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JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. D15, PAGES 16,421-16,431, OCTOBER 30, 1992 

Summertime Photochemistry of the Troposphere 
at High Northem Latitudes 

D. J. JACOB, x S.C. WOFSY, x P.S. BAKWIN, x S.-M. FAN, x R. C. HARRISS, 2 R. W. TALBOT, 2 

J. D. BRADSHAW, 3 S. T. SANDHOLM? H. B. SlNGHfi E. V. BROWELL? G. L. GREGORYfi 
G. W. SACHSEft M. C. SHIPHAM? D. R. BEAKEft AND D. R. FITZ_JARRALD ? 

The budgets of 03, NOx CNO+NO2), reactive nitrogen CNOy), and acetic acid in the 0-6 km column over 
western Alaska in summer are examined by photochemical modeling of aircraft and ground-based measure- 
ments from the Arctic Boundary Layer Expedition (ABLE 3A). It is found that concentrations of O3 in the 
region are regulated mainly by input from the stratosphere, and losses of comparable magnitude from photo- 
chemistry and deposition. The concentrations of NOx (10-50 ppt) are sufficiently high to slow down 03 photo- 
chemical loss appreciably relative to a NOx-free atmosphere; if no NOx were present, the lifetime of 03 in the 
0-6 km column would decrease from 46 to 26 days because of faster photochemical loss. The small amounts of 
NOx present in the Arctic troposphere have thus a major impact on the regional 03 budget. Decomposition of 
peroxyacetyl nitrate (PAN) can account for most of the NOx below 4-km altitude, but for only 20% at 6-km alti- 
tude. Decomposition of other organic nitrates might supply the missing source of NOx. The lifetime of NOy in 
the ABLE 3A flight region is estimated at 29 days, implying that organic nitrate precursors of NOx could be 
supplied from distant sources including fossil fuel combustion at northem mid4atitudes. Biomass fire plumes 
sampled during ABLE 3A were only marginally enriched in 03; this observation is attributed in part to low 
NOx emissions in the fires, and in part to rapid conversion of NO• to PAN promoted by low atmospheric tem- 
peratures. It appears that fires make little contribution to the regional 03 budget. Only 30% of the acetic acid 
concentrations measured during ABLE 3A can be accounted for by reactions of CH3CO3 with HO2 and 
CH302. There remains a major unidentified source of acetic acid in the atmosphere. 

1. INTRODUCTION ginally enriched in 03; and (3) high-O3 episodes were usually as- 
sociated with stratospheric intrusions (documented by lidar). The 

The Arctic Boundary Layer Expedition (ABLE 3A) surveyed NO,• concentrations measured in ABLE 3A were in the range the composition of the North American Arctic and sub-Arctic tro- 

posphere from the surface to 6 km altitude during July-August 10-50 ppt [Sandholm et al., this issue], sufficiently low that photo- 
1988 [Harriss et al., this issue (a)]. Aircraft measurements in- chemistry should provide a net sink for 03. As discussed below, 
cluded concentrations of 03, NO, NO2, peroxyacetyl nitrate our analysis of the ABLE 3A data indicates thatO3 concentrations 

in the summertime Arctic troposphere represent largely a balance (PAN), HNO3, total reactive nitrogen (NO•), CO, non-methane 
between input from the stratosphere, and losses of comparable hydrocarbons (NMHCs), and organic acids. We examine in this 

paper the photochemical activity of the regional atmosphere docu- magnitude from photochemistry and deposition. 
A major point of the present paper is to show that anthropogen- mented by the ABLE 3A data, with focus on the budgets of 03, 

NO• (NO+NO2), and NO•. ic influence on O3 levels in the Arctic may manifest itself not by 
Our principal objective is to explain the -- 1% yr -x rise of 03 long-range transport of pollution-derived 03, but rather by a de- 

crease of the regional photochemical sink due to the presence of concentrations observed in the Arctic troposphere over the past 
two decades [Logan, 1985; Oltmans and Kornhyr, 1986]. This rise 
is most pronounced in summer, averaging 3% yr -x at Barrow in 
July for the period 1973-1984 [Oltrnans and Kornhyr, 1986]. An- 
thropogenic influence would provide a logical explanation. How- 
ever, the ABLE 3A data clearly point to a stratospheric rather than 
to a pollution origin for O3 in the region [Browell et al., this issue; 
Gregory et al., this issue]. This source attribution is based on 

three pieces of evidence: (1) concentrations of O3 in the middle 
troposphere were anticorrelated with concentrations of aerosol, 

H20, and CO; (2) well-defined layers of pollution were only mar- 

Division of Applied Sciences and Department of Earth and Planetary 
Sciences, Harvard University, Cambridge 

University of New Hampshire, Durhaxn 
Georgia Institute of Technology, Atlanta 
NASA Ames Research Center, Moffett Field, California. 
NASA Langley Research Center, Hampton, Virginia. 
University of California, Irvine. 
Atmospheric Sciences Research Center, Albany, New York. 

Copyright 1992 by the American Geophysical Union. 

Paper number 91JD01968. 
0148-0227/92/91JD-01968505.00 

small amounts of NO,•. The low concentrations of NOx measured 

in ABLE 3A were sufficient to reduce the rate of photochemical 
loss appreciably relative to a NO,cfree atmosphere, thus increasing 
the O3 lifetime. We show below that decomposition of PAN can 
account for most of the NO,• measured below 4-km altitude, but 

for only 20% at 6-km altitude. Decomposition of other organic ni- 
trates might provide the missing source of NO,• at high altitude. 

Sandholm et al. [this issue] found that about half of total NO• in 
ABLE 3A could not be accounted for by NO,•, PAN, or HNO3, 
suggesting that unidentified organic nitrates made a large contribu- 

tion to the NO• budget. 
We estimate below a lifetime of 29 days for NOy in the ABLE 

3A flight region, suggesting that PAN and other organic nitrate 
precursors of NO,• could have been transported from distant 
sources. Singh et al. [this issue (a)] have argued that long-range 

transport from northern mid-latitudes was a major source of NOy 
in ABLE 3A, and our analysis lends some support to that view. 
Concentrations of NO• in the Arctic troposphere have therefore 
probably increased over the past few decades, reflecting the rise in 
fossil fuel combustion at northern mid-latitudes [Dignon and 
Harneed, 1989]. Decomposition of this anthropogenic NO•, pro- 
viding a .source of NO,• in the Arctic troposphere, could then ex- 
plain the observed increase of O3 concentrations in the region. 

Biomass burning emissions at high northern latitudes have also 

16,421 
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probably increased over the past two decades, as suggested by 

forest fire statistics for Canada [Van Wagner, 1988; Schindler et 

al., 1990; Stocks, 1991], but the effect on the regional O3 budget 

appears to be small. The aged fire plumes sampled during ABLE 
3A were only slightly enriched in O3 [Wofsy et al., this issue]. 
The AO3/ACO ratios in the plumes, where A represents the con- 

centration enrichment relative to background, were in the range 

0.04-0.18. In comparison, AO3/ACO ratios in the range 0.3-0.5 
were observed in urban plumes sampled off the east coast of the 
United States during ABLE 3A transit flights. Andreae et al. 

[1988] previously documented AO3/ACO ratios in the range 0.01- 
0.09 for biomass fire plumes over Amazonia, as compared to 0.34 

in the Manaus urban plume. Andreae et al. [1992] reported an 

average ratio of 0.14 in biomass fire plumes over the Congo. It 
appears that O3 production from biomass fires, when normalized 

600N 

B•rin• • 

to CO emissions, is low compared to production from fossil fuel ,a• combustion. We will explain this result as due to low NO,./CO t ."'• 
and NOx/NIVIHC emission ratios in biomass fires; O3 production is 180ø 16õøw lõOøw 
NO,.-limited, and NO,. is rapidly oxidized to organic nitrates. The Fig. 1. ABLE 3A sampling region over western Alaska on flights 11-25 
relatively low NO,. emissions in biomass fires may result from low (July 19 to August 7, 1988). The dashed area around the town of Bethel 
bum temperatures, particularly under smoldering conditions, and was heavily sampled; additional flight tracks outside that area are shown as 
also at high latitudes from the low nitrogen content of vegetation thick lines. 
[Chapin and Shaver, 1985]. 

Talbot et al. [this issue] measured acetic acid concentrations in chemical steady state (including OH, peroxy species, and NO2). 
the range 100-400 ppt during ABLE 3A. Acetic acid is produced Steady state is assumed also for oxygenated hydrocarbons with 
by CH3CO3 + peroxy reactions [Moortgaat et al., 1989a, b]. If lifetimes of a few days or less (carbonyls, peroxides) and for other 
these reactions were the dominant sources of acetic acid in the at- short-lived compounds (e.g., HNO2, HNO4). A fixed acetone con- 
mosphere, as has been suggested by Madronich et al. [1990], then centration of 120 ppt is adopted [Arnold et al., 1986]. The UV ra- 
acetic acid would be an interesting tracer of photochemical activi- diation field is computed on the basis of the local altitude, solar 
ty. However, we report below that only - 30% of the acetic acid zenith angle, and albedo, assuming clear-sky conditions (see ap- 
measured in ABLE 3A can be accounted for in tlmt manner. pendix). Proper accounting of cloud effects is not possible from 
There remains a major unidentified source of acetic acid in the at- the data available; averaging over a large number of points should 
mosphere. at least reduce the associated uncertainty. 

The paper is organized in two sections. In section 2 we con- The 475 points in the data base were selected on the basis of 
stmct budgets of 03, NO,., NO•, and acetic acid in the ABLE 3A NIVIHC data availability. Each NMHC grab sample [Blake et al., 
flight region, using photochemical model statistics based on the this issue] was matched with 10-s average data for 03, CO, and 
aircraft observations. In section 3 we use a Lagrangian model to meteorological variables [Gregory et al., this issue; Harriss et al., 
reconstruct the photochemical history of two aged biomass fire this issue (b); National Aeronautics and Space Administration, 
plumes sampled by the ABLE 3A aircraft. Concluding remarks 1989], 1-min average data for NO and NO• [Sandholm et al., this 
are in section 4. issue], grab sample data for PAN [Singh et al., this issue (a)], and 

15 to 60 min average data for HNO3 and acetic acid [Talbot et al., 

2. REGIONAL PHOTOCI.IE•CALB••s this issue]. Figure 2 shows the mean vertical distributions of 
species concentrations in the data base. Also shown in Figure 2 

Approach are the model-calculated concentrations of OH, NO,,, and RNOx. 

We use a merged data base of chemical and meteorological Here RNOx is the residual NO•, i.e., the fraction of observed NO• 
measurements from ABLE 3A flights 11-25 over western Alaska that cannot be accounted for by measured concentrations of NO, 
(Figure 1). The data base includes 475 points in space and time PAN, and HNO3 or model concentrations of NO2, NO3, N205, 
for which simultaneous aircraft measurements of atmospheric HNO2, and HNO4. This residual NO• is speculated to represent 
composition are available. We reconstruct the local photochemi- unidentified organic nitrates, hence the RNOx notation; it accounts 
cal state of the atmosphere at each point, using the mechanism for about half of total NO•. 
described in the appendix, and obtain as model products the in- The principal products of our analysis are the diurnally and 
stantaneous production and loss rates of 03, NO,,, PAN, HNO3, vertically averaged photochemical rates obtained by (1) binning 
and acetic acid, as well as the local concentrations of short-lived the individual points into 1-km altitude bands and 2-hour time in- 
species (e.g., OH). We then derive spatial and temporal averages tervals, (2) averaging within each bin the rates computed at indivi- 
for these products, and document the ensemble of conditions dual points, and (3) averaging again over either the diurnal cycle 
found in the regional photochemical environment. or the 0 to 6-km column, or both. The ensemble of 475 data 

The following measurements are used as independent variables points covers the altitude range 0.1-6.2 km and the temporal range 
to define the photochemical state of the atmosphere at each point: 0600-1915 solar time (ST); here solar time is defined by a max- 
concentrations of 03, NO, PAN, HNO3, CO, ethane, propane, and imum solar elevation at noon. The vertical and temporal distribu- 
bumes; and temperature, dew point, altitude, and solar zenith an- tion of points is shown in Figure 3. The diurnal cycle of OH con- 
gle. The concentration of NO is selected as independent variable centrations in the 0 to 1-km band, where the density of points is 
rather than the concentration of NO,. because of the sparsity of highest, indicates a time window of active photochemistry extend- 
data for NO2. All radicals other than NO are assumed to be in ing from 6 to 18 ST (Figure 4). 
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Fig. 2. Vertical distributions of species concentrations on flights 11-25 and are shown as dashed lines. The OH concentration is a daytime average 
over westem Alaska. The data are averages over 1-km altitude bands. computed over the time window 6-18 solar time (ST). Temperature (T) 
Concentrations of OH, NOx, and RNOx (residual NOy) are model results and dew point (T D) are also shown. 

Inspection of Figure 3 indicates that portions of the altitude- 
time domain were only sparsely sampled by the aircraft. To in- 
crease the density of points, we calculate the photochemical rates 
for each point above 2 km altitude over a range of solar angles 
from 6 to 18 ST. The underlying assumption is that there should 
be litfie cov ariance between solar zenith angle and the other in- 
dependent variables. Such an assumption would be inappropriate 
below 2 km because of diurnal variations driven by surface fluxes, 
but there is less need for increasing the density of points in that al- 
titude range. 

Ozone 

Figure 5 shows the net photochemical production rate of 0 3, 
(P-L)o3, as a function of altitude. Values are 24-hour averages 
computed by assuming (P-L)o3 = 0 outside the 6-18 ST time win- 

dow. Net O3 loss takes place over the entire 0 to 6-km column, 

and is maximum between 2 and 5 km. The 24-hour average 
column loss rate is 8.0x10 •ø molecules cm -2 s -•, comparable in 
magnitude to the mean O3 deposition flux of 8.2x10 •ø molecules 
cm -2 s -• estimated by Jacob et al. [this issue] for the world north 
of 60øN in summer. Photochemistry and deposition add up to an 
estimated total sink of 1.6x10 • molecules cm -2 s -• for O3 in the 
summertime Arctic troposphere. The mean 0 to 6-km column 
concentration of O3 measured during flights 11-25 was 6.4x10 •7 
molecules cm -2, from which we infer an O3 column lifetime of 46 
days. This lifetime is relatively short; we conclude that the re- 

gional O3 budget represents largely a balance between stratospher- 
ie input on the one hand, and losses from photochemistry and 
•eposition on the other hand. 

The importance of photochemical loss as a regional sink for O3 
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Fig. 3. Vertical and temporal distribution of the 475 points in the data base for Rights 11-25. 

implies that small anthropogenic perturbsions to NO,` could have (R1) 
a major effect on O3 levels. In the low-NO,` regime of interest 
here, (P-L)o3 increases linearly with increasing NOx concentra- (R2) 
tion [Fishman et al., 1979]. To assess the sensitivity of (P-L)m to 

NO,`, we repeated our calculations for the 475 points with NO and (R3) 
PAN concentrations set to zero. The 24-hour average photochem- (R4) 
ical column loss rate of O3 rose to 2.0x10 n molecules crn -2 s 4, 
2.5 times larger than in the standard calculation (Figure 5). The (R5) 
O3 lifetime dropped to 26 days, 43% shorter than in the standard 

calculation, because of the faster photochemical loss. and the major chemical sinks of NO,` in the daytime are 
Nitrogen oxides 

(R6) 
The origin of the small amounts of NO,, measured during ABLE 

3A thus emerges as a major issue in the regional O 3 budget. We (R7) 
expect this NO,` to represent on average a steady state between 

chemical sources and chemical sinks, because the lifetime against 

oxidation is short (- 1 day) and emission sources are remote. The 

low variability of NO concentrations observed over the course of 
the expedition [Sandholm et al., this issue] supports the argument 

that NO,` did not originate from direct emissions. The major 

chemical sources of NO,` are 

I i I I 

9 12 15 18 

SOLAR TIME, hours 

PAN T> NO2 + CH3CO3 

PAN + OH - > NO2 + products 

HNO3 + hv - > NO2 + OH 

hv, 02 
HNO3 + OH > NO 2 + H 20 + O3 

RNOx T, OH, hv > NO,` + products 

E 4 

0 I I 
-80 -60 -40 -20 0 

(P-L)o3, ppt h -1 

Fig. 5. Net photochemical production rates of 03 as a function of altitude, 

calculated for Rights 11-25 and shown as 24-hour averages for each 1-km 

altitude band. All values are negative, indicating net loss. The dashed line 

I / I 

I 

Zero 

NO 

{ i 

Fig. 4. Mean diumal variation of OH concentrations below 1-km altitude shows results from a sensitivity calculation with NO and PAN concentra- 
on Rights 11-25. tions set to zero. 

NO2 + OH + M - > HNO3 + M 

NO2 + CH3CO3 + M - > PAN + M 
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(R8) NO2 + RCO3 + M - > RNOx + M 

(R9) NO + RO2 + M - > RNOx + M 

where RCO3 represents peroxyacyl radicals other than CHzCOz, 7_c 
RO2 represents organic peroxy radicals, and RNOx represents or- • 
ganic nitrates other than PAN. Reaction (R9) is a low-yield " . 

branch of the oxidation of NO by RO2 [Lurmann et al., 1986]. o• 
Nighttime sinks of NO,• include oxidation of NMHCs by NOz, I 

and hydrolysis of N205 in clouds. If these sinks were important, • 
NO,, should be depleted at night. Although no aircraft flights were 

conducted during the nighttime hours, the daytime NO,• data do 

not indicate a depression of concentrations in the early morning, 
or a gradual increase of concentrations from morning to afternoon, 

that would be suggestive of nighttime NO,• depletion (S. T. San- 
dholm, personal communication, 1990). We infer that nighttime 
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chemistry probably had only a small effect on the budget of NO,• Fig. 7. Missing source of NO,,, (L-P)so., as a function of residual NOy 
during ABLE 3A. (1•O•). The concentration of RNOx is calculated as the difference 

For each point in the data base, we calculate the instantaneous between the concentration of NOy and the sum of the concentrations of 
rates of reactions (R1) through (R9) with the exception of (RS). NOx, NOa, N205, HNO2, HNO4, PAN, and HNO3. Negative concentra- 
The production of NOx from (RS) cannot be calculated due to un- tions of RNO• reflect uncertainties in the measurements. Results are from 
certainties on the identities, concentrations, and reactivities of the the 475 points in the data base for flights 11-25, ranked in order of increas- 
RNO,• species. We choose therefore to test the hypothesis that ing RNO,, concentration and then averaged over 50-point clusters. The 

dashed line is the linear regression (r = 0.54). 
PAN and HNO• were the main sources of NO,•, i.e., that (R5) was 
negligible. If this hypothesis is correct, then the NO,• loss rate 
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computed from (R6)+(R7)+(R8)+(R9) should balance the NO,• 

production rate computed from (R1)+(R2)+(R3)+(R4), when aver- 

aged over a large number of points and over the daytime hours (to 

remove transient effects from accumulation and transport terms in 
the NO, budget). 

Results of the analysis are shown in Figure 6, where the rams 

are given as averages over 1-km altitude bands and over the time 

window 6-18 ST. The net PAN loss rate, (L-P)pAs, is defined as 

(R1)+(R2)-(R7); the net HNOz production rate, (P-L)}eqoz, is 
defined as (R6)-(R3)-(R4). Also shown in Figure 6 is the produc- 

tion rate PRsox of RNOx species generated in the model by oxida- 
tion of propane and bumes. We find that net chemical loss of 

PAN, and net chemical production of HNOz, take place on aver- 
age throughout the 0 to 6-km column. Below 3 km there is a close 

balance between production of NO,• from PAN decomposition on 
the one hand, and loss of NOx by oxidation to HNOz and RNOx 
on the other hand. At higher altitudes, however, a large fraction of 
the NO,• loss is not balanced by decomposition of PAN. The 
source of NO,• from PAN decomposition decreases rapidly with 
altitude because of the stability of PAN at low temperatures; the 
sink of NO,• from oxidation to HNO3 decreases also with altitude 
but at a slower pace. 

The missing source of NO,•, (L-P)so,•, could conceivably 
represent decomposition of organic nitrates other than PAN. In 

that case we might expect a positive correlation between (L-P)so• 
and the RNO,• concentration. We examined the data base for such 

a correlation; the analysis was done by grouping the 475 points 
into clusters of 50, in order of increasing RNO,• concentration, to 
reduce influences of local deviations of NO,• from steady state. 

Fig. 6. Chemical production and loss rates of NOx as a function of alti- The resulting scatter diagram indicates some positive correlation 
rude, calculated for flights 11-25 and shown as daytime averages (6-18 ST) (Figure 7), although the coefficient of linear correlation is not 

for each 1-kin altitude band. The net production rate of NOx from decore- significant at the 95% level. Changing the clustering of points did 
position of PAN, (L-P)pAs, is compared to the net loss rate of NOx from not significantly affect the result. 
oxidation to HNOa, (P-L)t•oa. The additional loss term for NOx, PRNOx, The atmospheric lifetime of NO• in ABLE 3A can be estimated 
represents production of organic nitrates other than PAN from oxidation of by assuming that deposition of HNOz is the only NO• sink, and propane and butanes. Numbers to the right of the (L--P)PAN bars give the 
percent of the total loss rate of NOx that is balanced by decomposition of calculating the HNOa deposition flux needed to balance the net 
PAN. production rate (P-L)H•O3 in Figure 6. The resulting 24-hour 
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TABLE 1. Model Conditions for the Biomass Fire Plume Simulations 

ABLE-3A FLIGHT 20 8-- 3--88 

AEROSOL DISTRIBUTION 

REI•TIVE AEROSOL SCATTERING 
0 2000 4000 6000 8000 10000 
t i,, .i. t [ i 

1034 1040 1046 1060 LT 
I i I ,, I 

- 3 

- 2 

- I 

- 0 

61.16 61.50 61.79 62.07 

161.•(1 161.32 160.97 160.63 

N LAT. 

W LON. 

1634 1640 1645 
! i i 

LT 

1 

0 

- 5 

- 4 

- 3 

- 2 

81.51 t•1.85 62.13 

161.30 160.90 16D.55 

T•T. 

ION. 

Species Unit Initial Concentration Background 
(Fresh Plume) Concentration 

Diluted Plume Diluting Plume 

CO ppb 170 12,000 90 
03 ppb 50 50 50 
NOx ppt 300 40,800 25 
PAN ppt 200 200 200 
HNO3 ppt 50 50 50 
Ethane ppt 1400 97,000 800 
Propane ppt 500 60,000 100 
Bumes ppt 100 12,000 20 
Ethylene ppt 1200 170,000 0 
Propene ppt 370 48,000 0 
Butene ppt 90 12,000 0 
Benzene ppt 140 16,000 30 
Toluene ppt 80 7,200 30 

Xylene ppt 20 2,400 0 

Background concentrations are taken from ABLE 3A observations on 
August 3, 1988, except for benzene and toluene concentrations, which are 
taken from Rasmussen and Khalil [1983]. The choice of initial concentra- 
tions is discussed in the text. 

duce the observed enrichments ACO and ANO• after a travel thne 
of 2 days at 4-km altitude. Two simple schemes are used to model 

plume dilution: (1) instantaneous dilution upon emission, with no 

further dilution over the 2-day trajectory (diluted plume) and (2) 
horizontal dilution at a constant rate (diluting plume). These two 

schemes provide reasonable limiting cases; neither can pretend to 
capture the plume dynamics in a realistic manner, but comparison 
of the two gives a measure of the sensitivity of plume photochem- 

istry to dilution rates. The width Y(t) of the diluting plume at time 
t is computed following Sillman et al. [1990]' 

Y(O = [Y(O)2+8Kyt] u2 (1) 

where Y(O) is the width of the fire and Ky is a constant cross-flow 
diffusion coefficient. Concentrations in the diluting plume are ad- 

justed at each model time step by entrainment of background air 

(Table 1). 

Initial conditions for the calculations (Table 1) are selected by 

assuming that NOy is emitted in the fire as NO,, and that CO and 
NOy are conserved over the 2-day travel time. The observed ratio 
ANOy/ACO = 0.0034 [Wofsy et al., this issue] then defines the 
NOx/CO emission ratio. In the diluting plume case we further as- 

sume an initial CO concentration of 12 ppm and a fire width Y(0) 

= 1 kin, based on data from Cofer et al. [ 1989] for a boreal forest 

fire in Ontario. We then adjust Ky to obtain ACO = 80 ppb after 2 
days, corresponding to a plume width of 150 kin. The resulting 

Ky = 1.6x10 • m 2 s -] is consistent with values recommended by 
Gifford [1982] for plume widening calculations. 

Initial concentrations of NMHCs are selected by assuming a 

NMHC/CO emission ratio of 0.10 ppbC/ppb, taken from the bo- 
real forest fire data of Cofer et al. [ 1989]: This ratio appears typi- 

Plate 1. Aerosol vertical profiles measured by downward-pointing lidar in 

the morning (top) and afternoon Coottom) of August 3. "LST' is local 

standard time (two hours ahead of solar time). Results are shown in a false 

color display with the relative amount of atmospheric backscattering 

defined by the color scale. Black represents values greater than the max- 

imum of the color scale, i.e., strongly scattering environments (clouds, pol- 
lution layers). The black layers at 4 km altitude (top and bottom panels) 

are biomass fire plumes. Regions of no data, e.g., under a cloud, are shown 
in white. 
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cal of biomass fires in general, as indicated by data for selva and of NO,, on the first day produces roughly equal proportions of 
cerrado fires in Brazil [Greenberg et al., 1984], and for a chaparral HNO3 and PAN, plus small mounts of other organic nitrates 
fire in California [Cofer et aL, 1989]. The speciation of NMHCs (Figure 9b). The high yield of PAN reflects the low NO,`/NMHC 
among alkanes, alkenes, and aromatic species is taken from emission ratio and the low temperatures. As the plumes age on 

Greenberg et al. [1984]. Initial concentrations of all secondary the second day, slow decomposition of PAN takes place, because 
species (including O3 and PAN) are assumed equal to background. of the paucity of NO,,, shifting the composition of the NO• pool 
Fixed temperature (268 K) and dew point (263 K) are adopted towards HNO3 and RNO,,. The APAN/ANO• ratios after 2 days 
from aircraft measurements. The chemical evolution of the plume are 0.28 in the diluted plume and 0.38 in the diluting plume; both 
is simulated for 48 hours using the mechanism described in the ap- 
pendix. The simulations are initialized at noon; initialization at 

midnight produced no significant differences in results. 

Loss of NO,` 

values fall within the range of observations. 

Ozone production 

Figure 9c shows the time evolution of O3 concentrations in the 
model plumes. Photochemical production of O3 is modest and 

The NO,` concentrations in the model plumes decrease to 50 ppt confined mainly to the first day of travel when NO,, concentrations 
during the first day of travel, and drop to below background (25 are relatively high. The decline of O3 concentrations in the dilut- 
ppt) by the middle of the second day (Figure 9a). The lifetime of 
NO,` in the fresh plumes is only 5-7 hours, consistent with the lack 
of a detectable ANOx in the aircraft observations. The oxidation 
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ing plume as the plume ages is due to entrainment of background 
air. Simulated enrichments AO3 after 2 days of travel are 4 ppb in 

both plumes, consistent with observations. 

Photochemical production of O3 in the model plumes is strong- 

ly NO,`-limited. Increasing NO,` emissions by a factor of 10 
causes AO3 to increase by a factor of 5, while increasing NMHC 
emissions has little effect on O3 (Table 2). This resuk reflects the 

low NO,`/NMHC emission ratio in the fire (0.034), which can be 

compared to typical NO,`/NMHC emission ratios of 0.1-1 in U.S. 
cities [Environmental Protection Agency, 1989]. The NO,`/CO 
emission ratio in the fire (0.0034) is also low compared to typical 

urban values (0.05-0.1). Our finding that O3 production in the 

ABLE 3A fire plumes was NO,`-limited may be applicable to 

biomass fire plumes in general. The review of biomass burning 
emissions by Crutzen and Andreae [1990] gives NO,`/CO emis- 
sion ratios in the range 0.002-0.05 for various types of fires; these 

values are low compared to urban pollution. A likely explanation 

is that temperatures in biomass fires are relatively low. The partic- 
ularly low NO,`/CO emission ratios in the ABLE 3A fires may 
reflect in addition the low nitrogen content of vegetation at high 

latitudes [Chapin and Shaver, 1985]. 
The above discussion implies that the relatively low AO3/ACO 

ratios previously reported for biomass fire plumes in the tropics 
[Andreae et al., 1988, 1992] can be explained simply by low 

NO,`/CO emission ratios. The AO3/ANO • ratio is an alternate 
measure of O3 production in the plumes. Assuming that O3 and 

NO• are conserved in the plume, and that NO• is emitted as NO,`, 
then the AO3/ANO• ratio measures the number of O3 molecules 
produced per molecule of NO,` emitted, i.e., the "03 production 

efficiency" [Liu et al., 1987; Linet al., 1988]. The AO3/ANO• ra- 
tios measured in the ABLE 3A fire plumes ranged from 12 to 21 

[Wofsy et al., 1991], and our model gives a value of 13 (Table 2). 
These values are low compared to the O3 production efficiencies 

of 30-40 reported by Lin et al. [ 1988] from photochemical simula- 

tions of pollution plumes with same initial inputs of NO,` and 

NMHCs as in Table 1. Part of the difference appears to reflect the 
low temperatures in the ABLE 3A plumes, promoting conversion 
of NO,` to PAN. 

We can estimate roughly the contribution of biomass fires 

plumes to the regional O3 budget at high northern latitudes by as- 

suming an O3 production efficiency of 13 in the plumes, and a re- 

Fig. 9. Simulated chemical history of the biomass fire plumes sampled by gional average NO• emission flux of 5x108 molecules cm -2 S -1 
the ABLE 3A aircraft on August 3. The calculations assume a 2-day travel (section 2). The resulting O3 source is 7x109 molecules cm -2 s -1, 
time of the plumes starting at noon at the location of the fire, and ending at small relative to the O 3 sink of 1.6x10 u molecules cm -2 s -1 
noon 2 days later at the location of the ABLE 3A aircraft. Results are 

derived in section 2. Additional O3 production may take place on shown for the diluted plume (solid lines) and for the diluting plume (dotted 
lines). (Top): Concentrations of NO,`. (Middle): Cumulative contdbu- the regional scale following dispersion of NO• emitted from fires 
tions of NO,`, PAN, HNO•, and RNOx to ANOn. (Bottom): Concemra- and eventual decomposition to NO,`. In section 2 we estimated 
tions of 03. that biomass fires could account for 20% of the NO• budget in 
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TABLE 2. Concentration Enrichments in the August 3 Biomass Fire Plumes 

APAN/ANO• AO3 AO3/•N'O • AO3/ACO 
ppb/ppb ppb ppb/ppb ppb/ppb 

Observations 0.23-0.38 3-6 12-21 0.04-0.08 
Model 

1. Diluted plume 0.28 4 13 0.04 
2. Diluting plume 0.38 4 13 0.04 
3. NOx emissions x10 0.12 19 7 0.24 
4. NMHC emissions x10 0.41 2 8 0.03 

AX is the concentration enrichment of species X in the plume relative to 
background. Observations are from Wofsy et al. [this issue]. Model 
results are shown for 2-day old plumes. The sensitivity simulations 3 and 
4 were conducted with the diluted plume assumption. 

ABLE 3A, suggesting that the overall influence of fires on the re- 
gional 03 budget remains minor. 

4. CONCLUSIONS 

Modeling of observations from the ABLE 3A expedition indi- 
cates that the Os concentrations in the summertime Arctic tropo- 

sphere reflect mainly a balance between input from the strato- 

sphere, and losses of comparable magnitude from photochemistry 

and deposition. The observed concentrations of NO,, (10-50 ppt) 
are sufficiently high to reduce the Os photochemical loss rate by a 

factor of 2.5 relative to a NO,,-free atmosphere. We estimate an 

atmospheric lifetime of 46 days for Os in the 0-6 km column sam- 

pled during ABLE 3A; this lifetime would drop to 26 days if no 
NO,, were present. The small mounts of NO,, observed in ABLE 

3A have thus a major effect on the regional Os budget. 
We find that decomposition of PAN can account for most of the 

NO,, observed in ABLE 3A below 4-km altitude, but for only 20% 

at 6 km altitude. The missing source of NO,, at high altitudes may 
be due to decomposition of unidentified organic nitrates. The at- 

mospheric lifetime of NO• is estimated at 29 days, implying that 
organic nitrate precursors of NO,, could be transported from dis- 

rant sources. Long-range transport of mid-latitudes pollution 

probably made a substantial contribution to the NO• budget. 
Decomposition of anthropogenic NO• in the Arctic, providing a 
source of NO,,, could possibly explain the increase of tropospheric 

Os concentrations observed in that region over the past two de- 
cades. 

Biomass fires appear to be only a minor source of Os in the 

(RA1) CH3CO3 + HO2 -> 0.67 CH3C(O)OOH + 0.67 02 

+ 0.33 CHaCOOH + 0.33 03 

k = 4.3x10 -13 e 1ø4ø/T cm 3 molecule -1 s -1 

(RA2) CH3CO3 + CH302 -> CHaCOOH + CH20 + 02 

(RA3) 

k = 4.1x10 -ls e 21øøtr cm 3 molecule -1 S -1 

02 
CH3CO3 + CH302 > CH302 + CH20 

+ HO2 + CO2 

k = 1.8x10 -9 e -18øø;r cm 3 molecule -1 s -1 

Loss of PAN by reaction with OH [Wallington et al., 1984] is also 
included: 

(RA4) PAN + OH - > NO2 + products 

k = 1.2x10-•2e -•s3/T cm 3 molecule -1 S -1 

Reaction with OH dominates over thermal decomposition as a 

sink for PAN above 5 km. Photolysis of PAN [Senurn et al., 

1984] is negligibly slow at all altitudes of concem. 

The UV radiation field is computed with a standard six-stream 

algorithm for the Rayleigh scattering atmosphere. The stratos- 
pheric 03 column is 8.75x10 •8 molecules cm -2 (mean value for 

particular acetic acid production from the CH3CO 3 + HO2 and Andreae, M. O., et al., Biomass-burning emissions and associated haze 
CH3CO3 + CH302 reactions [Moortgaat et al., 1989a,b]: layers over Amazonia, J. Geophys. Res., 93, 1509-1527, 1988. 
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state, with fixed input concentrations of 03, NO, PAN, HNO3, 

CO, methane, ethane, propane, butanes, and acetone. The time- 
dependent calculations of section 3 integrate the chemical 
mechanism over time with an implicit finite difference method. 

All chemical computations use the detailed mechanism of Lur- 

mann et al. [ 1986], modified for low-NO,, conditions as described 

by Jacob and Wofsy [1988, 1990]. The modifications include in 

APPENDIX: CHEMICAL •CHANISM 

from biomass burning relative to fossil fuel combustion. 
Only 30% of the acetic acid concentrations measured in ABLE 

3A can be explained by reactions of CH3CO3 with HO2 and 

CH302. Another 10% can be explained by emissions from 
biomass fires. There remains a major unidentified source of acetic 
acid in the atmosphere. 

Arctic because NO,, emissions from fires are weak. Production of July 1988 measured at Poker Flats, Alaska). The UV albedo is 
03 in the biomass fire plumes sampled during ABLE 3A was 0.02 over tundra and ocean, and 0.8 over stratus decks (flight 14) 
strongly NO,,-limited. The enrichment ratios AO3/ACO observed and sea ice (north of 71øN). Scattering by aerosols is included 
in the ABLE 3A fire plumes are consistent with values previously with an optical depth of 0.1 at 310 nm, varying inversely with 
reported for biomass fire plumes in the tropics, and are much wavelength. 
lower than values for urban and industrial pollution. This result The calculations of section 2 solve the system of coupled alge- 
may be explained by the generally low NO,,/CO emission ratio braic equations describing the mass balances of species at steady 
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