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ABSTRACT 

 

HP1 enrichment at pericentric heterochromatin is considered important for centromere function. While HP1 

binding to H3K9me3 can explain its accumulation at pericentric heterochromatin, how it is initially 

targeted there remains unclear. Here, in mouse cells, we reveal the presence of long nuclear non-coding 

transcripts corresponding to major satellite repeats at the periphery of pericentric heterochromatin. 

Furthermore, we find that major transcripts in the forward orientation specifically associate with SUMO-

modified HP1 proteins. We identified this modification as SUMO-1 and mapped it in the hinge domain of 

HP1α. Importantly, the hinge domain and its sumoylation prove critical to promote the initial targeting of 

HP1α to pericentric domains using de novo localization assays whereas they are dispensable for 

maintenance of HP1 domains. We propose that SUMO-HP1, through a specific association with major 

forward transcript, is guided at pericentric heterochromatin domain to seed further HP1 localization. 
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Heterochromatin at pericentric domains represents a paradigm for understanding how a functional 

nuclear domain is established and maintained. Studies in S. pombe and Drosophila have advanced our 

knowledge concerning basic mechanisms and conserved components in the organization of the domain1. 

In particular HP1 proteins which accumulate in these domains are highly conserved from S. pombe to 

mammals. However in mammalian cells, how HP1 is specifically targeted de novo to initiate formation of 

a domain of accumulation as found in pericentric heterochromatin2,3 remains mysterious. The recognition 

of H3K9me3 by HP14,5 which exemplifies the paradigm of the reader model in the histone code 

hypothesis6,7 does not necessarily provide on its own a de novo specific targeting mechanism. One should 

also consider other HP1 binding partners8,9, potential post-translational modifications10 and the elusive 

RNA that has been linked to the presence of HP1 at pericentric heterochromatin11,12. While transcripts 

from major satellite DNA repeats have been identified13,14, a functional connection between specific 

RNAs and HP1 has not yet been established. Taken together, these data prompted us to explore further the 

HP1-RNA connection and particular post-translational modifications or partners that could provide a 

means for the de novo targeting of HP1 to pericentric heterochromatin, thereby helping to define this 

specific subnuclear compartment.  

 

 We first verified that repetitive DNA sequences in mouse centromeres, known as major and minor 

satellites in pericentric and centric heterochromatin respectively15, can be transcribed in both orientations. 

All these transcripts detected by RT-PCR analysis with strand-specific primers for major or minor satellites 

showed various sizes corresponding to multiple repeats of their basic units (Fig. 1a). We next examined 

whether some of these transcripts could be stably found in the nucleus. As a reference for comparison, we 

used the well-defined organization of chromocenters with major satellite repeats surrounded by minor 

satellite DNA (Fig. 1b, left, DNA FISH)2. For this, we exploited fluorescently labelled locked nucleic acid 

(LNA) probes for RNA FISH that detect specifically major and minor transcripts in either forward or 

reverse orientation. While minor RNAs were barely detectable, LNA probes for major RNAs in both 

orientations revealed a significant number of nuclear spots frequently associated or close to chromocenters 

(Fig. 1b, middle). These signals were not a result of DNA cross-hybridization, since they were undetectable 

after RNase treatment (Supplementary Fig. 1). With some variations from cell to cell suggesting cell cycle 

modulation, reverse major RNAs were usually detected as fewer and larger spots (Fig. 1b, middle, red) and 

forward major RNA signals were smaller in size and present in higher numbers (green). Interestingly, these 

forward major RNAs were consistently at the periphery of HP1α domains (Fig. 1b, right, immuno-RNA 

FISH and Supplementary Fig. 2a). Since active transcription occurs frequently in the external part of 

chromosomal domains by DNA looping out16, they may represent primary transcripts stably maintained at 

the site of transcription. Notably, HP1α accumulated at major satellite domains, away from minor satellites 
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which were juxtaposed (Fig. 1c and Supplementary Fig. 2b, Immuno-DNA FISH)2. We then examined 

further the possible in vivo association of major RNAs with major satellite domains by other methods. 

Under conditions that preserved RNAs, we immunoprecipitated heterochromatin-associated material with a 

specific HP1α antibody. We found a significantly higher amount of forward major transcripts compared to 

reverse transcripts (Fig. 1d). Taken together, our data highlight a particular link between major RNA in the 

forward orientation and pericentric heterochromatin. While HP1α can bind RNA in vitro
12, a specific 

binding to a given transcript has been reported so far only for TERRA RNA17. Using GST-tagged HP1α 

full-length protein or fragments thereof and radioactively labelled centromeric RNA probes (Fig. 2a), we 

find that the hinge domain (H) of HP1α strongly recognized both forward and reverse centromeric RNA 

probes, while the chromo-hinge (CD+H) and the hinge-chromoshadow (H+CSD) domains showed a lower 

binding capacity. Under these conditions, we did not detect binding between full-length HP1α and RNAs 

(Fig. 2a). These results suggest that the central hinge domain may adopt a different conformation in the 

full-length protein, possibly constrained by the CD and/or the CSD. This raised the possibility that HP1α 

could actually bind RNA in vivo and that this interaction can be regulated. To investigate this hypothesis, 

we aimed to identify proteins from nuclear cell extracts that associated with centromeric RNAs, using in 

vitro transcribed biotin-labelled forward major or minor RNAs immobilized on streptavidin beads (Fig. 2b 

and Supplementary Fig. 3a). Mass spectrometry analysis of the RNA-associated proteins identified mainly 

hnRNPs and proteins involved in RNA processing (Supplementary Fig. 3b and Supplementary Table 1) 

including vigilin, RNA helicase A (RHA) and Ras-GAP SH3 domain binding protein (G3bp), which were 

all validated by Western blotting (Fig. 2c). Vigilin and the Drosophila RHA ortholog, maleless (MLE), are 

thought to play roles in heterochromatin formation and X-chromosome dosage compensation, 

respectively18,19, while G3bp may be involved in RNA metabolism20. Surprisingly, under these 

experimental conditions, we did not detect any significant association between HP1α and major or minor 

RNAs, neither by mass spectrometry (Supplementary Fig. 3b) nor by Western blotting (Fig. 2c). Given our 

in vitro observations (Fig. 2a), we wondered whether post-translational modification of HP1α could 

promote in vivo HP1α binding to RNA. Indeed, HP1 can be phosphorylated10 and in fission yeast, 

Swi6/HP1 is sumoylated in vivo
21. Furthermore, defective sumoylation of Swi6 results in significantly 

reduced heterochromatin stability. This prompted us to repeat our RNA pull down strategy with nuclear 

extracts prepared in the presence of a cocktail of phosphatase inhibitors and N-ethylmaleimide (NEM), a 

strong inhibitor of SUMO isopeptidases22. Remarkably, Western blotting with an anti-HP1α antibody 

revealed a slower migrating band in the input for HP1α that was not detected in absence of NEM and that 

then was specifically enriched in precipitates with forward major RNAs corresponding to either one or two 

satellite repeats length (Fig. 2d; Maj1 F or Maj2 F). This band, with an approximate additional molecular 

mass of ~11 kDa compared to HP1α, might represent an ubiquitin or a SUMO moiety. We confirmed that 
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this slower-migrating form was modified by SUMO-1, but not SUMO-2/3, using specific antibodies (Fig. 

2d). We obtained similar results with antibodies specific of HP1β and HP1γ (Supplementary Fig. 3c) 

indicating that all HP1 isoforms can potentially be sumoylated in vivo and are specifically retrieved with 

forward major RNAs. While the forward major RNA pulls down SUMO-1-HP1α, we estimated that only a 

small percentage of HP1α was SUMO-1 modified in vivo (less than 1% of total protein from nuclear 

extracts, Fig. 2d). This low representation is in agreement with rapid cycles of sumoylation and de-

sumoylation as reported for other proteins weakly detected in a SUMO-modified state in vivo
23,24.  

 

 To confirm independently that HP1α gets sumoylated in vivo, we co-transfected HA-tagged HP1α 

(e-HP1α) and GFP-SUMO-1 into NIH3T3 cells to prepare total cell extracts and carried out 

immunoprecipitations with anti-HA beads under conditions that preserved the SUMO modification25. 

Western blot analysis using anti-GFP antibodies clearly revealed a band corresponding to GFP-SUMO-e-

HP1α (Supplementary Fig. 4a), demonstrating unambiguously that HP1α can be sumoylated in vivo. To 

determine which region of HP1α was SUMO-modified, we next used an in vitro sumoylation assay with 

either wildtype (W) or mutant (M) SUMO-1 protein, in the presence of E1 activating and E2 conjugating 

(Ubc9) SUMO enzymes and various GST-HP1α domains (Fig. 3a). Western blot analysis using anti-GST 

antibodies showed SUMO-modification on the full-length HP1α, the chromo-hinge, the hinge-

chromoshadow and the hinge domains, the latter domain showing the highest level of sumoylation (Fig. 

3b and Supplementary Fig. 4b, asterisks). This is also true when using SUMO-2 or SUMO-3 

(Supplementary Fig. 4c). These results revealed that the hinge, the same domain of HP1α that displayed 

RNA binding activity (Fig. 2a), is a target for sumoylation. Since the fusion of Ubc9 to a substrate 

provides a convenient way to increase its sumoylation26, we also verified with a GST-HP1α-Ubc9 fusion 

protein that we could enhance SUMO-1-modification of HP1α in vitro without adding the E2 enzyme 

(Fig. 3c). Then, using the GST-HP1α hinge and SUMO-1 proteins as above (Supplementary Fig. 5a), we 

further identified specific sumoylated residues on HP1α by mass spectrometry. In the hinge domain, 

among the 13 lysines (K) as potential targets for sumoylation, we found that K84 of HP1α in the peptide, 

“EKSEGNK”, was unequivocally identified as sumoylated by mass (with high accuracy in the orbitrap; 

Fig. 3d, right spectra, arrow) and sequence (by MS/MS in the Qstar mass spectrometer; Fig. 3d; shown y 

and b ions). However, we also found other potentially sumoylated lysines in HP1α (e.g., KMoxK, SKK, 

KYK or YKK; Supplementary Fig. 5b and c) indicating alternative usage of various lysine residues. We 

thus mutated successively each of the individual 13 lysines to arginine and performed in vitro sumoylation 

assays as above and in vivo co-transfections as in Supplementary Figure 4a. We observed in all cases that 

once we mutated one residue an alternative sumoylation site was used (data not shown), showing the 
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usage of more than one sumoylation site and corroborating our mass spectrometry data. This suggests a 

lack of a strict requirement for a ”specific” SUMO modified residue.    

 

 Since the fusion of Ubc9 to HP1α increases sumoylation efficiency in vitro (Fig. 3c), we thus 

generated an HP1α-Ubc9-HA fusion construct (e-HP1α-Ubc9) for in vivo expression and further analysis 

in a cellular context. Transfection of e-HP1α-Ubc9 or e-HP1α into NIH3T3 cells lead to comparable 

levels of proteins being expressed (Supplementary Fig. 6a and b; anti-HA). Interestingly, a significantly 

higher amount of SUMO-modified e-HP1α-Ubc9 could be detected. In total cell extracts, we found that e-

HP1α-Ubc9 was mainly SUMO-2/3-modified reflecting the readily available endogenous SUMO-2/3 

proteins compared to the limited amount of free endogenous SUMO-1 protein in cells (compare SUMO-1 

vs SUMO-2/3 inputs in Fig. 2d)23. This could be compensated for by providing exogenous SUMO-1 by 

transient transfection (Supplementary Fig. 6c). These in vivo results underline the fact that HP1α can be 

modified by SUMO-1 or SUMO-2/3 depending on the available substrate, as shown in vitro (Fig. 3b&c 

and Supplementary Fig. 4b&c). We verified that the catalytic activity of the fused Ubc9 was directly 

involved in HP1α sumoylation enhancement using a Ubc9 catalytic mutant fused to HP1α (e-HP1α-

Ubc9C93S). In comparaison with e-HP1α-Ubc9wt, we detected a strongly reduced sumoylation of e-

HP1α-Ubc9C93S (Supplementary Fig. 6c). Next, we examined e-HP1α-Ubc9 and e-HP1α localization in 

NIH3T3 cells. Both of them could accumulate at pericentric domains where endogenous HP1α is already 

located (Fig. 3e). Thus under these conditions, promoting HP1 sumoylation did not give a particular 

advantage for the recruitment and maintenance of exogenous HP1 to preexisting HP1 domains of 

accumulation. Next, we wondered whether HP1α sumoylation could be required more specifically for a de 

novo targeting of HP1α to heterochromatin domains. To test this hypothesis we used MEFs derived from 

Suv39h double-null (dn) mice, in which the H3K9me3 mark and HP1α are no longer enriched at 

pericentric heterochromatin11,27 (Fig. 4). Transfection with exogenous Myc-SUV39H1 can restore the 

proper localization of these marks (Fig. 4b)5,28. Since we postulated that the interaction between major 

RNAs and sumoylated HP1α targets HP1α to pericentric domains, we first verified that we could detect 

major RNAs by RNA-FISH in Suv39h dn MEFs (Supplementary Fig. 7a). We then transiently transfected 

Suv39h dn cells with e-HP1α or e-HP1α-Ubc9 in the absence of Myc-SUV39H1 and verified that the 

proteins were expressed at comparable levels (Fig. 4c). We could not detect the typical localization to 

chromocenters in cells transfected with e-HP1α (Fig. 4c). In contrast, in about 10% of cells transfected 

with e-HP1α-Ubc9 cells, we found a faint but detectable pericentric localization 6h post-transfection. 

Remarkably, in the latter case, we could not detect H3K9me3 accumulation at pericentric heterochromatin 

(Fig. 4c and Supplementary Fig. 7b) while H3K9me1 was clearly visible at these domains in all Suv39h dn 

cells (Supplementary Fig. 7c). Thus, a targeting of e-HP1α-Ubc9 to pericentric heterochromatin could 
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occur in the absence of SUV39H1-dependent H3K9me3. However, while e-HP1α-Ubc9 was more 

efficiently targeted than e-HP1α, the low fraction of cells showing this staining suggested that following 

this initial recruitment, retention at pericentric domains was rather inefficient. We thus modified our assay 

to monitor the localization of e-HP1α or e-HP1α-Ubc9 to pericentric chromatin in the presence of Myc-

SUV39H1 assuming that H3K9me3 could promote stabilization (Fig. 4d). Immunofluorescence analysis 

revealed that e-HP1α, e-HP1α-Ubc9C93S and e-HP1α-Ubc9wt accumulated at pericentric 

heterochromatin when co-transfected with Myc-SUV39H1, in contrast to a negative control protein e-

hnRNPC (Fig. 4e). Remarkably, e-HP1α-Ubc9wt localized to these domains more efficiently than e-HP1α 

and e-HP1α-Ubc9C93S (62% vs 37% and 39% of positive cells, respectively 6h post-transfection) for 

comparable levels of expressed proteins (Supplementary Fig. 8a). Also, the e-HP1α and e-HP1α-

Ubc9C93S overall staining in the nucleus was rather diffuse compared to e-HP1α-Ubc9wt staining 

suggesting that a significant fraction of e-HP1α and e-HP1α-Ubc9C93S is not localized at pericentric 

heterochromatin (Fig. 4e, Supplementary Fig. 8b and supplemental legend for details). Taken together, 

these results indicate that enhancing sumoylation on HP1α promotes a more efficient accumulation at 

pericentric heterochromatin. We then performed a time course analysis to compare the appearance of 

HP1α at pericentric heterochromatin, in Suv39h dn cells co-transfected with Myc-SUV39H1 and e-HP1α 

or e-HP1α-Ubc9 (Fig. 4f). We found that e-HP1α-Ubc9 always localized more efficiently to pericentric 

heterochromatin compared to e-HP1α (52% vs 31% of positive cells, respectively, 4h post-transfection) 

for comparable levels of expressed proteins along the time course analysis (Fig. 4f). The different 

efficiencies with which these proteins localized to pericentric heterochromatin support the hypothesis of 

sumoylation acting as a limiting step to promote HP1α targeting. In support of this hypothesis, although 

toxic, the direct fusion of SUMO-1 to HP1α showed an even more efficient accumulation compared to e-

HP1α-Ubc9 (Supplementary Fig. 9 and supplemental legend for details). The simplest interpretation is 

that a higher amount of sumoylated protein provided by HP1α-Ubc9 fusion would allow a rapid targeting 

to pericentric domains whereas HP1α alone would be delayed by the time needed to undergo an entire 

cycle of sumoylation. Overall our data underline the importance of the HP1α SUMO modification prior to 

HP1α targeting to pericentric heterochromatin. 

 

 Given that the hinge domain, which shows RNA-binding properties12 is the target for sumoylation 

at multiple sites (Fig. 3b), we generated mutants of e-HP1α and e-HP1α-Ubc9 lacking the hinge domain 

and assayed whether they could specifically localize de novo to pericentric heterochromatin in Suv39h dn 

cells. After transfection of e-HP1αΔH and e-HP1αΔH-Ubc9 constructs in NIH3T3 cells, we found that the 

hinge domain was perfectly dispensable to localize HP1α at pre-existing HP1 domains in a ‘maintenance 

assay’ (Fig. 5a and b) as reported in Drosophila Kc167 cells29. Remarkably, when using Suv39h dn cells 
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for our ‘de novo’ localization assay, after co-transfection with Myc-SUV39H1, the e-HP1α mutant lacking 

the hinge domain did not localize at pericentric heterochromatin, in contrast to the wild type protein which 

did accumulate at these domains (44% positive cells, Fig. 5c). We verified that all transfected proteins 

were expressed at comparable levels (Fig. 5d). Even when Ubc9 was fused to the mutant protein, we did 

not detect localization of e-HP1αΔH-Ubc9 at pericentric domains. These data clearly show that the hinge 

domain, the SUMO modification and the association with major RNAs are critical for de novo localization 

of HP1α at pericentric heterochromatin. 

 

Based on our data, we propose a model for the de novo targeting and local accumulation of HP1α at 

pericentric heterochromatin by a multistep mechanism involving initial SUMO-dependent targeting as a 

“seeding” step (Fig. 6; “1”). This SUMO modification imposed in the hinge domain of HP1 would leave 

the CD and CSD available for other interactions with heterochromatin proteins (as represented in Fig 6). 

Subsequent “chromatin marking” steps would follow, including SUV39-dependent H3K9me3 to ensure 

HP1 stabilization (Fig. 6; “2”) and accumulation through a self-enforcing loop (Fig. 6; “3”)1. Our 

identification of a specific association between SUMO1-HP1α and major RNAs in the forward orientation 

(Fig. 2) provides a molecular basis for the “seeding” step. Such association may help to guide SUMO-

HP1α specifically to pericentric heterochromatin. The specificity of the interaction promoted by 

sumoylation, either by the sequence, by particular structures formed by these RNAs or by know HP1 

partners9, remains to be determined. Importantly, the HP1-RNA interaction is specific for the forward 

strand, which is purine rich and may thus adopt a distinct structure. Furthermore, It will be interesting to 

examine potential SUMO-binding protein candidate30. Following the “seeding” event, coordination with 

SUV39-mediated H3K9 methylation would be key for HP1α stabilization. While this step could formally 

be independent of sumoylation, it is possible that SUMO-HP1 and RNA interaction may promote 

additional interactions with other partners (such as SUV39) and enhance SUV39 enzymatic activity. In this 

way, the seeding event might favor further stabilization steps to establish a robust system for the 

maintenance of heterochromatin domains. Given that several proteins involved in heterochromatin stability 

have been shown to bind SUMO conjugates31, it is tempting to speculate that they could also bind SUMO-

HP1. Future work should address how and where HP1 gets sumoylated and which enzymes trigger both its 

sumoylation and desumoylation as well as the impact on centromere function. Given the conserved 

importance of HP1 from fission yeast to mammals3,32, further investigation of these issues in various 

organisms should help to define some general principles.  

We detected forward RNAs as long species (several repeat lengths, Fig. 1a), and showed that they 

localize at the periphery of pericentric domains (Fig. 1b and Supplementary Fig. 2a), however we did not 

detect small dsRNA corresponding to major satellites, as described for the maintenance of heterochromatin 
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in S. pombe
1,33. It is intriguing that even in S. pombe primal RNAs have been reported to be important for 

heterochromatin formation34. Although we do not exclude an RNAi pathway in connection with 

heterochromatin in mammalian cells35,36, the fact that we detected long non-coding RNA that are stably 

located in the nucleus just at the periphery of major satellite domains is very compelling. This is 

reminiscent of other long nuclear non-coding RNA like the lincRNA HOTAIR, proposed to serve as a 

modular scaffold for histone modification complexes involved in Polycomb function37 or Xist, which is 

critical to establish the silent state of the inactive X in mammals. Moreover, Xist RNA is known to be 

critical in setting up a de novo silent domain at specific times during development38,39. In this respect, the 

situation of early development in mice40,41 is particularly interesting, since a burst of transcription of major 

RNAs occurs just prior to the formation of HP1 domains of accumulation on the paternal genome42. Thus, 

it is tempting to speculate that sumoylation could be critical also at this time and perhaps during other 

developmental time windows. This mechanism could apply to certain cell types when major 

rearrangements of the genome occur as observed during spermatogenesis43, differentiation44,45, 

reprogramming in the mouse germ line46, in specialized cell types like Rod photoreceptor cells47, or even in 

the formation of Senescence Associated Heterochromatin Foci (SAHF)48.  

Beyond HP1, the concept that a modification like SUMO imposed on a chromatin protein could 

promote localization guided by a particular transcript in the nucleus, should be explored. One may wonder 

whether similar mechanisms also apply to the formation of other local domains of accumulation or nuclear 

compartments such as polycomb or insulator bodies. 
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FIGURE LEGENDS 

Figure 1. Strand-specific localization of centromeric RNAs.  

a. Transcription from both strands of major and minor satellite repeats. Top: schematic representation of 

mouse major and minor satellite repeats and strand specific primers (forward [For], reverse [Rev]) used 

for analysis by RT-PCR. Bottom: corresponding results for RNAs isolated from NIH3T3 mouse cells. We 

show PCR reactions in the presence (+RT) or absence (-RT) of reverse transcriptase, or primers, as 

controls. 

b. Nuclear localization of centromeric RNA compared to major and minor satellite DNA in NIH3T3 cells. 

Left: DNA FISH. Scheme of an acrocentric mouse chromosome with telomeres (black), major (red) and 

minor (green) satellites. Major (red) and minor (green) satellites are shown along with a merged image of 

major and minor satellites and DAPI stained DNA. Middle: RNA FISH. We localized major (forward in 

green, reverse in red) and minor (forward in red, reverse in green) RNAs with strand-specific LNA probes 

and show a merged image of DAPI and centromeric RNA staining. Insets show magnifications of 

chromocenters. Right: Immuno-RNA FISH. Forward major RNAs (green) and anti-HP1α antibodies (red) 

staining are shown along with a merged image of DAPI and major RNA staining. Scale bar, 10 µm. 

c. HP1α accumulation at major satellite DNA domains. Immuno-DNA FISH with anti-HP1α antibodies 

(green) and major or minor satellite DNA (red) probes. Insets as in b. Scale bar, 10 µm. 

d. RNAs associated with HP1α. ChIP experiments using pre-immune serum (Ctr) or anti-HP1α antibodies 

(HP1α) analysed by strand-specific RT-PCR as indicated. We show PCR reactions with (+RT) or without 

(-RT) reverse transcriptase, and without cDNA (mock), as controls. The input corresponds to the soluble 

chromatin prior to ChIP. 

 

Figure 2. SUMO-1-modified HP1α interacts specifically with forward major RNAs. 
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a. Northwestern blot using recombinant GST-HP1γ, GST-HP1α or GST-HP1α domain fragments and in 

vitro transcribed radioactively labelled RNAs: forward (F) and reverse (R) major (Maj2) and minor (Min); 

U1 used as negative control.  

b. Experimental scheme. 

c. RNA pull down using forward major (Maj2 F) or minor (Min F) RNAs, or no RNA as negative control, 

in the absence of NEM. We show Western blot analysis with anti-vigilin, anti-RHA, anti-G3bp or anti-

HP1α antibodies. Input is 10% of nuclear extracts.  

d. RNA pull down using forward (F) and reverse (R) major (Maj2 F, Maj1 F, Maj2 R) or minor (Min F, 

Min R) RNAs as baits, or no RNA control, in the presence of NEM. Western blot analysis using anti-

HP1α, anti-SUMO-1 and anti-SUMO-2/3 antibodies revealed endogenous unmodified HP1α (HP1α), 

modified-HP1α, SUMO-HP1α (S-HP1α) and free SUMO-2/3. Input is 10% of nuclear extracts. Asterisk 

(*) marks SUMO-HP1α in the input.  

 

Figure 3. Sumoylation of HP1α occurs at its hinge domain in vitro.  

a. Experimental scheme.  

b. HP1α sumoylation in vitro. Left: Schematic representation of full-length HP1α and fragments thereof. 

Right: Western blot analysis of the sumoylation reaction mixture with anti-GST antibodies revealed the 

positions of SUMO-1-modified full-length HP1α (S-HP1α) or fragment domains (S-CD+H and S-H) 

marked by an asterisk (*). 

c. HP1α-Ubc9 sumoylation in vitro. Western blot analysis of the sumoylation reaction mixture with anti-

GST antibodies revealed the positions of SUMO-1-modified HP1α-Ubc9 (S-HP1α-Ubc9) and unmodified 

HP1α-Ubc9. Arrow indicates a degradation product of GST-HP1α-Ubc9. 

d. Mass spectrometry analysis of the in vitro SUMO-1-modified HP1α hinge fragment. Shown are the MS 

(right) and MS/MS (left) fragmentation spectra of the tryptic peptide corresponding to residues 79-97 of 

SUMO-1 (top right, black) and 83-89 of HP1α (EKSEGNK; red) where K84 is sumoylated. The precursor 

ion mass was fragmented and acquired in Qstar (m/z 981.8 [3+]; left) and Orbitrap (m/z 981.77563, mass 

deviation 2 ppm; right, arrow) mass spectrometers. The majority of the fragment ions could be assigned to 

the y or b ion series, as annotated in the spectra and peptide sequence (top right).  

e. Localization of e-HP1α and e-HP1α-Ubc9 in Triton extracted NIH3T3 cells. Left: Experimental 

scheme. Right: Immunofluorescence using anti-HA (red) and anti-HP1α (green) antibodies. Scale bar, 10 

µm. 

 

Figure 4. Sumoylation of HP1α promotes its targeting and accumulation at pericentric 

heterochromatin. 
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a. Experimental scheme.  

b. Endogenous HP1α (red) and H3K9me3 (green) localization in wild-type and in Suv39h dn cells by 

immunofluorescence. Transfection of Myc-SUV39H1 in Suv39h dn cells restored HP1α and H3K9me3 

localization in DAPI dense domains.  Scale bar, 10 µm. 

c. de novo localization of e-HP1α or e-HP1α-Ubc9 in Suv39h dn cells by immunofluorescence. Left: HA 

(red) and DAPI (green) staining with 3X magnification of selected chromocenters (arrows). Middle: HA 

(red) and H3K9me3 (green) staining. For each condition, we examined 300 transfected cells and 

calculated the percentage of cells with HA signal enriched (positive) or not (negative) at pericentric 

domains. Scale bar, 10 µm. Right: comparison of protein expression by Western blot revealing HA and β 

actin. Arrow indicates degradation of e-HP1α-Ubc9. 

d. Experimental scheme.  

e. de novo localization of e-hnRNPC, e-HP1α, e-HP1α-Ubc9C93S and e-HP1α-Ubc9wt in Suv39h dn cells 

co-transfected with Myc-SUV39H1 by immunofluorescence to reveal HA (red) and Myc (green). The 

percentage of positive cells was calculated as in c. Scale bar, 10 µm. 

f. Time course analysis of the de novo localization of e-hnRNPC, e-HP1α and e-HP1α-Ubc9 in Suv39h dn 

cells co-transfected with Myc-SUV39H1. Top: the percentage of positive cells as a function of the time 

after transfection is represented. Symbols indicate the mean and error bars indicate the standard deviation 

of three independent experiments (300 co-transfected cells counted in each condition). Bottom: 

comparison of protein expression as in c. Arrow indicates degradation of e-HP1α-Ubc9. 

 

Figure 5. The hinge domain is required for de novo localization of HP1α at pericentric 

heterochromatin. 

a. Experimental scheme.  

b. Localization of wild type (WT) or mutant (ΔH) e-HP1α and e-HP1α-Ubc9 in NIH3T3 cells by 

immunofluorescence using anti-HA antibodies (red) 24 h after transfection. Scale bar, 10 µm. 

c. de novo localization of wild type (WT) or mutant (ΔH) e-HP1α and e-HP1α-Ubc9 in Suv39h dn cells 

co-transfected with Myc-SUV39H1 by immunofluorescence using anti-HA (red) and anti-Myc (green) 

antibodies 6 h after transfection. For each condition, we calculated the percentage of cells with HA signal 

enriched at pericentric domains (positive cells). Scale bar, 10 µm. 

d. Comparison of protein expression corresponding to experiment in c by Western blot using anti-HA and 

anti-β actin antibodies. Arrows indicate degradation products of e-HP1α-Ubc9 and e-HP1αΔH-Ubc9 . 

 

Figure 6. Model for a de novo HP1α targeting to pericentric heterochromatin. 
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A schematic representation of a nucleus with pericentric domains enriched in HP1 (red) is depicted 

showing the nuclear non-coding forward major RNA (green) at the periphery. HP1 (red) most likely as 

part of a complex becomes sumoylated. This SUMO-modified form of HP1α recognizes and binds to 

major RNAs (green) at pericentric heterochromatin, providing specificity to the initial targeting of HP1α 

to these domains (1). HP1α stabilization is then ensured by the recognition of H3K9me3 (blue) introduced 

by SUV39 (light brown) (2). Further HP1α accumulation involves a “self-enforcing” loop in which new 

HP1α directly binds to chromatin by multimerizing with other HP1α molecules, or by associating with 

other proteins and/or newly methylated H3K9 (3). 

 

 

ONLINE METHODS 

Mouse cell lines. We cultured wild type and Suv39h double-null MEFs (provided by T. Jenuwein)27 and 

NIH3T3 cells (ATCC #CRL-1658) as described2. We transfected MEFs and NIH3T3 cells with 

Nucleofector Kit 2 (Amaxa) and Lipofectamine 2000 (Invitrogen) respectively, according to manufacturer 

instructions. 

 

Plasmids. We obtained plasmids encoding GFP-SUMO-1 from R. Hay, Myc-SUV39H1 from T. 

Jenuwein22 and GST-HP1α full-length protein and fragments thereof (CD, CD+H, H and CSD) from R. 

Losson49. We carried out cloning using standard PCR-based techniques. We made e-HP1α, e-Ubc9 and e-

SUMO-1Δ6 constructs by inserting HP1α (gift of R. Losson), Ubc9 (gift of J. Seeler) and SUMO-1Δ6 

(from pEGFP-SUMO-1) fused to a HA-tag in C-terminus into pcDNA5 vector (Invitrogen). We generated 

e-HP1α-Ubc9 and e-HP1α-SUMO-1 constructs by inserting the HP1α  cDNA at the N-terminus of the e-

Ubc9 and the e-SUMO-1Δ6 plasmids, respectively. To avoid conjugation of e-HP1α-SUMO-1 into other 

proteins, we removed the last six C-terminal amino acids of SUMO-1, which contain the diglycine motif 

required for isopeptide bond formation. We generated HP1α and e-HP1α-Ubc9C93S point mutants using 

the QuickChange site-directed mutagenesis kit (Stratagene). To generate e-HP1αΔH and e-HP1αΔ-Ubc9 

mutants, we made truncation contructs of e-HP1α  and e-HP1α-Ubc9 in which amino acids M67 to R117 

forming the hinge domain were deleted and replaced by a linker of 2 amino acids (ID). These truncation 

contructs led to the fusion of the chromo domain to the chromoshadow domain. We generated GST-HP1α-

hinge-chromoshadow domain and GST-HP1α-Ubc9 by subcloning from GST-HP1α full-length and e-

HP1α-Ubc9, respectively. Each mutation and truncation was verified by sequencing. 

 

Antibodies. We used: mouse monoclonal anti-HP1α (2HP-1H5-AS for immunofluorescence and 2HP-

2G9-AS for Western blot; 1:1,000), anti-HP1β (1MOD-1A9-AS; 1:1,000), and anti-HP1γ (2MOD-1G6-
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AS; 1:1,000) all from Euromedex, rabbit polyclonal anti-vigilin (from D. Shapiro50; 1:3,000), rabbit 

polyclonal anti-RHA (PA-001, Vaxron; 1:10,000), mouse monoclonal anti-SUMO-1 (#33-2400; 1:500) 

and rabbit polyclonal anti-SUMO-2/3 (#51-9100; 1:250) both from Zymed, rat monoclonal anti-HA 

(#1867423, Roche; 1:2,000 for Western blot and 1:250 for immunofluorescence), mouse monoclonal anti-

G3bp (#611126, BD Biosciences; 1:1,000), mouse monoclonal anti-Myc (ab32, Abcam; 1:500), rabbit 

polyclonal anti-GST (ab9085 Abcam; 1:1,000), rabbit polyclonal anti-GFP (sc-8334, Santa-Cruz; 1:500), 

rabbit polyclonal anti-H3K9me3 (#07-442, Upstate; 1:500), mouse monoclonal anti-β actin (#A5441 

Sigma; 1:20,000). For chromatin immunoprecipitations we used a rabbit polyclonal anti-HP1α antibody 

generated against the full length GST-HP1α protein (Agro-Bio).  

 

Nuclear extracts. After incubation in hypotonic buffer A (20 mM Hepes-KOH pH 7.8, 5 mM potassium 

acetate, 0.5 mM MgCl2, 0.5 mM DTT) for 10 min at 4°C, we disrupted NIH3T3 cells by 25 strokes with a 

dounce homogenizer and separated nuclei from the soluble proteins by centrifugation at 1600 g. After 

incubation of nuclear pellets in buffer A containing 615 mM NaCl for 1.5 h at 4°C, followed by 

centrifugation at 14 000g for 20 min, we collected supernatant as the nuclear extract that we aliquoted and 

flash froze in liquid nitrogen. All buffers contained protease and phosphatase inhibitors (10 µg/ml 

pepstatin, 10 µg/ml leupeptin, 100 µM PMSF, 5 mM sodium fluoride, 10 mM β-glycerophosphate, plus or 

minus 20 mM N-ethylmaleimide [NEM; Sigma] when indicated). 

 

Centromeric RNA pull down. The Maj9-2 and Min5-1 pCR4 plasmids contain 542-bp of the mouse 

major satellite DNA and 162-bp of minor satellite DNA, respectively (provided by T. Jenuwein)51. We 

subcloned a cDNA encoding a 234-bp repeat unit of the mouse major satellite DNA from pUC19-Sat15 

(provided by A. Bird) into the pBS vector (Stratagene). We obtained biotinylated major (Maj1 from 

Sat15-pBS and Maj2 from Maj9-2 pCR4) and minor (Min from Min5-1 pCR4) RNAs by in vitro 

transcription with T7 or T3 RNA polymerases (Promega) in the presence of biotin RNA labelling mix 

(Roche), at 37°C for 2 h. After DNA digestion by RNase-free DNase I (Promega), we removed un-

incorporated rNTPs by a Sephadex G-50 quick spin column (Roche). For RNA pull down, we incubated 2 

µg of biotinylated RNA with nuclear extracts in binding buffer (20 mM Hepes pH 7.6, 100 mM KCl, 2 

mM EDTA, 0.01% Nonidet P-40, 1% gelatin) with 200 µg/ml tRNA, 4 mg/ml heparin, 80 U RNasin, plus 

or minus 20 mM NEM as indicated, for 30 min at room temperature. For each binding reaction we used 

100 µl of streptavidin-coated magnetic beads (Dynabeads; Invitrogen) for 1 h at room temperature, on a 

rotating wheel.  After 4 washes with binding buffer containing 20 µg/ml tRNA and 0.1% Tween-20, 

followed by one more wash with 20 mM Hepes pH 7.6, plus 50 mM KCl, we eluted bound proteins with 
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SDS-PAGE loading buffer and ran samples on NuPAGE 4-12% Bis-Tris gels (Invitrogen) with MOPS 

running buffer (Invitrogen). We stained gels with Coomassie brilliant blue. 

 

Immunoprecipitations and Western blotting. We lysed NIH3T3 cells 48 h post-transfection, with lysis 

buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM EDTA, 15 mM MgCl2, 1% Nonidet P-40, and 

0.75% sodium deoxycholate) supplemented with protease and phosphatase inhibitors, and 20 mM NEM 

(Sigma). We incubated cell lysates corresponding to 4x106 cells with 40 µl of monoclonal anti-HA 

agarose-conjugated beads (Roche) for 2 h at 4°C. After washing the beads with lysis buffer, we eluted the 

immunocomplexes with SDS-PAGE loading buffer, and resolved proteins by 4-12% Bis-Tris NuPAGE 

gels (Invitrogen), and transferred to nitrocellulose membranes (Protran). For visualization of proteins after 

Western blots with the indicated antibodies we used the Super Signal detection kit (Pierce). 

 

Northwestern blotting. We resolved recombinant full-length GST-HP1γ and GST-HP1α full-length and 

fragments thereof by SDS-PAGE and transferred them to nitrocellulose. We incubated the membranes 

with in vitro transcribed radioactively labelled RNAs in buffer containing 20 mM Hepes pH 7.6, 100 mM 

KCl, 2 mM EDTA, 0.01% Nonidet P-40, overnight at 23°C. After 3 washes with the same buffer, we 

visualized bound radioactively labelled RNAs by autoradiography. 

 

Immunofluorescence microscopy. We processed cells for immunostaining as described11. We used an 

epifluorescence photo-microscope (DM6000B, Leica) piloted with Metamorph software, an x63 (NA 

1.32) objective lens and an HQ2 CoolSnap camera (Photometrics) for image acquisition. For all time 

course studies, we performed three independent experiments. For spot formation analysis, after image 

acquisition, we draw a scan line across the nucleus and measured the relative intensity of fluorescence 

across this line for signals corresponding to e-HP1α and Myc-SUV39H1 (ImageJ software). For Immuno-

RNA FISH, we acquired 50 optical sections separated by 0.2 µm with an Imager.Z1 microscope (Zeiss) 

piloted with Metamorph software and made Z projections. We quantified the localization of forward major 

transcripts at the periphery of pericentric heterochromatin domains from 3D image series (z-step 0.2 μm) 

of major RNA FISH/DAPI staining acquired on a Delta Vision system (Applied Precision, 100x 

objective). For each nucleus, we manually scored the total number of RNA foci (ftot) and the number of 

RNA foci at the periphery of DAPI dense pericentric domains (fper) using ImageJ software and the Image 

5D plugin to allow co-visualization in 3D of the RNA FISH and DAPI signals. We determined the volume 

of the nuclei (Vnuc) and the volume of the individual pericentric domains (Vdom, DAPI dense) using the 

ImageJ software and the 3D Object Counter plugin. We calculated the volume of peripheral pericentric 

domain (Vper) as the difference between the volume corresponding to the pericentric domain with an 
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increase of 20% of the radius of the domain (Vdom20%, assuming a spherical form) and the volume of the 

domain (Vper=Vdom20%-Vdom). We obtained the concentration of RNA foci (foci/ μm3) at the periphery from 

the ratio fper/Vper and in the nucleus from the ratio ftot/(Vnuc-Vdom). We removed the volume of the 

pericentric domains from total volume given that RNA foci are never found within domains. 

 

RNA and DNA FISH. For RNA FISH, after extraction with 0.5% Triton X-100 in CSK buffer (10 mM 

Pipes pH7, 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, supplemented with 10 mM Vanadyl 

ribonucleoside complex (VRC)) for 5min on ice, we fixed cells in 3% paraformaldehyde in PBS for 12 

min and stored them in 70% EtOH at -20°C overnight. Following dehydration in 80%, 95% and 100% 

EtOH, we carried out hybridization with 0.4 µM locked nucleic acid (LNA) fluorescent probes (Exiqon) 

in 50% formamide (Sigma), 2x SSC (Sigma), 10% dextran sulfate (Fluka), 10 mM VRC (NEB) and 2 

mg/mL BSA (NEB) in a humid chamber for 35 min at 37°C. After 3 washes in 0.1x SSC for 5 min at 

60°C, we stained DNA with DAPI staining and mounted the cells in Vectashield (Vector Laboratories). 

For Immuno-RNA FISH, we performed RNA FISH as described above. After post-hybridization washes, 

we post-fixed cells in 3% paraformaldehyde in PBS for 12 min and processed them for immunostaining. 

DNA FISH and Immuno-DNA FISH were performed as described2, except that the hybridization mix 

contained LNA fluorescent probes (0.1 µM) and we performed post-hybridization washes in 0.1X SSC (3 

times for 5 min) at 60°C. The sequences of the LNA fluorescent probes are listed in Supplementary Table 

2. 

 

RT-PCR analysis. We performed RT-PCR analysis on HP1α-associated RNAs and on total RNA 

extracted from 3T3 cells with Trizol (Invitrogen). We digested genomic DNA by incubation with DNase 1 

(Sigma). We synthesized first strand cDNA from 1 µg RNA in 20 µl buffer containing 1 µM forward 

(For) or reverse (Rev) specific primers for major or minor satellites, 0.5 mM dNTPs, 40 U/µl RNasin and 

10 U/µl of SuperScript II reverse transcriptase (Qiagen). We then amplified the generated cDNA by PCR 

using 1/2000 and 1/250 dilutions of major and minor cDNA respectively, and a PCR Master Kit (Roche) 

supplemented with 0.5 µM specific primers during 45 cycles. Primer sequences are listed in 

Supplementary Table 2. 

 

Chromatin Immunoprecipitation (ChIP). We extracted NIH3T3 cells with Triton X-100 to remove 

soluble proteins as previously described52 and cross-linked them with 1.5% formaldehyde in PBS for 20 

min at room temperature. We then added 125 mM glycine for 20 min to quench any residual 

formaldehyde. After one wash with PBS, we collected the cells by scraping and resuspended them in ChIP 

buffer (20 mM Tris-HCl at pH 7.5, 200 mM NaCl, 0.2% Nonidet P-40, 1% gelatin and 80 U RNasin). We 
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then sonicated the cells seven times for 30 seconds on high intensity (Bioruptor sonicator, CosmoBio Inc.) 

and centrifuged at 10 000g for 5 min. We incubated approximately 200-300 µg of supernatant containing 

the soluble chromatin with 20 µl of sera against HP1α raised in the laboratory for 3 h at 4°C. We used pre-

immune sera as negative control. Then, we added 100µl of Protein-A sepharose slurry (50% W/V, 

Amersham Biosciences) and incubated for 3 h at 4°C on a rotating wheel. We recovered the 

immunoprecipitated chromatin by centrifugation, washed it five times with 1 ml of ChIP buffer and 

resuspended it in 10 mM Tris-HCl at pH 7.5, 1 mM EDTA, 0.2% SDS. We reversed the crosslink by 

incubation at 65°C overnight. We then extracted the HP1α-associated RNAs with Trizol (Invitrogen) and 

we performed RT-PCR analysis. 

 

In vitro sumoylation assays. We produced recombinant proteins in E. coli by expressing constructs 

corresponding to the GST-HP1α full-length protein and fragments thereof and GST-HP1α-Ubc9. We 

utilized the recombinant proteins in in vitro sumoylation reactions, using the SUMOlink kits (Active 

Motif), using manufacturer instructions. We validated sumoylation of HP1α and HP1α-Ubc9 by Western 

blot with anti-GST antibodies. For analysis of the sumoylated GST-HP1α hinge fragment by mass 

spectrometry, we used a total of 5 µg of GST-HP1α hinge and 10 µg of SUMO-1 protein. We ran 90% of 

the reaction mixture on a 4-12% Bis-Tris NuPAGE gel (Invitrogen) and stained the gel overnight with 

LabSafe GEL Blue stain (Biosciences) for later mass spectrometry analysis. We used the remaining 10% 

of the sumoylation mixture for Western blotting with rabbit anti-GST and rabbit anti-SUMO-1 (Active 

Motif; 1:4,000 dilution) antibodies.  

 

Mass Spectrometry. We reduced, alkylated and trypsin digested slices (1 mm wide) cut out from 

Coomassie blue-stained gels as previously described53. We dried extracted peptides, resolubilized them in 

solvent A (95/5 water/acetonitrile, 0.1% formic acid) prior to liquid chromatography tandem mass 

spectrometry (LC-MS/MS) analysis. We concentrated and separated them on a LC-Packings system 

(Dionex S.A.) coupled to the nano-electrospray II ionization interface of a QSTAR Pulsar i (Applied 

Biosystems/MDS Sciex). HPLC mobile phases contained solvent A and solvent B [20/80: 

water/acetonitrile, 0.085% formic acid]. We eluted bound peptides with a gradient of 5-50% of solvent B. 

We used information-dependent acquisition (IDA) to acquire MS/MS data, with experiments designed 

such that the two most abundant peptides were subject to collision-induced dissociation (CID). We 

analyzed twice the data from the IDA experiments by using MASCOT software (Matrix Science, London) 

on an internal server, first without taxonomic restriction to reveal the presence of proteins of interest and 

mammalian contaminants, then again the “Mus musculus” (mouse) database of the National Center for 

Biotechnology Information nr (National Library of Medicine, Bethesda, 2005 05 02, 2 452 561 and 41 362 
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protein entries). We converted the RAW files to the Mascot Generic Format (MGF) and submitted them to 

the Mascot search engine (version 1.0). We used the following parameters in the database search: Full 

trypsin enzyme specificity; Missed cleavages allowed = 1, Peptide mass tolerance = 0.8 Da; Fragment ion 

tolerance = 1 Da; Monoisotopic molecular weight for both peptide and fragment ion masses, b/y ion 

search, and fixed carbamidomethyl cysteine modification. We manually validated all data using 

myProMS54. 

For SUMO-1 LC-MS/MS experiments, we used two different MS platforms in parallel. We achieved 

peptide concentration and separation using an actively split capillary HPLC system (Ultimate 3000, 

Dionex, Germering, Germany) connected to each MS platform. The first platform was a quadrupole time-

of-flight (Q-TOF) mass spectrometer (QSTAR Elite, Applied Biosystems/MDS Sciex). We acquired a 

TOF-MS survey scan for 1 sec over a mass range of 800-1200 m/z. We used an IDA method to acquire 

product ion scans on the three most intense 3+ ions per cycle over a mass range of 65–2000 m/z, excluding 

previously gated ions for 60 sec. We used a Smart setting of 2.0. The second platform was an LTQ-

Orbitrap XL mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) equipped with a nanospray 

source using a Pico-Tip (10 µm i.d., New Objectives). We set the spray voltage to 2.2 kV and the 

temperature of the heated capillary to 200°C. The mass spectrometer was operated in data-dependent mode 

to automatically acquire MS and MS/MS spectra. We acquired full scan survey spectra (m/z 615-1200) in 

the Orbitrap with a resolution of 100,000 at m/z 400 after accumulation of 1,000,000 charges. We 

sequentially isolated the five most intense ions and fragmented them in the linear ion trap by collision-

induced dissociation after accumulation of 30,000 ions (normalized collision energy 35%). Maximum 

inject times were 500 msec for full scans and 200 msec for MS/MS scans. Dynamic exclusion was enabled 

with exclusion duration of 120 sec. We calculated and used the monoisotopic m/z values for SUMO-1-

GST-HP1α hinge branched precursor peptides as described55 to search for the corresponding ions 

(assignment was confirmed by manually interpreting all MS/MS spectra). We manually validated all 

reported MS/MS spectra. We considered only branched peptides having an extensive coverage of b and/or 

y ions. It was assumed that modified (sumoylated) lysines cannot be cleaved by trypsin, and one trypsin 

missed cleavage was allowed. 
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Major RNA interacting proteins 
Identifier Protein name Description 

 

MW (Da) Mascot 

score 

Peptides 

 

Coverage 

(%) 

giI19527028 Vigilin high density lipoprotein binding protein 141743 675.79 14 14.1 

giI24429590 RHA DEAH (Asp-Glu-Ala-His) box polypeptide 9 149583 293.56 6 4.7 

giI21450287 UNR DNA segment, Chr 3, MJeffers 1 88790.6 180.36 4 5.1 

giI21313308 hnRNP M heterogeneous nuclear ribonucleoprotein M 77648.7 254.84 5 8.0 

giI33859724 hnRNP R heterogeneous nuclear ribonucleoprotein R 70888.1 342.89 7 10.3 

giI16975504 FUSE-BP far upstream element (FUSE) binding protein 1 68539.6 181.07 4 6.6 

giI13242328 NS1-associated protein 1 NS1-associated protein 1 69769.8 419.34 8 10.7 

giI51263 p68 RNA helicase p68 RNA helicase 69320.3 118.47 3 5.9 

giI7305075 G3bp ras-GTPase-activating protein SH3-domain 

binding protein 

51828.8 128.79 3 9.9 

giI6755296 RBMX RNA binding motif protein, X-linked 42300.9 308.13 5 14.8 

giI6754222 hnRNP A/B heterogeneous nuclear ribonucleoprotein A/B 30831.3 268.67 5 14.7 

giI7949053 hnRNP A2/B1 heterogeneous nuclear ribonucleoprotein A2/B1 

isoform 1 

35993 542.95 8 37.5 

 

Minor RNA interacting proteins 
Identifier Protein name Description 

 

MW (Da) Mascot 

score 

Peptides 

 

Coverage 

(%) 

giI19527028 Vigilin high density lipoprotein binding protein 141743 89.67 2 1.2 

giI24429590 RHA DEAH (Asp-Glu-Ala-His) box polypeptide 9 149583 229.21 5 4.1 

giI17390825 hnRNP U Hnrpu protein 87917.7 136.22 2 4.1 

giI21313308 hnRNP M heterogeneous nuclear ribonucleoprotein M 77648.7 39.34 1 1.4 

giI33859724 hnRNP R heterogeneous nuclear ribonucleoprotein R 70888.1 132.22 3 4.4 

giI16975504 FUSE-BP far upstream element (FUSE) binding protein 1 68539.6 277.06 5 9.4 

giI13242328 NS1-associated protein 1 NS1-associated protein 1 69769.8 132.22 3 4.5 

giI13938631 Ptbp 1 Ptbp1 protein 59321.6 218.72 6 18.4 

giI6755296 RBMX RNA binding motif protein, X-linked 42300.9 116.85 2 6.9 

giI6754222 hnRNP A/B heterogeneous nuclear ribonucleoprotein A/B 30831.3 81.89 3 9.1 

giI8393544 hnRNP C heterogeneous nuclear ribonucleoprotein C 34384.8 173.06 4 12.8 

giI31542602 Elav-like protein 1 ELAV (embryonic lethal, abnormal vision, 

Drosophila)-like 1 (Hu antigen R) 

36169 638.76 12 43.6 

 

 

 

Supplementary Table 1. List of selected major and minor RNA associated 

proteins identified by mass spectrometry. Table shows identifier (NCBI protein 

accession number), description (NCBI protein definition), MW (molecular weight in 

Daltons), mascot score (sum of the unique mascot ions scores), peptides (number of 

peptides identified per experiment), coverage (% of sequence coverage identified from 

MS/MS data). Protein name in bold indicates proteins that associated with only major or 

minor RNAs. We performed the experiment twice and showed the best experiment. 
 

 

 



Supplementary Table 2. Probe and primer sequences 

 

LNA fluorescent probes for RNA and DNA FISH 

Name Fluorophore Sequence 

major 1 

major 2 

minor 1 

minor 2 

FITC 

Cy3 

Cy3 

FITC 

TCTTGCCATATTCCACGTCC 

GCGAGGAAAACTGAAAAAGG 

GTTCTACAATGCCGGTTTCC 

TACACTGAAAAACACATTCG 

 

 

 

Primers for RT-PCR 

Name Sequence (5ʼ- 3ʼ) 

major satellites (For) 

major satellites (Rev) 

minor satellites (For) 

minor satellites (Rev) 

AAATACACACTTTAGGACG 

TCAAGTGGATGTTTCTCATT 

GAAAATGATAAAAACCACAC 

ACTCATTGATATACACTGTT 
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