and Inocybe (Table 1).

Several groups that were present in dry tundra were

not detected in moist tussock tundra: Boletus, Ceratoba-

sidium, Piloderma, Pseudotomentella, Tomentellopsis, and

Tulasnella. On the other hand, Alnicola and Lactarius

were only found in the moist tussock tundra and were

generally rare there as well (Table 1). In the four domi-

nant genera, only 26% of the OTUs were present in both

the control and the treatment plots, and most of the

OTUs were only found in the control plots (Fig. 3).

OTU richness values were significantly lower in the

treatment plots, except in Cortinarius where the

decrease in per-plot OTU richness between control and

treatment was not significant.

OTU richness values in most genera were nega-

tively correlated with the warming, with Hebeloma

(r = �0.909), Inocybe (r = �0.751), and Tomentella

(r = �0.691) as well as total OTU richness (r = �0.768)

showing the strongest correlation. On the other hand,

Laccaria and Alnicola did not seem to be influenced by

the treatment (r = 0.126 and r = 0.108, respectively),

perhaps due, in part, to their rarity. The indicator spe-

cies analysis revealed 14 OTUs significantly associated

with the control plots, while none of the OTUs were

found to be indicators of the treatment plots (Table 2).

Two EMM types dominated the community, the

medium-distance fringe and the contact/short-dis-

tance type, in both the control and the treatment

plots (Fig. 4a). There was a significant decrease in

the number of OTUs of most of the EMM types in

the treatment plots. However, the effects in the

medium-distance fringe types were not statistically

significant.
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Fig. 1 (a) Rarefaction curves of each plot for both tundra

types. (b) Good’s coverage, average of the plot per site with

standard deviation. (c) Total OTUs per site and tundra type

with standard deviation. DC, dry control; DT, dry warming

treatment; MC, moist tussock control; MT, moist tussock

warming treatment.
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Table 1 Number of mean OTUs per plot in the control and warming treatment plots in the dry and moist tussock tundra. Signifi-

cance of treatment effects were determined by comparing the control and treatment plots using Students t-test

Moist tussock tundra Dry heath tundra

Control Treatment P Control Treatment P

Tomentella 14.6 � 6.23 3.8 � 7.40 0.04* 18.4 � 12.74 20.8 � 6.30 0.75

Cortinarius 16.6 � 7.95 7.6 � 10.33 0.16 8.2 � 3.49 7.8 � 7.86 0.92

Inocybe 8.2 � 3.12 1.4 � 1.14 0.05* 7.4 � 5.23 5.2 � 6.76 0.16

Russula 6.4 � 4.16 1.6 � 2.07 0.002* 3.4 � 2.88 8.8 � 7.29 0.62

Sistotrema 3 � 4.12 0.2 � 0.45 0.17 0.6 � 0.55 0.6 � 0.89 1.0

Tremellodendron 2.4 � 2.51 0.2 � 0.45 0.09 1.4 � 2.19 0.4 � 0.55 0.35

Hebeloma 2 � 0 1.2 � 0.45 0.004* 0.4 � 0.89 1.4 � 1.95 0.33

Leccinum 2.8 � 1.64 0.4 � 0.89 0.021* 0.4 � 0.55 0.6 � 0.89 0.68

Laccaria 1.4 � 0.89 1.4 � 0.55 1.0 0 � 0 0.8 � 1.30 0.21

Clavulina 0.4 � 0.55 0.6 � 0.89 0.68 0.8 � 0.84 0.8 � 0.84 1.0

Alnicola 0.8 � 0.45 1 � 1 0.69 – – –

Pseudotomentella – – – 0.6 � 0.89 0.8 � 0.45 0.67

Sebacina – 0.2 � 0.45 0.35 0.2 � 0.45 – 0.35

Tulasnella – – – 1.2 � 1.10 0.8 � 1.10 0.14

Clavicorona – – – 0.2 � 0.45 0.4 � 0.55 0.55

Boletus – – – 0.6 � 0.55 0.6 � 0.55 1.0

Ceratobasidium – – – 0.6 � 0.55 0.2 � 0.45 0.24

Lactarius 0.2 � 0.45 – 0.35 – – –

Piloderma – – – 0.2 � 0.45 – 0.35

Tomentellopsis – – – 0 0.4 � 0.55 0.14

Total community 59 � 21 20 � 18 0.013* 45 � 20 50 � 19.28 0.66

*Significant treatment effect (a = 0.05).
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Fig. 2 (a) NMDS analysis of the dry and moist tussock tundra with control and treatment sites. (b) NMDS analysis of the ECM fungal

communities of the moist tussock tundra replicates. (c) NMDS analysis of the ECM fungal communities of the dry tundra replicates.

DC, dry control; DT, dry warming treatment; MC, moist tussock control; MT, moist tussock warming treatment.
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Dry tundra

OTU richness in the control and treatment plots did not

differ significantly (t8 = 0.46, P = 0.66) (Table 1) with

45 � 20 and 50 � 19 OTUs per plot, respectively.

Tomentella was the most OTU-rich genus (having nearly

double the amount of total number of OTUs, than the

second most diverse taxonomic group), followed by

Cortinarius, Russula, and Inocybe (Table 1). Approxi-

mately 40% of the OTUs were present in both the control

and the treatment plots (Fig. 3). In the dominant genera,

the relative frequency of OTUs present in both the con-

trol and treatment plots was relatively high (compared

with the values obtained for the moist tundra), varying

from 33% in Russula to 48% in Tomentella (Fig. 3).

The MRPP analysis suggested no significant correla-

tion between community composition and treatment

(A = �0.00147, P = 0.4288), which was confirmed by the

NMDS analysis (Fig. 2c). Again, the NMDS and MRPP

results obtained from the square-root abundance matrix

were very similar to the presence-absence based results

(Supporting information, Fig. S1b). However, Pearson’s

correlation values suggested that OTU richness in Tom-

entella (r = 0.789), Sebacinales (Sebacina and Tremelloden-

dron) (r = 0.640), and Inocybe (r = 0.535), as well as the

total OTU richness (r = 0.730) were positively correlated

with the treatment. Even though the remaining groups

did not show strong correlation with warming, the gen-

era Russula and Laccaria exhibited an interesting pattern.

Although the mean richness of Russula did not differ

significantly (t8 = 1.5397, P = 0.1622) in the control and

treatment plots (3 � 3 and 9 � 7 OTUs per plot, respec-

tively), the total number of Russula OTUs with EMM

medium-distance smooth type in the treatment plots

was considerably higher than in the control plots (17

and 7, respectively). Also, Laccaria OTUs were only

found in the treatment plots. Species from this genus

have been argued to (i) possess an EMM of the med-

ium-distance smooth exploration type with hydrophilic

hyphae (Unestam & Sun, 1995; Agerer, 2001) and (ii) to

be nitrophilic with positive response to disturbance

(Dickie & Moyersoen, 2008). The indicator species

analysis (Table 2) revealed that OTU 1281, identified as

Tomentella atramentaria (SH112690.05FU), was negatively

correlated with warming.

We found that the majority of the OTUs were of the

contact and short distance EMM type with hydrophilic

hyphae, in both the control and the treatment plots.

There was a nonsignificant decrease in the number of

OTUs of most of the EMM types in the treatment plots.

However, the medium-distance smooth type showed

an opposite pattern, having an increment in the number

of OTUs in the treatment plots and this difference was

marginally significant (t8 = 2.28, P = 0.0567).

Inocybe

Tomentella

Russula

Cortinarius
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DC

DC
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MT

MT
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DT

DT

DT
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MC(a)

(b)

(c)

(d)

Fig. 3 Venn diagrams of the four most diverse genera. DC, dry

control; DT, dry warming treatment; MC, moist tussock control;

MT, moist tussock warming treatment.
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Discussion

Diversity

We found 343 OTUs of ECM basidiomycetes in the

sampled moist tussock and dry tundra in Alaskan

Arctic. These OTUs were spread across 20 genera. This

richness is the highest ever reported for arctic ECM

fungi. Previous studies on belowground diversity of

arctic ECM fungi that used similar methods, reported

between 73 and 202 OTUs of ca. 12 genera (Bjorbækmo

et al., 2010; Geml et al., 2012; Timling & Taylor, 2012;

Timling et al., 2012, 2014). Moreover, several genera

remain undersampled in our dataset (e.g., Lactarius,

Amanita), possibly due to their small genet size and rel-

ative rarity at the landscape scale. Because observed

fruitbodies of several Amanita and Lactarius species

near the sampled plots, in identical vegetation types, it

is likely that the real diversity of ECM fungi in the sam-

pled region is even higher than our estimates.

In general, the dominant taxonomic groups that we

uncovered, Tomentella, Cortinarius, Inocybe, and Russula,

are agreement with the findings of previous studies

that used molecular techniques to study belowground

diversity in arctic tundra communities (Bjorbækmo

et al., 2010; Geml et al., 2012; Timling & Taylor, 2012;

Timling et al., 2012). On the other hand, the dry and

moist tundra types were dominated by distinct taxo-

nomic groups, namely Tomentella and Cortinarius,

respectively (Table 1). Such a difference was also

apparent in the EMM types that were found more pre-

valent in the different tundra types. While there seems

Table 2 Indicator species analysis of OTUs with significant correlation (a = 0.05) with the site, their taxonomic affinity and similar-

ity with referenced species hypothesis (SH) and/or known sequences from UNITE database or GenBank

OTU Correlated site K~oljalg et al. (2013) and UNITE classification Similarity (%)

1281 DC SH112690.05FU – Tomentella coerulea (UDB016493) 97.9

3369 MC SH115895.05FU – Leccinum holopus (UDB001378) 99.6

484 MC SH115895.05FU – Tomentella fuscocinerea (UDB016484) 99.6

3351 MC SH108145.05FU – Tomentella lateritia (UDB016439) 97.8

181 MC SH112435.05FU – Tomentella coerula (UDB018451) 98.1

4645 MC SH108158.05FU – Tomentella sp. (UDB017832) 98.9

6618 MC SH108158.05FU – Hebeloma collariatum (UDB17969) 96.2

1120 MC SH102330.05FU – Russula renidens (UDB015975) 100

4313 MC SH102330.05FU – Tomentella fuscocinerea (UDB016188) 95.9

1124 MC SH102330.05FU – Tomentella fuscocinerea (UDB016188) 99.6

1625 MC SH166458.05FU – Cortinarius croceus (UDB011339) 99.7

801 MC SH111588.05FU – Inocybe nitidiuscula (HQ604382) 96.6

3413 MC SH111588.05FU – Inocybe nitidiuscula (HQ604382) 95.9

5841 MC SH099601.05FU – Inocybe leiocephala (AM882793) 96.7

219 MC SH099601.05FU – Inocybe leiocephala (AM882793) 99
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to be a codominance of two EMM types (medium-

distance and contact/short distance) in the moist

tussock tundra with equal richness of OTUs with

hydrophobic and hydrophilic hyphae; in the dry tun-

dra, only the contact/short-distance EMM type with

hydrophobic hyphae were dominant (Fig. 4b).

Warming-induced changes in the moist tussock tundra

Our results show a clear decrease in ECM fungal rich-

ness in response to warming in the moist tussock tun-

dra, which is in clear contradiction with the single

previous study addressing the effects of long-term

warming on ECM fungal diversity in the Arctic (Des-

lippe et al., 2011). Deslippe et al. (2011) reported a

warming-induced increase in diversity of ECM fungi

associated with Betula nana. The contradiction might be

due to methodological differences and the sampling

depth of the ECM communities. While our data are

derived from soil associated with the whole plant com-

munity, and comprised 110 684 sequences that were

clustered into 343 OTUs, the observations of Deslippe

et al. (2011) were based on 1060 nonclustered sequences

(ca. 70 OTUs) derived from cloning of root tips of a sin-

gle ECM host, B. nana. The steep OTU rarefaction

curves generated by Deslippe et al. (2011) suggest that

only a fraction of all ECM taxa at the sites were

sequenced. Therefore, their sampling intensity likely

was inadequate to obtain near-complete coverage to

capture changes in richness. Due to our deep sequenc-

ing efforts, our rarefaction curves indicate that the vast

majority of fungal taxa in the sampling sites have been

sequenced that, in turn, provides a more solid base for

among-site comparisons.

Cortinarius was the only dominant genus with non-

significant decrease in per-plot OTU richness. Cortinari-

us also stands out by having most OTUs present in

both control and treatment plots, a pattern that is dis-

tinct from the other three dominant genera (Fig. 3). This

suggests that most Cortinarius spp in the moist tundra

may be resilient and/or adapted to the conditions

induced by warming. In light of the EMM characteris-

tics, it is interesting to note that, contrary to the other

three dominant genera, Cortinarius has an EMM with

medium-distance fringed exploration type and hydro-

phobic rhizomorphs (Agerer, 2001, 2006). Taking into

account that prior evidence point to a lack of effect of

warming on ECM colonization ratios and that ECM

fungal biomass increases with warming (Clemmensen

et al., 2006), it seems reasonable to hypothesize that Cor-

tinarius spp. might have an advantage over other ECM

taxa under long-term summer temperature increase.

Lilleskov et al. (2011) suggested that fungi with med-

ium-distance fringed exploration type and hydrophobic

rhizomorphs, such as Cortinarius, are likely to have

hydrolytic capabilities that would facilitate acquisition

and translocation of insoluble proteins. It has been pos-

tulated for an extended period that most extracellular

enzyme secretion is likely to be confined to the hyphae

tip close to the apex, where the wall pore size is large

enough to be permeable to enzymes of relatively large

molecular weight (e.g., Chang & Trevithick, 1974;

Unestam & Sun, 1995; Lindahl et al., 2005). Indeed, the

functional compartmentalization in gene expression

between root tips and foraging mycelium (Wright et al.,

2005), coupled with the very low activity of enzymes

correlated with ECM fungi measured on ECM root tips

compared to levels of activity measured in bulk soils

(Talbot et al., 2013) support the hypothesis that the

EMM have a crucial role in nutrient acquisition.

Recently, B€odeker and colleagues (2014) provided com-

pelling evidence supporting the hypothesis that at least,

some Cortinarius spp. are directly involved in soil

organic matter degradation through extracellular enzy-

matic activity. This capability coupled with a diffuse

mycelium may be advantageous for Cortinarius spp. to

colonize recalcitrant and unevenly distributed nutrient

soil pools, nutrients uptake, and to translocate them

from the soil to the host roots while promoting root

connectivity (Hobbie & Agerer, 2010; Lilleskov et al.,

2011). Such functional roles can facilitate plant mineral

nutrition resulting in higher plant and leaf N, as well as

greater growth and greater leaf photosynthesis as

observed in the warmed plots by Welker et al. (2005)

and by Pattison & Welker (2014). In exchange the host

plant might increase carbohydrates allocation to the

root system and EMM as a tradeoff, justifying the high

energetic investment by the ECM fungi. Such mecha-

nisms of soil C accumulation derived from roots and

root-associated fungi have been shown to contribute

50–70% of stored C in ECM-dominated boreal forests

(Clemmensen et al., 2013).

The genus Tomentella shows a similar pattern of

OTU distribution as Cortinarius – high relative fre-

quency (31% and 38%, respectively) of OTUs that are

present in both control and treatment plots (Fig. 3).

This pattern is distinct from that observed in Russula

and Inocybe, both of which have a low relative fre-

quency (13% and 19%, respectively) of OTUs present

in both the control and the treatment plots. A couple

of hypotheses can be raised to interpret this trend.

First, the EMM characteristics of Tomentella spp. are

still largely unknown and there is some evidence that

EMM morphology varies considerably within this

diverse genus. There are species with EMM with vari-

able hydrophobicity and exploration types, such as

contact, short distance and medium-distance (Agerer,

2001, 2006; Hobbie & Agerer, 2010). Therefore, it is
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possible that the EMM characteristics of the OTUs

affiliated with Tomentella are more varied than initially

assumed and distinct from the OTUs affiliated with

Russula and Inocybe.

OTU richness of taxa having an EMM with the long-

distance type was very low when compared to the

medium-distance fringe type (Fig. 4a). In the moist

tussock tundra, all OTUs with EMM of the long-

distance type, that has been hypothesized to play an

important role in nutrient translocation and new root-

colonization (Hobbie & Agerer, 2010; Weigt et al.,

2011), were affiliated with Leccinum spp. that is specific

to Betula nana in the Arctic. It has been hypothesized

that Leccinum species have proteolyctic capabilities

(Nygren et al., 2008; Eaton & Ayres, 2002). Therefore, it

is surprising that the OTU richness with this EMM

type decreased significantly in the treatment plots,

since we expected a similar pattern as in the species

with medium-distance fringe exploration type (for

in-depth discussion for potential similar patterns

between these two groups consult Hobbie & Agerer

(2010)). However, the significance of this decrease

might be influenced by the overall low diversity of

taxa with long-distance EMM type in the arctic tundra.

It is possible that these changes in diversity might not

relate to actual differences in overall ecological func-

tion, since two of 4 OTUs that represented this EMM

type are present in the treatment plots.

It is important to understand that we do not claim

that temperature increase affects the fungi directly.

Instead, we argue that the warming induces changes in

the entire biotic community and, via the numerous inti-

mate interactions fungi have with other living organ-

isms in these plots, changes are apparent in the ECM

fungal community as well, regardless if they are

directly or indirectly caused by warming. Because

OTCs minimize unwanted ecological effects while

effectively elevating temperature (Marion et al., 1997),

it is reasonable to assume that most of the changes in

the fungal community composition are induced by

increased air and surface temperature. However, it is

unclear if shifts in ECM fungal communities are due to

direct effects of temperature on fungal metabolism or

caused indirectly, e.g., via changes in plant-fungus

interactions, rather than by the direct effect of tempera-

ture on fungal metabolism (or, likely, are combinations

of the two). On the other hand, it is conceivable that

other factors (e.g., leaf temperature increase on sunny

days) may or may not have some indirect influence on

the ECM fungi associated with these plants. Due to the

lack of information and relevant empirical data, it is

difficult to even speculate about possible mechanisms

and disentangling such causal relationships are beyond

the scope of this paper.

Resilience in the dry tundra

Our results do not show significant differences in either

ECM fungal community composition or richness in the

dry tundra. Former vegetation studies on dry tundra

community also indicated no effect of warming on

plant species richness, but there were significant

increases in shrub canopy height and cover, mainly

due to increase in evergreen shrubs (Mercado-D�ıaz,

2011). These changes in plant community only occurred

more than 8 years after initiating the experiment

(Walker et al., 1999; Wahren et al., 2005; Mercado-D�ıaz,

2011) reflecting a less pronounced effect of the warming

treatment on the dry tundra than what is reported for

the moist tussock tundra (see above). Contrary to the

patterns observed in the moist tundra, the changes in

the dry tundra vegetation were mainly in non-ECM

plants. Therefore, the absence of significant changes in

the ECM fungal community of the dry tundra is

in agreement with the lack of compositional changes in

the ECM plant hosts. However, since the significant

shifts in the vegetation are in non-ECM hosts (Merca-

do-D�ıaz, 2011), we hypothesize that other root-associ-

ated fungi, particularly ericoid mycorrhizal fungi, may

exhibit stronger response to warming.

Although the NMDS analysis indicated no significant

changes in the ECM fungal community composition,

we found an interesting pattern in two taxonomic

groups at the functional level, i.e., in the EMM types.

For example, in the control plots, the genus Russula was

represented by two EMM types: the contact with

hydrophilic hyphae and the medium-distance smooth

type with varying hydrophobicity. On the other hand,

only OTUs with medium-distance type with mainly

hydrophilic hyphae were detected in the warmed plots.

Similarly, the genus Laccaria that has EMM of the med-

ium-distance smooth type with hydrophilic hyphae,

was only found in the treatment plots. Even though this

pattern might result from chance alone, it can also be

indicative of slow and/or minute shifts in the commu-

nity.

When analyzing the EMM of the OTUs that compose

the dry tundra community, it is interesting to note that

the contact and short-distance exploration types with

hydrophilic hyphae were represented by more than

twice as many OTUs as the medium-distance explora-

tion type with hydrophobic rhizomorphs. The majority

of ECM fungi with contact and short-distance explora-

tion types with hydrophilic hyphae have been hypothe-

sized to explore the pools of labile nutrients in the soil,

since most of them showed reduced proteolytic capabil-

ities in laboratory experiments (Lilleskov et al., 2002;

Nygren et al., 2007). Recently, Hobbie et al. (2013),

using radiocarbon data, provided evidence from
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natural ecosystems that also support this hypothesis.

Lilleskov et al. (2011) hypothesized that taxa with this

EMM type are predominant in conditions of low below

ground C allocation, because they probably have a low

C cost to the host. This is agreement with previous find-

ings that suggest that the dry tundra has far less pro-

ductivity than the moist tundra (Gough et al., 2007).

Unfortunately, the scarcity of knowledge on the nutri-

ent acquisition strategies of most ECM fungi prevent us

from further speculations about possible warming-

induced functional changes in the community and their

effects on nutrient cycling.

High contrast in ECM communities’ responses to
warming at the low Arctic

This article is the first to study the effects of long-term

experimental warming in the ECM fungal community

at a habitat-scale of the low Arctic tundra using high-

throughput sequencing techniques. We provide evi-

dence that (i) long-term summer temperature increases

have contrasting effects on various ECM fungal genera;

and (ii) these effects are habitat-dependent. These pat-

terns might be indicative of ecological strategies of vari-

ous ECM fungi as well as of differences in patterns of C

storage and N cycling in these two tundra types

(Welker et al., 2000; Schimel et al., 2004; Welker et al.,

2005; Pattison & Welker, 2014). The nonsignificant

changes in richness and composition of the ECM fungal

community in the dry tundra (this study) coupled with

evidence of nonsignificant changes in the ECM fungal

biomass in a subarctic heath tundra, near Abisko, Swe-

den, (Clemmensen et al., 2006) might indicate that the

biogeochemical processes in the dry tundra remain lar-

gely unaltered with moderate warming. Also, environ-

mental changes other than air and surface temperature,

might play a more important role in this tundra type,

e.g., changes in snow depth have been reported to

influence microbial activity and N cycle (Schimel et al.,

2004), which in turn might also affect the ECM fungal

community. In the moist tundra, the observed changes

in the ECM fungal community (this study) coupled

with the increase in ECM fungal biomass (Clemmensen

et al., 2006) suggest increased capability of N mobiliza-

tion, which might be derived from recalcitrant soil

pools. This may favor enhanced C allocation from the

plants to the ECM fungi and the rhizosphere, and,

therefore, enhanced C storage in the soil biotic commu-

nity. Even though these processes might surpass soil

organic matter decomposition and microbial respira-

tion rates, and therefore, contribute to positive feed-

backs in climate change, this still remains an open

question that needs further investigations.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. (a) NMDS analysis of the ECM fungal communities of the moist tussock tundra plots with final stress 0.0523, final insta-
bility <0.00001, total r2 = 0.876 and orthogonality = 96.5%. MRPP A = 0.0927 and P = 0.0051. (b) NMDS analysis of the ECM fungal
communities of the dry tundra replicates with final stress 0.1266 and final instability <0.00001. MRPP A = 0.0163 and P = 0.1750.
DC, dry control; DT, dry warming treatment; MC, moist tussock control; MT, moist tussock warming treatment.
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