
 1 

Classification, Biological Sciences: Plant Biology 

 

Title 
Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively 

regulates abscisic acid signaling 

 
Authors and their affiliations 

Kenji Miura*,†, ‡, Jiyoung Lee§, ¶, Jing Bo Jin*,‖, Chan Yul Yoo*, Tomoko Miura*, Paul M. 

Hasegawa*, ‡ 

*Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907, 

USA 
†Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 

305-8572, Japan 
§Division of Applied Life Science (BK21 program) and Environmental Biotechnology National 

Core Research Center, Graduate School of Gyeongsang National University, Jinju 660-701, 

Korea 
¶Current address: Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 

60637 
‖Current address: Institute of Botany, Chinese Academy of Sciences, Beijing, China 100093 

 

‡To whom correspondence and proofs should be addressed: 

Kenji Miura 

Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, 

Japan 

Tel & Fax: +81 (29) 853-6401 

Email: kmiura@gene.tsukuba.ac.jp 

 

Paul M. Hasegawa 



 2 

Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907 

Tel: (765) 494-1315 

Fax: (765) 494-0391 

Email: paul.m.hasegawa.1@purdue.edu 

 

Word and character counts, Words in the abstract: 207 

       Characters in the paper: 36,617 

 

Abbreviations:  

ABA, abscisic acid; ABI, ABA insensitive; ABRE, ABA-responsive element; AFP, ABI5 binding 

protein; bZIP, basic leucine zipper; GST, glutathione S-transferase; MS, Murashige and Skoog; 

PIAS, protein inhibitor of activated STAT (signal transducer and activator of transcription); Siz, 

SAP (scaffold attachment factor, acinus, PIAS) and Miz1 (Msx2-interacting zinc finger); 

SP-RING, Siz/PIAS-RING (really interesting new gene); SUMO, small ubiquitin-related 
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Abstract 

SUMO (small ubiquitin-related modifier) conjugation (sumoylation) to protein substrates is a 

reversible posttranslational modification that regulates signaling by modulating transcription 

factor activity.  This paper presents evidence that the SUMO E3 ligase SIZ1 negatively 

regulates abscisic acid (ABA) signaling that is dependent on the bZIP transcription factor ABI5.  

Loss-of-function, T-DNA insertion siz1-2 and siz1-3 mutations caused ABA hypersensitivity for 

seed germination arrest and seedling primary root growth inhibition.  Further, expression of 

genes that are ABA-responsive through ABI5-dependent signaling (e.g. RD29A, Rd29B, AtEm6, 

RAB18 and ADH1) was hyper-induced by the hormone in siz1 seedlings.  abi5-4 suppressed 

ABA hypersensitivity caused by siz1 (siz1-2 abi5-4), revealing an epistatic genetic interaction 

between SIZ1 and ABI5.  A K391R substitution in ABI5 [ABI5(K391R)] blocked 
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SIZ1-mediated sumoylation of the transcription factor in vitro and in Arabidopsis protoplasts 

indicating that ABI5 is sumoylated through SIZ1 and that K391 is the principal site for SUMO 

conjugation.  ABI5(K391R) expression in abi5-4 plants caused greater ABA hypersensitivity 

(gene expression, seed germination arrest and primary root growth inhibition) than ABI5 

expression in abi5-4.  Together, these results establish that SIZ1-dependent sumoylation of 

ABI5 attenuates ABA signaling.  The double mutant siz1-2 afp-1 exhibited even greater ABA 

sensitivity than the single mutant siz1, suggesting that SIZ1 represses ABI5 signaling function 

independent of AFP1.   

 

¥body 

Introduction 

The phytohormone abscisic acid (ABA) regulates numerous processes including those that are 

necessary for plant growth and development, and environmental stress adaptation (1-3).  ABA 

accumulates in developing embryos, where it regulates seed development and storage product 

accumulation (2), and facilitates the initiation and maintenance of seed dormancy (2).  The 

hormone prevents premature seed germination before embryos are developmentally and 

physiologically mature, which ensures seedling establishment in favorable environmental 

conditions.  Further, ABA enhances seed desiccation tolerance by inducing expression of genes 

encoding effectors that provide hyper-osmotic protection as embryos dehydrate in the later 

maturation stages.  Water deficit induces ABA biosynthesis in stratified seed leads to 

germination arrest until the environment becomes more conducive for seedling development.   

 Effectors and mechanisms of ABA perception and signal transduction are the focus of 

intensive research efforts (2,3).   ABA receptors identified to date include FCA (flowering 
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control locus A), CHLH (H subunit, magnesium-protoporphyrin-IX chelatase), GCR2 (G 

(guanine nucleotide-binding protein)-protein coupled receptor2) and GTG1 and GTG2 

(GPCR-like G proteins) (4-7).  GTG1 and GTG2 are predicted to have GPCR topology and 

exhibited GTP-binding and GTPase activities (7).  These proteins are hypothesized to be 

membrane-localized ABA receptors that are posited to be involved in G protein-mediated 

transduction of the hormonal signal (7).   

 Among the numerous effectors of ABA signal transduction identified to date are the ABI 

(ABA-insensitive) determinants by a genetic screen for mutations that rendered seeds less 

responsive to ABA-mediated inhibition of germination (3, 8).  ABI1 and ABI2 encode protein 

phosphatase 2Cs, while ABI3, ABI4 and ABI5 encode B3, APETALA2-like, and basic leucine 

zipper (bZIP) domain containing transcription factors, respectively (9-11).   

 ABI3 and ABI5 function as intermediates in ABA signaling that regulate seed 

maturation and germination, and expression of genes that facilitate desiccation tolerance as 

embryos dehydrate during later stages of maturation (11-13).  Further, ABA or hyper-osmotic 

stress of seeds during stratification induces biosynthesis of the hormone that is regulated by ABI3 

and ABI5 (11, 12).  ABI5 expression suppressed ABA insensitivity of seed germination caused 

by abi3 (12) and overexpression of ABI3 enhanced ABI5 expression (14), indicating that ABI5 is 

genetically epistatic to ABI3.   

 Recombinant ABI5 physically interacts with the ABRE (ABA-responsive element, 

ACGTGG/TC) cis regulatory promoter sequence in ABA responsive genes such as AtEm6, 

RD29A/LTI78 (responsive to desiccation/low temperature induced) and RD29B/LTI65, RAB18 

(response to ABA), and ADH (alcohol dehydrogenase) (3, 13).  Chromosomal 

immunoprecipitation analysis revealed that ABA stimulates association of ABI5 with the AtEm6 
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promoter, which is presumably necessary for transactivation (12).  Recent evidence established 

that HY5 binds to the promoter of ABI5 to function as an integrator of light and ABA signaling 

during seed germination, early seedling growth, and root development (15). 

 ABA induces ABI5 accumulation through transcriptional activation and enhanced 

protein stability (11).  ABI5 stabilization and activation is correlated with phosphorylation (11).  

AFP (ABI five binding protein) facilitated ABI5 proteasome degradation (16) that was linked 

with the RING finger ubiquitin E3 ligase KEG (Keep On Going) (17).  An abi5 mutation 

suppressed ABA-hypersensitivity of afp-1 and keg mutants (16, 17).  These results indicate that 

AFP and KEG are negative regulators of ABA signaling, acting through the degradation of ABI5 

(16, 17). 

 Sumoylation regulates diverse biological processes such as cell cycle progression, DNA 

repair and transcription in yeast and metazoans (18).  SUMO conjugation to protein substrates, 

similar to ubiquitination, occurs in a series of biochemical steps that are catalyzed sequentially 

by SUMO-activating, conjugating, and ligating enzymes (18).  Proteases of the cysteine 

protease super family deconjugate SUMO from protein substrates (18).  In plants, SUMO 

conjugation and deconjugation determinants and sumoylation have been linked functionally to 

ABA and Pi starvation signaling, growth and flowering, defense against phytopathogens, 

thermotolerance, and cold acclimation (summarized in 19).  SIZ1 (SAP and Miz) is the 

principal SUMO E3 ligase in Arabidopsis and has been reported to function in all of these 

processes (20-26).  Arabidopsis SIZ1 is the plant prototype of yeast SIZ and mammalian PIAS 

proteins that regulate gene expression through chromatin remodeling and nuclear body 

sequestration (18).   

 This study established that siz1 mutations cause ABA hypersensitivity that resulted in 
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inhibition of germination and seedling primary root growth, implicating sumoylation in the 

regulation of ABA signaling as SUMO1/2 overexpression attenuates ABA-mediated growth 

inhibition (27).  SIZ1 modulated ABA signaling by facilitating sumoylation of ABI5 at K391.  

Wild-type ABI5 expression suppressed the abi5-4 mutation; however, this capacity was 

abrogated by a K391R substitution, which also prevents sumoylation of the protein.  Together, 

these results indicate that SUMO modification negatively regulates ABI5 function in ABA 

signaling during seed germination and seedling growth.   

 

Results 

siz1 enhances ABA sensitivity of seeds and seedlings 

Exogenous application of ABA during or immediately after stratification results in seed 

germination and seedling primary root growth inhibition (8).  ABA (0.5 µM) inhibited siz1 

(siz1-2 and siz1-3) seed germination, and cotyledonary and primary root expansion relative to 

wild-type (Fig. 1A).  siz1 seeds were hypersensitive to ABA at all concentrations evaluated (0.1 

to 5 µM) (Fig. 1A, 1B, and Supplemental Fig. S1).  At the highest ABA levels evaluated (≥2.5 

µM), a percentage of siz1 seeds failed to germinate during the experimental interval 

(Supplemental Fig. S1) and for periods thereafter (not shown).  Wild-type seed germination, 

although delayed by ABA, was maximal (nearly 100%) within six days after sowing 

(Supplemental Fig. S1).   

 ABA inhibited primary root growth of siz1 seedlings relative to that of wild-type 

seedlings (Fig. 1C and D).  Expression of the wild-type allele ProCaMV35S:SIZ1:GFP suppressed 

ABA hypersensitivity of siz1-2 seedlings (Fig. 1D), confirming that SIZ1 contributes to ABA 

responsiveness of seedlings.  SIZ1 transcript abundance in these transgenic lines was 
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comparable to that of wild type (Supplemental Fig. S2).  Together, these results implicate SIZ1 

as a negative regulator of ABA function in seeds and seedlings.   

siz1 enhances ABA-induced gene expression 

ABA signaling results in activation of transcription factors that interact with ABRE cis-elements 

and induce expression of genes associated with germination and dehydration responses 

germination (13).  Consequently, expression of ABA-responsive genes containing ABRE 

elements was evaluated in siz1 and wild-type seedlings.  ABA-induced RD29A, RD29B, AtEm6, 

RAB18 and ADH1 expression was greater in siz1 than in wild-type seedlings.  The relative 

expression level difference was greatest for AtEm6 and ADH (Fig. 2).  Interestingly, ABI5 

expression was similar in siz1 and wild-type seedlings (Fig. 2).  These results directly implicate 

SIZ1 as a negative regulator of ABA signaling but through a mechanism that does not involve 

transcriptional regulation of ABI5.   

Genetic interaction between SIZ1 and ABI5 or AFP 

Genetic interaction between ABI5 and SIZ1 was assessed by crossing abi5-4 and siz1-2 to 

produce the double mutant.  F2 progeny were genotyped for the presence of both siz1-2 and 

abi5-4 and those homozygous at both loci were selected for evaluation.  abi5-4 suppressed 

ABA sensitivity of siz1-2 for both seed germination (Fig. 3A) and seedling primary root growth 

(Fig. 3B and C).  These results indicate that ABI5 is genetically epistatic to SIZ1.   

 AFP negatively regulates ABA signaling by facilitating proteasome degradation of ABI5 

(16).  siz1-2 afp-1 double mutation caused additive ABA-hypersensitive seed germination and 

primary root growth phenotypes (Fig. 3).  These results suggest that both SIZ1 and AFP are 

negative regulators of ABI5-dependent ABA signaling but likely through independent 

mechanisms.   
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SIZ1 mediates sumoylation of ABI5 

Since the results inferred that SIZ1 and ABI5 are genetic interactors and that ABI5 expression is 

not affected by siz1, we posited that SIZ1 negatively regulates ABA signaling through 

sumoylation of ABI5.  SUMOplot (http://www.abgent.com/tool/sumoplot) predicted that ABI5 

contains one sumoylation motif (ΨKXE; 28) identifying K391 as the probable SUMO 

conjugation residue.  SIZ1 facilitated SUMO1 conjugation to ABI5 in an in vitro assay (Fig. 

4A).  However, substitution of K391 by R blocked sumoylation (Fig. 4A), indicating that K391 

is the residue to which SUMO1 is conjugated.  SUMO1 and 2 are considered to be functionally 

redundant (29).  T7:SUMO1 and HA:ABI5 or HA:ABI5(K391R) cDNAs were cotransformed 

into protoplasts isolated from wild-type or siz1-2 plants.  SUMO1 conjugation to ABI5 in 

wild-type protoplasts was unaffected by ABA (Fig. 4B and 4C).  Neither ABI5-SUMO1 nor 

ABI5(K391R) conjugation product was detected in protein extracts isolated from siz1-2 

protoplasts even though a substantial amount of protein was loaded onto the gel (Fig. 4C).  

Together, these results indicate that SIZ1 mediates sumoylation of ABI5 at residue K391.  ABI5 

was less abundant in siz1-2 than in wild-type seedlings (Fig. 4D), supporting the notion that 

sumoylation of ABI5 may increase stability of the protein, i.e. wild type probably contains both 

sumoylated and unsumoylated ABI5. 

Sumoylation of ABI5 negatively regulates ABA responses 

To investigate whether sumoylation of ABI5 affects plant responses to ABA, transgenic plants 

expressing PCsV:ABI5 or PCsV:ABI5(K391R) in the abi5-4 background were generated.  Plants of 

independent T4 and T5 homozygous lines were identified with equivalent expression of the 

respective transgene based on quantification of mRNA abundance (Supplemental Fig. S3).  

These plants were used for phenotypic evaluation of ABA responses.  Expression of wild type 
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ABI5 in abi5-4 suppressed ABA insensitivity (Fig. 5A and 5B).  That is, the seed germination 

and primary root growth responses to ABA of these plants were the same as those of wild-type 

plants (Fig. 5A and 5B).  However, expression of ABI5(K391R) in abi5-4 resulted in seed 

germination and primary root growth hypersensitivity to ABA (Fig. 5A and 5B).  Expression of 

ABA-responsive genes (RD29A, RD29B, AtEm6, RAB18, and ADH) was also hypersensitive to 

ABA (Fig. 5C).  ABA sensitivity of these genes in abi5-4 plants expressing ABI5 was similar to 

that in wild-type (WS) plants (Fig. 5C).  These results indicate that SUMO conjugation to ABI5 

negatively regulates ABA signaling.   

Discussion 

A conclusion from the presented evidence is that the Arabidopsis SUMO E3 ligase SIZ1 is a 

negative regulator of ABA signaling that inhibits germination, causes post-germinative primary 

root growth arrest (Fig. 1), and activates expression of ABA responsive genes such as Em6 and 

ADH (Fig. 2).  Genetic and biochemical data support the notion that SIZ1 regulates ABA 

signaling through sumoylation of the bZIP transcription factor ABI5 at K391 (Fig. 3 and 4).  

Expression of ABI5(K391R) in abi5-4 plants enhances ABA signaling that inhibits seed 

germination, causes seedling primary root growth arrest and transcriptionally activates 

ABA-responsive genes to a greater extent than expression of ABI5 (Fig. 5).  Thus, sumoylation 

of ABI5 at K391 is responsible for negative regulation of ABA signaling.  We posit that 

SIZ1-mediated sumoylation of ABI5 inactivates the transcription factor but protects the protein 

from proteasome degradation that is facilitated by AFP and KEG (Fig. 6).   

Sumoylation Protects ABI5 from Proteasome Degradation 

 Sumoylation and ubiquitination can interact competitively or cooperatively on the same 

substrate to regulate protein stability and function (30).  SUMO conjugation to IκBα or NEMO 
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competes for the same K residue that when ubiquitinated results in proteasome degradation of 

the proteins (18, 30).  AFP, ABI5 binding protein, and KEG, RING-type ubiquitin E3 ligase, are 

negative regulators of ABA signaling presumably through mechanisms resulting in 

ubiquitin-mediated degradation of ABI5 (16, 17).  The 26S proteasome subunit RPN10 also is 

linked to degradation of ABI5 (31).  It is feasible that SIZ1-mediated sumoylation of ABI5 

protects the transcription factor from degradation, as a lower abundance of ABI5 was detected in 

siz1-2 plants (Fig. 4D).   

The additive genetic interaction between siz1-2 and afp (Fig. 3) suggests that SIZ1 and 

AFP regulate ABI5 through different mechanisms (Fig. 6).  AFP and ABI5 co-localize to 

nuclear bodies, where it is postulated that the transcription factor undergoes proteasome 

degradation (16).  Sumoylation of transcription factors facilitates recruitment into nuclear 

bodies (18) and SIZ1 is localized to nuclear foci (20).  It is thus plausible that ABI5 is 

compartmentalized into, at least, two different types of nuclear bodies.  One nuclear body type 

is where AFP co-localizes and in which proteasome degradation of ABI5 occurs.  

Compartmentalization of ABI5 into the alternative nuclear body is facilitated by SIZ1-mediated 

sumoylation and renders the transcription factor inactive but not susceptible to proteolytic 

digestion.    

Sumoylation and Phosphorylation in ABA Signaling 

 SUMO conjugation to substrate proteins regulates and is regulated by posttranslational 

modifications that alter stability, localization and activity of transcription factors (30).  For 

instance, phosphorylation of c-Jun and p53 reduces sumoylation of these proteins (32), whereas 

phosphorylation of HSF1 and HSF4 enhances sumoylation (33).  ABA induces phosphorylation 

of SnRK2 [SNF1 (sucrose nonfermenting 1)-related protein kinase 2] family members that 
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activates the proteins (34).  In turn, SnRK2.2 and SnRK2.3 phosphorylate ABI5 in response to 

ABA (35).  The snrk2.2 snrk2.3 double mutation makes seed germination and seedling primary 

root growth insensitive to ABA (35).  These results indicate that ABI5 is phosphorylated as a 

response to ABA and infers that phosphorylation activates the transcription factor.  

SIZ1-mediated SUMO conjuation to ABI5 negatively affects ABA regulation of seed 

germination and seedling primary root growth.  Consequently, it is plausible that sumoylation 

of ABI5 negatively affects activity by modulating phosphorylation of the protein.    

 

Sumoylation/Desumoylation Plays an Important Role in Precise Regulation of ABI5 

Activity by a Reversible Mechanism 

Several reports demonstrate that ABA signaling is tightly controlled and that ABI5 plays 

a central role in this signaling (9, 10).  Based on our results, we hypothesize that ABI5 is 

sumoylated to make a pool of inactive ABI5 and desumoylation is required to release ABI5 from 

inactive form (Fig. 6).  This neutral ABI5 may be activated by phosphorylation after ABA 

treatment (16) to enhance expression of ABA-responsive genes, which contain the ABRE 

cis-element in their promoter.  Such activation may also enhance seed dormancy, osmotic 

adjustment, and growth inhibition (Fig. 6).  Without sumoylation, such as ABI5(K391R), cells 

could not make an inactive pool.  As ABI5 protein level was decreased in siz1 (Fig. 4D), it is 

more likely that sumoylation protects ABI5 from degradation.  Therefore, ABA-mediated 

inhibition of germination and postgerminative growth was accelerated (Fig. 5). 

Because siz1-2 afp-1 showed additive effects (Fig. 3), sumoylation and AFP-facilitated 

degradation of ABI5 are differently, and perhaps competitively, regulated (Fig. 6).  Unlike 

degradation, the sumoylation/desumoylation mechanism reversibly regulates the transcription 
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factor.  SUMO modification may protect ABI5 from degradation and play a role in switching 

ABI5 activity neutral (by desumoylation) or off (by sumoylation).  This switching mechanism 

may be required for precise regulation of ABI5 activity (Fig. 6).   

 

Materials and Methods 

Plant Materials and ABA Treatment.  Arabidopsis thaliana genetic resources for this research 

were siz1-2, siz1-3 (Col-0 ecotype; 20), and abi5-4 and afp-1, which were kindly provided by Dr. 

NH Chua (Wassilewskija (WS) ecotype; 16).  F3 and F4 homozygous double mutants were 

obtained by crossing siz1-2 (male) to abi5-4 or afp-1 mutants (female).  Diagnostic PCR 

analyses were performed to identify the siz1-2 mutation as described (20), and to identify abi5-4 

and afp-1 mutations as described previously (11, 16).  T5 homozygous siz1-2::SIZ1:GFP 

transgenic plants were used for experiments. 

ABI5 or ABI5(K391R)-expressing transgenic plants in the abi5-4 background were 

obtained by Agrobacterium-mediated floral transformation as described (21).  The ABI5 or 

ABI5(K391R) coding region, amplified with primers ABI5-BinaF and ABI5-EGR (Supplemental 

Table 2), was inserted into the binary vector pCsV1300 (expression is driven by cassava vein 

mosaic virus promoter, CsV) (36).  The abundance of transgene was detected by RT-PCR with 

the primers ABI5K391RF and NOS-transR (Supplemental Fig. S3).  

Seeds were surface sterilized and then kept for 3 days in the dark at 4°C to break 

dormancy.  Thereafter, seeds were sowed onto Murashige and Skoog (MS) medium containing 

0.8% agar.  Germination (% of seeds sown) frequencies were obtained by scoring radicle 

emergence (n = 5, 30-34 seeds per plates, three times).  Note that 100% germination means that 

all seeds germinated for all genotypes.  To investigate inhibition of root growth by ABA, 
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3.5-day-old seedlings were transferred onto plates supplemented with ABA (Sigma).  Root 

growth is the root length difference at the beginning and end of the growth evaluation period.   

Quantitative RT-PCR.  ABA was applied as an aqueous foliar spray (100 μM ABA in water) 

onto seedlings grown on agar medium for 7 days after sowing (37).  About 3 ml of ABA 

solution was sprayed onto each plate, and then seedlings were incubated for 1 or 3 h.  Seedlings 

were harvested prior to and one and three hours after ABA application.  Total RNA from 

one-week-old plants was isolated using TRIZOL reagents (Invitrogen) according to the 

manufacture’s protocol.  Three micrograms of RNA were used as a template for first-strand 

cDNA synthesis using Superscript II reverse transcriptase (Invitrogen) with an oligo(dT21) primer.  

Primer pairs for quantitative PCR (Supplemental Table 1) were designed and PCR was 

performed as described (20, 21).   

Purification of Recombinant Proteins and In Vitro and In Vivo SUMO Conjugation Assays.  

The ABI5 open reading frame was amplified from the cDNA clone (U85657 obtained from 

Arabidopsis Biological Resource Center) with primers ABI5-T7F and ABI5-expR (Supplemental 

Table 2).  The PCR product encoding wild-type ABI5 (pGST-T7-ABI5) or a mutated 

ABI5(K391R) [AA1172A to AGA by site-directed mutagenesis with primers ABI5K391RF and 

ABI5K391RR; pGST-T7-ABI5(K391R)] was inserted into pGEX-5X-T7 (21).  Recombinant 

proteins from pGST-T7-ABI5, pGST-T7-ABI5(K391R), pGST-SIZ1 (22), or other expression 

vectors (kindly provided by Dr. H-P Stuible) were prepared as described (21, 38).  In vitro 

sumoylation assays were performed as described (38) with the modifications that 2 μg of 

GST-SIZ1 and 0.1 μg of E2 enzyme (instead of 2 μg of E2) were added to the assay mixture.  

Immunoblot analysis with anti-T7 antibody (Novagen) was performed to detect GST-T7-ABI5 or 

GST-T7-ABI5(K391R). 
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 For transient expression in Arabidopsis protoplasts, the ABI5 or ABI5(K391R) coding 

region, amplified with primers ABI5-HAF and ABI5-expR (Supplemental Table 2), was inserted 

into the plasmid p326-HAN (21) to produce the HA-ABI5 or HA-ABI5(K391R) fusion protein 

driven by the 35S promoter.  T7:SUMO1 (21) and HA:ABI5 or HA:ABI5(K391R) were 

co-expressed in wild-type or siz1-2 protoplasts (21).  After incubation at 23°C for 42 h, then 

protoplasts were incubated with or without ABA (40 μM final concentration) at 23°C for 1 h.  

Soluble extracts were immunoprecipitated with Agarose Immobilized Goat anti-HA (QED 

Bioscience Inc).  Immunoblot analysis was performed with anti-HA (Santa Cruz Biotechnology, 

Inc) or anti-T7 (Novagen).  

Immunoblot Analysis.  Two-week-old seedlings were treated with ABA by a foliar spray and 

incubated for 12 and 24 h.  Samples were prepared as described (20).  Thirty micrograms of 

protein was loaded onto an SDS-PAGE gel, and immunoblot analysis with anti-ABI5 antibody 

(kindly provided by Dr. L Lopez-Molina; 39) was performed. 
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Figure Legends 

Fig. 1.  siz1 mutation increases ABA inhibition of seed germination and seedling primary root 

growth.  Col-0 (wild type), siz1-2, or siz1-3 seeds were sown, or seedlings transferred onto 

medium without or supplemented with ABA.  (A) The illustration is a representative example of 

results seven days after sowing.  (B)  Seed germination frequencies were determined four days 

after sowing for an average of 30-34 seeds from five independent experiments ± standard error 
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(SE).  A 100% germination frequency is indicative that all seeds germinated.  (C, D) Three and 

half-day-old seedlings of equivalent size were transferred onto media and primary root growth 

was determined after a seven-day growth period (root length at the end minus root length at the 

beginning of the growth period).  (C) A representative example of results is illustrated, bars = 

10 mm.  (D)  Each root growth value is the mean ± SE, n ≥ 15.  siz1-2::SIZ1:GFP-3 and 

siz1-2::SIZ1:GFP-6 are representative lines illustrating that SIZ1:GFP was transformed into 

siz1-2 and genetically complemented the mutation; siz1-2::vector is the control line for 

comparison.   

 

Fig. 2.  SIZ1 negatively regulates expression of ABA-responsive genes.  Seven days after 

sowing seeds of wild type, siz1-2, or siz1-3; water (0) or ABA (100 μM) was applied as foliar 

spray application.  Seeds were then incubated for the time indicated.  Relative mRNA levels 

were determined by quantitative RT-PCR analysis.  Transcript levels of SIZ1, ABI5, RD29A, 

RD29B, Em6, RAB18, and ADH are illustrated.  Data are mean ± SD (n = 3) from one 

representative experiment.  Three independent experiments were performed and results from 

each exhibited similar relative trends.  Expression of genes in seedlings treated for 3 h with 

water was similar to that from seedlings without treatment (data not shown).   

 

Fig. 3.  ABA sensitivity caused by siz1-2 is suppressed by abi5-4 and enhanced by afp-1.  (A) 

Illustrated are germination frequencies of wild-type (Col-0 and WS), siz1-2, afp-1 or siz1-2 afp-1 

seeds (left), or wild-type, siz1-2, abi5-4 or siz1-2 abi5-4 seeds (right) four days after sowing.  

Each value is the average of 30-34 seeds from five independent experiments, ± SE.  (B, C) 

Primary root growth of three-day-old seedlings that were transferred to medium without or 
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supplemented with 15 μM ABA.  (B)  Photographs illustrate representative results of seedlings 

seven days after transfer, bars = 10 mm.  (C)  Each root growth value is for seedlings seven 

days after transfer (mean ± SE), n ≥ 12 from one of three representative experiments.  F3 and F4 

seeds of abi5-4 siz1-2 and afp-1 siz1-2 were used in these experiments.   

 

Fig. 4.  SIZ1-mediated SUMO1 conjugation to ABI5 and ABI5 abundance in siz1-2..  (A) In 

vitro sumoylation was performed using affinity-purified recombinant GST-T7-ABI5 or 

GST-T7-ABI5(K391R) as a substrate (21, 38).  The reaction mixture contained Arabidopsis 

His-SAE1 (E1), His-SAE2 (E1), His-SCE1 (E2), GST-SIZ1 (E3), and His-SUMO1.  ABI5 

proteins were detected with anti-T7 (GST-T7-ABI5, ~85 kDa).  His-SUMO1 exhibited a ~20 

kDa protein (38), SUMO1-ABI5 conjugation was ~105 kDa, as indicated by the arrowhead.  No 

band was detected without substrates (w/o).  (B, C) In vivo sumoylation was assessed after 

expression of T7-SUMO1 and HA-ABI5 or HA-ABI5(K391R) expression in Arabidopsis 

protoplasts (21).  Soluble extracts from untreated or ABA-treated protoplasts (see Methods) 

were immunoprecipitated with anti-HA (IP: HA).  Western blot analysis was performed with 

anti-T7 to detect T7-SUMO1-HA-ABI5 conjugates (WB: T7; top panel).  To confirm there 

were equivalent levels of HA-ABI5 or HA-ABI5(K391R) in extracts, protein was detected using 

anti-HA (WB: HA; bottom panel).  (D) ABI5 levels in wild-type or siz1-2 plants determined by 

western blot analysis.  Two-week-old seedlings were treated without (0, water) or with ABA for 

12 or 24 h by using a foliar spray application.  ABI5 protein levels were analyzed with 

anti-ABI5.  A nonspecific Coomassie blue-stained band is shown as a loading control. 

 

Fig. 5.  ABI5(K391R) expression causes ABA hyper-sensitivity in abi5-4 plants.  Independent 
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individual lines expressing ABI5 or ABI5(K391R) in abi5-4 were obtained.  Plants of lines with 

similar transgene transcript abundances were identified (Supplemental Fig. S3).  T4 and T5 

progeny (homozygous) were used for phenotypic analyses.  (A, B) Seed germination and 

primary root growth were measured as described in Fig. 1; five independent experiments ± SE 

(A) and the mean ± SE, n ≥ 15 (B).  (C) Transcript abundance of RD29A, RD29B, Em6, RAB18, 

and ADH was determined using quantitative PCR analysis of one-week-old seedlings prior to (0 

h) or 1 h after ABA treatment (100 µM by foliar spray).  mRNA levels are expressed relative to 

transcript abundance in wild-type seedlings at 0 h.  Data are mean ± SD (n = 3) from one 

representative data of three individual experiments.   

 

Fig. 6.  The model illustrates how SIZ1 negatively regulates ABA signaling through 

sumoylation of ABI5.  SIZ1-mediated sumoylation of ABI5 at K391 negatively regulates ABI5 

activity and ABA signaling that inhibits seed germination and seedling primary root growth (Fig. 

1-5).  Sumoylated ABI5 that is inactive but is presumed to be activated by desumoylation 

involving a SUMO protease.  ABA activates desumoylated ABI5 by phosphorylation.  AFP 

and KEG facilitate proteasome-dependent degradation of ABI5 (16, 17).  It is posited that 

SIZ-mediated sumoylation regulates ABI5 activity in ABA signaling by facilitating the 

maintenance of an invactive form of the transcription factor that is not susceptible to proteolytic 

degradation.  
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is the average of 30-34 seeds from 5 independent experiments, ± SE.
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Supplemental Fig. S3. Illustrated is ABI5 or ABI5(K391R) transcript abundance in 
independently transformed abi5-4 lines (T4 generation).  (A) Semi-quantitative RT-PCR 
analysis was performed using primers ABI5K391RF and NOS-transR that detects mRNA 
produced by the transgene but not native ABI5 (top panel); compare with lanes indicating vector 
in abi5-4, WS, and abi5-4.  Numbers above columns indicate the independent transgenic line 

b th i l d id tif li th t d f h t i d i lnumber; those circled identify lines that were used for phenotypic and gene expression analyses.  
(B) Illustrated is the diagram of the binary vector for expression of ABI5 or ABI5(K391R).  ABI5 
or ABI5(K391R) cDNA expression, which was driven by the CsV (cassava vein mosaic virus) 
promoter.  Arrowheads indicate the locations at which primers (ABI5K391RF and NOS-transR) 
annealed for PCR amplification. 



Table 1.  Primer Sequences Used to Detect SIZ1 or Genes 
Involved in ABA Signaling by the Quantitative PCR Method

5'-ATAGCGCCTCTGGGAATCAT-3‘
5'-GCCTTGTCTTGTCTACTGTCATTCATAC-3‘
5’-GAGAATGCGCAGCTAAAACA-3’
5’-GTGGACAACTCGGGTTCCTC-3’
5’-CTTGATGGTCAACGGAAGGT-3’
5’-CAATCTCCGGTACTCCTCCA-3’
5’-AGAAGGAATGGTGGGGAAAG-3’
5’-CAACTCACTTCCACCGGAAT-3’
5’-ATGGCGTCTCAACAAGAGAA-3’
5’-TTAGGTCTTGGTCCTGAATTTG-3’
5’-GGAGAAGTTGCCAGGTCATC-3’
5’-ACCGGGAAGCTTTTCCTTGATC-3’
5’-ATCAATCCGGATGCTCCTCT-3’
5’-GCACCAGCGATTCTAGCACC-3’

SIZ1

ABI5

RD29A

RD29B

Em6

RAB18

ADH

Table 2.  Primer Sequences Used for Construction of Vectors.

ABI5-T7F
ABI5-expR
ABI5K391RF
ABI5K391RR
ABI5-HAF
ABI5-BinaF
ABI5-EGR
NOS-transR

5’-CGGAATTCATGGTAACTAGAGAAACGAA-3’
5’-ATTCTCGAGTTAGAGTGGACAACTCGGG-3’
5’-GTTGAGAGAAGAGAATGCGC-3’
5’-GCCCATTCTCTTCTCTCAAC-3’
5’-CGGGATCCCGATGGTAACTAGAGAAACGAA-3’
5’-CGGGATCCATGGTAACTAGAGAAACGAA-3’
5’-CGGGATCCTTAGAGTGGACAACTCGGG-3’
5’-GCCAAATGTTTGAACGATCGGGAA-3’


